Práctica 4. LABORATORIO
|
|
|
- Sandra Rojas Iglesias
- hace 9 años
- Vistas:
Transcripción
1 Práctica 4. LABORATORIO Electrónica de Potencia Convertidor DC/DC Cúk 1. Diagrama de Bloques En esta práctica, el alumnado debe implementar un convertidor DC/DC tipo Cúk. En la Fig1 se muestra el diagrama de bloques del circuito completo, incluyendo el circuito generador de PWM, el acoplamiento con aislamiento galvánico, el driver para controlar el interruptor, y el circuito de potencia. Puesto que el circuito tiene bastantes componentes, sea ordenado al colocar los Figura 1: Diagrama de bloques del circuito completo diferentes elementos en la proto-board. Es muy importante que siga el orden descrito en este documento, y hasta que no verifique el correcto funcionamiento de un bloque, no monte el siguiente. 1
2 2. Generador de PWM (Pulse Whidth Modulation) El generador de PWM se compone de tres bloques: generador de señal triangular, generador de nivel de referencia y comparador Generador de señal triangular Consiste en un oscilador seguido de un integrador. Este circuito ha sido visto en la asignatura Instrumentación Electrónica, donde se describe con detalle su funcionamiento. Siga el siguiente orden para su implementación: Usando dos de los cuatro operacionales del integrado TL084, monte el circuito de la Figura 2 Figura 2: Generador de señal triangular. Alimente los operacionales con ±15V. Visualice la tensión V T RI en el osciloscopio. Regule los potenciómetros hasta conseguir que la señal triangular tenga una amplitud de ±10V y una frecuencia de unos 30kHz. Tenga en cuenta que cuando modifica el potenciómetro que regula la amplitud también se modifica un poco la frecuencia Generador de tensión de referencia Este circuito consta de un divisor de tensión y un seguidor de tensión. La misión del seguidor de tensión es mantener a cero la corriente del cursor del potenciómetro, y por lo tanto, poder actuar como divisor de tensión. Las resistencias limitadoras de 47kΩ determinan los valores máximo y mínimo de tensión, que son ±7.73V. Usando el tercer operacional del integrado TL084, monte el circuito de la Figura 3. Debido a la tolerancia de las resistencias limitadoras, es posible que 2
3 Figura 3: Generador de tensión de referencia los valores de tensión máxima y tensión mínima varíen un poco. Una vez implementado el circuito lleve el potenciómetro a los extremos y anote los valores límite de V ref : V máx = V mín = Verifique los valores anteriores son inferiores a ±8V Comparador En este circuito se usa el cuarto operacional del integrado TL084. Directamente se conecta la señal triangular a la entrada no inversora del operacional, y la tensión de referencia a la entrada inversora. La salida del operacional, puesto que no está realimentada, será la diferencia entre las tensiones de entrada multiplicada por la ganancia del operacional. La ganancia del TL084 es 2x10 5, así que, cuando la diferencia de tensiones en las entradas sea negativa, la salida del operacional estará saturada a la tensión de alimentación negativa (en realidad -14V). Cuando Figura 4: Comparador la diferencia de tensión en las entradas sea positiva, la salida del operacional estará saturada a la tensión de alimentación positiva (en realidad +14V). Visualice la salida PWM del operacional en el osciloscopio. 3
4 Gire el cursor del potenciómetro totalmente hacia un lado, y mida en el osciloscopio T ON y T. Figura 5: D min = T ON T. Anote el valor D min = Gire el cursor del potenciómetro totalmente hacia el otro lado. Repita la operación anterior. Figura 6: D max = T ON T Anote el valor D max = Verifique los valores anteriores estén entre 0,1 < D < 0,88. 4
5 3. Acoplamiento y Driver Figura 7: Acoplamiento y Driver El acoplamiento de la señal de control hacia el circuito de potencia se realiza mediante un transformador de impulsos. El interruptor del convertidor Cúk es un nmos IRF530, que tiene una V t =4V, por lo tanto, necesitamos convertir la señal PWM en una señal cuadrada entre 0V (nmos OFF) y 6V (nmos ON). Esta conversión la realizamos con el driver configurado por una resistencia de 220Ω y un BJT tipo npn, tal y como se muestra en la Figura 7. La resistencia de base de 2.2Ω se encarga de limitar la corriente máxima de entrada al BJT. Monte el circuito de la Figura 7. Use una fuente alimentación de 6V diferente a la que utiliza para alimentar el circuito generador de PWM. Visualice en el osciloscopio la señal NNMOS_GATE a la salida del driver. Si todo ha ido bien, debería ver algo parecido a la Figura 8 Figura 8: PWM y NMOS-GATE 4. Convertidor DC/DC Cúk Monte el circuito de la Figura9. Visualice en el osciloscopio la tensión de salida del convertidor, recuerde que en este convertidor la polaridad de la tensión de salida es opuesta a la polaridad de la tensión de entrada. LAS TIERRAS DEL CIRCUITO DE CONTROL Y DEL CIRCUITO DE POTENCIA ESTÁN AISLADAS. NO DEBE VISUALIZAR LOS DOS CIRCUITOS AL MISMO TIEMPO EN EL OSCILOSCOPIO! Realice las siguientes medidas: 5
6 Figura 9: Circuito de potencia: convertidor DC/DC Cúk. Gire el potenciómetro del nivel de referencia al mínimo. Mida la tensión de salida del convertidor. V out = V rizado = Gire ahora el potenciómetro del nivel de referencia completamente al otro lado. Repita las medidas. V out = V rizado = Regule el potenciómetro del nivel de referencia hasta que la tensión de salida del convertidor sea -6V. Anote los valores. V out = V rizado = Ahora, regule el potenciómetro que controla la frecuencia de la triangular mientras visualiza en el osciloscopio la salida del convertidor. Disminuya la frecuencia hasta que la tensión del convertidor sea igual a la máxima tensión negativa que obtuvo en el primer apartado. Anote los valores. V out = V rizado = Por cree que se incrementa la tensión de salida al disminuir la frecuencia? Listado de componentes: 6
7 COMPONENTE VALOR U IC TL084 x 1 Diodo BYV27 x 1 Potenciómetro 100kΩ (multivuelta) x 3 Resistor 100KΩ (250mW) x 2 Resistor 47kΩ (250mW) x 2 Resistor 10kΩ (250mW) x 2 Resistor 1kΩ (250mW) x 1 Resistor 1kΩ (1W) x 1 Resistor 2.2Ω (250mW) x 1 Resistor 220Ω (250mW) x 1 Bobina 10mHr x 1 Bobina 4.7mHr x 1 Capacitor 1nF x 1 Capacitor 470nF x 1 Capacitor 1µF x 1 NMOS IRF530 x 1 NPN BC547C x 1 Transformador de Impulsos?? x 1 7
8 Figura 10: TL084 Figura 11: IRF530 Figura 12: BC547 8
Práctica 3. LABORATORIO
Práctica 3. LABORATORIO Electrónica de Potencia Convertidor DC/AC (inversor) de 220Hz controlado por ancho de pulso con modulación sinusoidal SPWM 1. Diagrama de Bloques En esta práctica, el alumnado debe
CAPITULO VI: Generadores de Sonido
CAPITULO VI GENERADORES DE SONIDOS GENERADOR DE CODIGO MORSE En el circuito de la fig. 6.1 se observa un 555 en configuración de multivibrador astable, funcionando como un práctico oscilador para código
Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna
Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6: Amplificadores Operacionales 1 Introducción: El amplificador operacional (en adelante, op-amp) es un tipo de circuito integrado que se usa en un sinfín
Práctica No. 3 del Curso "Meteorología y Transductores". "Comparadores y generador PWM"
Objetivos. Práctica No. 3 del Curso "Meteorología y Transductores". "Comparadores y generador PWM" Comprobar en forma experimental el funcionamiento de los comparadores con Histéresis, así como el circuito
Práctica No. 4 del Curso "Meteorología y Transductores". "Comparadores y generador PWM"
Objetivos. Práctica No. 4 del Curso "Meteorología y Transductores". "Comparadores y generador PWM" Comprobar en forma experimental el funcionamiento de los comparadores con Histéresis, así como el circuito
1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado.
ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 1 Instrumentación y Objetivos Particulares Conocer las características, principio de funcionamiento
Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje
INTRODUCCIÓN: La región activa de un transistor es la región de operación intermedia entre corte y saturación y por lo tanto dependiendo de las polarizaciones el transistor se comportará como un amplificador.
ELECTRÓNICA ANALÓGICA I PROYECTOS Felipe Isaac Paz Campos
UNIVERSIDAD NACIONAL DE INGENIERÍA ELECTRÓNICA ANALÓGICA I PROYECTOS Felipe Isaac Paz Campos 2,010 A V E N I D A U N I V E R S I T A R I A Ing. Felipe Paz Campos, docente Dpto. de Electrónica Página 1
Práctica Nº 4 - Aplicaciones del Amplificador Operacional con realimentación
Práctica Nº 4 - Aplicaciones del Amplificador Operacional con realimentación Objetivos - Estudiar el AO en configuraciones de amplificador inversor, amplificador no inversor e integrador. - Comparar los
Práctica 04. Diodo zener
2011 MI. Mario Alfredo Ibarra Carrillo Facultad de ingeniería 11/03/2011 2 3 Objetivos: 1. Que el alumno estudie las propiedades y comportamientos del diodo zener. 2. Que el alumno implemente un circuito
ELECTRONICA GENERAL. Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB
Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB 2.- La realimentación negativa: a) Desestabiliza la ganancia del sistema, haciéndolo
TRABAJO PRÁCTICO Nº 1 TRANSISTORES
TRABAJO PRÁCTICO Nº 1 TRANSISTORES 1.1 Trazado de la curva dinámica de un diodo Construya el trazador de curvas V-I (tensión-corriente) de la figura 1.1. Este usa las entradas horizontal y vertical del
Generador Solar de Energía Eléctrica a 200W CAPÍTULO VII. Implementaciones y resultados Implementación de los convertidores elevadores
CAPÍTULO VII Implementaciones y resultados 7.1.- Implementación de los convertidores elevadores Al finalizar con las simulaciones se prosiguió a la construcción de los convertidores de potencia. Se implementó
Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos
Prácticas Laboratorio Práctica 2: Diodos Ernesto Ávila Navarro Práctica 2: Diodos (Montaje y medida en laboratorio) Índice: 1. Material de prácticas 2. Medida de las características del diodo 2.2. Diodo
Instituto Tecnológico de Puebla Ingeniería Electrónica Control Digital
Instituto Tecnológico de Puebla Ingeniería Electrónica Control Digital Actividad 5 CONVERTIDOR ANALÓGICO DIGITAL INTEGRADO Objetivos Comprobar experimentalmente el funcionamiento del convertidor analógico
E LECTRONICA. Circuitos Electrónicos 4 1
RELE SOBRETEMPERATURA El circuito puede ser usado como alarma de temperatura, pues el relé dispara cuando la temperatura sobrepasa cierto valor ajustado en P1. Una posibilidad de uso interesante es como
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM ELECTRÓNICA
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM ELECTRÓNICA 2 ~ 1 ~ ÍNDICE Introducción.....página 4 Prácticas LabVolt...página
CIRCUITOS DE POLARIZACIÓN DEL TRANSISTOR EN EMISOR COMÚN
1) POLARIZACIÓN FIJA El circuito estará formado por un transistor NPN, dos resistencias fijas: una en la base R B (podría ser variable) y otra en el colector R C, y una batería o fuente de alimentación
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II
INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio
Práctica 5. Demodulador FSK mediante PLL
Práctica 5. Demodulador FS mediante PLL 5.. Objetivos Estudiar el funcionamiento de un PLL y su aplicación para la demodulación de una señal modulada FS. 5.. El PLL LM565 El LM565 es un circuito de fase
TRABAJO PRÁCTICO NÚMERO 3: Diodos II. Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa.
TRABAJO PRÁCTICO NÚMERO 3: Diodos II Diodo como rectificador Objetivos Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa. Introducción teórica De la
Práctica 3. SIMULACIÓN
Práctica 3. SIMULACIÓN Electrónica de Potencia. 2004 Inversor de 50Hz controlado por ancho de pulso con modulación senoidal SPWM 1. Diagrama de Bloques El inversor que va a montar tiene el siguiente diagrama
:: Electrónica Básica - Transistores en Circ. de Conmutación TRANSISTORES EN CIRCUITOS DE CONMUTACIÓN
Http://perso.wanadoo.es/luis_ju San Salvador de Jujuy República Argentina :: Electrónica Básica - Transistores en Circ. de Conmutación TRANSISTORES EN CIRCUITOS DE CONMUTACIÓN Muchas veces se presenta
Instrumentación Electrónica
Práctica de Laboratorio Práctica 4 Medidas de Temperatura Práctica de laboratorio Transductores de temperatura. En esta práctica tomaremos contacto con varios transductores de temperatura, para analizar
PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL
PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL El objetivo de esta práctica es la medida en el laboratorio de distintos circuitos con el amplificador operacional 741. Analizaremos aplicaciones
Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse.
CONDENSADOR ELÉCTRICO Un capacitor es un dispositivo formado por dos conductores, en forma de placas o láminas, separados por un material que actúa como aislante o por el vacío. Este dispositivo al ser
Índice...9. Presentación Referencias y nomenclatura Aplicación multimedia Contenidos del CD-ROM...23
Índice Índice...9 Presentación...13 Referencias y nomenclatura...15 Aplicación multimedia...21 Contenidos del CD-ROM...23 Capítulo 1: Metodología de trabajo: Equipamiento y normativa...29 1.1 Metodología
APLICACIONES DEL AMPLIFICADOR OPERACIONAL
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 7 Objetivo APLICACIONES DEL AMPLIFICADOR OPERACIONAL * Familiarizar al estudiante con distintas aplicaciones
8. El amplificador operacional. Aplicaciones lineales
8. El amplificador operacional. Aplicaciones lineales Objetivos: Analizar, con ayuda de MicroCAP, algunas aplicaciones del amplificador operacional cuando trabaja en la zona lineal: amplificador inversor,
Electrónica Analógica
Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto
ÉQUIPOS DE PRÁCTICAS DE LABORATORIO
Universidad de Oviedo UNIVERSIDAD DE OVIEDO ÁREA DE TECNOLOGÍA ELECTRÓNICA ÉQUIPOS DE PRÁCTICAS DE LABORATORIO Osciloscopio digital YOKOGAWA DL1520 Generador de funciones PROMAX GF-232 Multímetro digital
Laboratorio 4: Circuito de control de potencia con Triac
Electrónica y Automatización 05 Laboratorio 4: Circuito de control de potencia con Triac En este laboratorio se analizará un circuito capaz de excitar un Triac mediante pulsos de ancho variable sincronizados
CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA COMPLETA
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 1 CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA
DISEÑO DE UNA FUENTE CONMUTADA PARA PC
DISEÑO DE UNA FUENTE CONMUTADA PARA PC Se pretende diseñar una fuente para uso en una computadora personal que entregue voltajes de salida de 5 y, usando como topología una fuente de conmutada del tipo
Electrónica Analógica
Universidad de Alcalá Departamento de Electrónica Electrónica Analógica Ejercicios Tema 3: Diodos Referencias: Texto base: Circuitos Electrónicos. Análisis simulación y diseño, de Norbert R. Malik. Capítulo
CAPITULO 2 CONVERTIDORES DE POTENCIA. El constante progreso y evolución de la ciencia y la tecnología ha provocado en los últimos
CAPITULO 2 CONVERTIDORES DE POTENCIA 2.1 INTRODUCCIÓN El constante progreso y evolución de la ciencia y la tecnología ha provocado en los últimos años un fuerte cambio en el tipo de cargas conectadas a
PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA.
PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. 3.1.- Objetivos: Realización de test de componentes activos y pasivos para obtener, a partir de la curva
Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS
Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento
CURSO DE ELECTRÓNICA ANUAL
Microchip Regional Training Center Austria 1760 - OF8. Capital Federal. (011) 3531-4668 CURSOS ANUALES 2012 CURSO DE ELECTRÓNICA ANUAL APRENDA LOS FUNDAMENTOS DE LA ELECTRÓNICA EN 36 CLASES PRÁCTICAS.
Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador
Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador Material y Equipo Resistencias de varios valores Capacitores de cerámicos,
Laboratorio Circuitos no Lineales con AO
Objetivos Laboratorio Circuitos no Lineales con AO Describir cómo funcionan los circuitos activos con diodos. Comprender el funcionamiento de una báscula Schmitt trigger Textos de Referencia Principios
PROYECTO DE APLICACIÓN: LUZ AUTOMATICA NOCTURNA
UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE FILOSOFIA, HUMANIDADES Y ARTES DEPARTAMENTO DE FÍSICA Y QUÍMICA CÁTEDRA: ELECTRÓNICA GENERAL Alumna: Caño Cabrera, Claudia Alejandra [email protected]
PRÁCTICA # 2 APLICACIONES DE DIODO SEMICONDUCTOR ALUMNOS:
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA LABORATORIO DE DISPOSITIVOS Y CIRCUITOS ELECTRÓNICOS PRÁCTICA # 2 APLICACIONES DE DIODO SEMICONDUCTOR ALUMNOS: Objetivo El alumno conocerá
EL DIODO ZENER. REGULADORES DE VOLTAJE
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS EC1177 - EC1113 PRACTICA Nº 3 Objetivos EL DIODO ZENER. REGULADORES DE VOLTAJE * Familiarizar al estudiante con el uso de
Práctica B.2: Sistema de Comunicaciones con Enlace por Infrarrojos.
Práctica B.2: Sistema de Comunicaciones con Enlace por Infrarrojos. Material Fuente de alimentación. Generador de funciones. Tarjetas IR Emitter e IR detector. Multímetro. Resistencias y condensadores
TEMA II: COMPONENTES PASIVOS.
TEMA II: COMPONENTES PASIVOS. PROBLEMA 2.1. De un determinado resistor variable, con ley de variación lineal, se conoce el valor de su corriente nominal I n = 30 ma, y de su resistencia nominal Rn = 2K.
EXAMEN 4 DE ELECTRÓNICA III
Barquisimeto, 24 de Septiembre de 2001 1) (10 Ptos.) Explique cuales son las consecuencias si se interrumpe la señal en los bloques señalados con el rayo en la figura 33. 2) (10 Ptos.) Explique cual es
TRABAJO PRÁCTICO Nº 3 RECTIFICADORES
RABAJO PRÁCICO Nº 3 RECIFICADORES 1) Introducción eórica Las tensiones y corrientes en cd (corriente directa ó continua) sirven para alimentar a una gran variedad de dispositivos electrónicos. Dado que
CARACTERISTICAS DE LOS DIODOS CIRCUITOS RECTIFICADORES DE MEDIA ONDA
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS EC1177 - EC1113 PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS CIRCUITOS RECTIFICADORES DE MEDIA ONDA Objetivos * Familiarizar
COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica
Electrónica II. Guía 4 1/1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). COMPARADORES. Objetivos
Practicas de INTERFACES ELECTRO-ÓPTICOS PARA COMUNICACIONES
Practicas de INTERFACES ELECTROÓPTICOS PARA COMUNICACIONES Francisco Javier del Pino Suárez Práctica 1. Fotorresistencias Objetivos Esta práctica está dedicada al estudio de las fotorresistencias. A partir
PRÁCTICA 3. Análisis mediante Simulación de un Convertidor DC/DC Bidireccional
PRÁCTICA 3. Análisis mediante Simulación de un Convertidor / Bidireccional 1. Objetivo El objetivo de esta práctica es analizar mediante simulación un convertidor electrónico de potencia / bidireccional
Componentes Electrónicos. Prácticas - PSPICE. Práctica 5: Amplificadores Operacionales
"#$%&'()*&+,-#.+#'(/$0%+*(%(&#%( *0*.%.,%"(&%#,.+#*"( %'(%(8%#.*&*9:'(&%#,.+#'(( Prácticas - PSPICE Práctica : Amplificadores Operacionales PRÁCTICA COMPLETA "#$%&'()*+,-.-*-##( Práctica : Amplificadores
Práctica 4 Detector de ventana
Práctica 4 Detector de ventana Objetivo de la práctica Analizar el comportamiento de un detector de ventana Al terminar esta práctica, el discente será capaz de: Comprender el funcionamiento de un circuito
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Fuente de tensión continua regulada
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Cátedra de Dispositivos Electrónicos Departamento de Electricidad, Electrónica y Computación (DEEC) FACET - UNT Fuente de tensión continua regulada R S
Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD
Generador olar de Energía Eléctrica a 00W CAPÍTU III Convertidores CD-CD 3.1.- Introducción En muchas aplicaciones industriales se requiere convertir un voltaje fijo de una fuente de cd en un voltaje variable
TRABAJO PRÁCTICO Nº 4 FUENTES
TRABAJO PRÁCTICO Nº 4 FUENTES 4.1 Rectificadores Todo método que se utilice para generar una tensión continua a partir de la tensión de línea de 220V debe empezar por obtener una tensión de valor medio
3 HERRAMIENTAS PARA CIRCUITOS DE CA. Objetivo
3 Muchos circuitos electrónicos operan con corriente alterna (CA). El diseño de circuitos requiere usar herramientas para medir componentes e impedancias, así como para el despliegue del comportamiento
TEMPORIZADORES Y RELOJES
TEMPORIZADORES Y RELOJES Circuitos de tiempo Astable No tiene estado estable. Se usa para generar relojes. Monoestable 1 estado estable y otro inestable. Se usa como temporizador. Biestable 2 estados estables.
TEMPORIZADOR Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica
Electrónica II. Guía 6 1 / 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). TEMPORIZADOR - 555. Objetivos
Formatos para prácticas de laboratorio
Fecha de efectividad: CARRERA Ing. En Computación PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA 2003-1 5048 Electrónica Aplicada II PRÁCTICA No. 6 LABORATORIO DE NOMBRE DE LA PRÁCTICA Electrónica
PRÁCTICAS DE ELECTRÓNICA DIGITAL
PRÁCTICAS DE ELECTRÓNICA DIGITAL Práctica 0: CONEXIÓN DE LOS CIRCUITOS INTEGRADOS (C.I.) 1º: Para que funcionen correctamente, han de estar conectados a una tensión de 5V. Para realizar esto, el polo (+)
ELO20_FOC ELECTRONICA ANALOGICA Y RADIO-FRECUENCIA RECEPTOR FM
ELECTRONICA ANALOGICA Y RADIO-FRECUENCIA RECEPTOR FM DISEÑO DEL CIRCUITO El sistema de radio construido, es un FM de chip sencillo. El TDA7000 es un sistema de radio FM de circuito integrado monolítico,
EL DIODO ZENER. REGULADORES DE VOLTAJE
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 2 EL DIODO ZENER. REGULADORES DE VOLTAJE Objetivos * Familiarizar al estudiante con el uso de los manuales
CA3162 CA3161 CONVERSOR A/D PARA 3 DIGITOS DECODIFICADOR BCD A 7 SEGMENTOS
CA3162 CONVERSOR A/D PARA 3 DIGITOS CA3161 DECODIFICADOR BCD A 7 SEGMENTOS "CIRCUITOS INTEGRADOS" FICHAS COLECCIONABLES Todos los meses, las fichas de esta colección traerán las informaciones que Ud. precisa
CAPITULO 3 IMPLEMENTACIÓN DEL INVERSOR ELEVADOR. En el presente capítulo se muestran, de manera general, la etapa de potencia y de
CAPITULO 3 IMPLEMENTACIÓN DEL INVERSOR ELEVADOR MONO - ETAPA 3.1 Introducción En el presente capítulo se muestran, de manera general, la etapa de potencia y de control de conmutación implementadas. Se
LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 8
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE CONVERSORES ESTÁTICOS 1. TEMA PRÁCTICA N 8 CONVERTIDORES DC-DC EN DOS CUADRANTES 2. OBJETIVOS 2.1.
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LAB. DE CIRCUITOS ELECTRÓNICOS (ING. ELÉCTRICA) EC 1181 PRACTICA Nº 9
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LAB. DE CIRCUITOS ELECTRÓNICOS (ING. ELÉCTRICA) EC 1181 PRACTICA Nº 9 El VATIMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO
INGENARO.WORDPRESS.COM
Unidad: Convertidores Tema: Voltaje - frecuencia Profesor: Noé Amir Rodríguez O. Alumno 1: Fecha de entrega: Alumno 2: Objetivo de la práctica: Al terminar de trabajar con esta práctica el alumno será
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2 CARACTERÍSTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA
TIEMPO: 1:30 h. PROBLEMA 1 Q 1. 0.8 pf. v s Q 2. A v = f H = R en =
TIEMPO: 1:30 h. PROBLEMA 1 Para el circuito de la figura calcular la ganancia del centro de la banda (A V ), la resistencia de entrada (R en ) y el polo dominante de alta frecuencia (f H ) empleando el
Práctica 4.- Característica del diodo Zener
A.- Objetivos Práctica 4.- Característica del diodo ener Laboratorio de Electrónica de Dispositivos 1.-Medir los efectos de la polarización directa e inversa en la corriente por el diodo zener. 2.-Determinar
1. El Generador de Inducción Trifásico
Generador de Inducción Trifásico Curva Par-Velocidad y Operación Aislada Curso: Laboratorio de Máquinas Eléctricas I Sigla: IE-0416 Documento: ie0416.practica #14.2007-2.doc Elaborado por: Ing. Mauricio
PRÁCTICA No. 9 RESPUESTA DE RÉGIMEN TRANSITORIO EN CIRCUITOS RLC
PRÁCTICA No. 9 RESPUESTA DE RÉGIMEN TRANSITORIO EN CIRCUITOS RLC 1.- OBJETIVO: Deducir experimentalmente los distintos parámetros que rigen la respuesta transitoria en circuitos de segundo orden. 2.- PRE-LABORATORIO
Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden
niversidad Carlos III de Madrid Departamento de Ingeniería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica 1 Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden 1 Introducción Teórica Se denomina
CAPITULO 6: DESARROLLO E IMPLEMENTACIÓN DEL PROYECTO
CAPÍTUO 6 57 CAPTUO 6: DESARROO E MPEMENTACÓN DE PROYECTO 6.1 ntroducción En este capítulo se ve el desarrollo de la tesis, desde la implementación de cada circuito que conforma a la UPS Solar. También
La fuente de alimentación de laboratorio. Mantenimiento de equipos electrónicos
La fuente de alimentación de laboratorio 1/19 Mantenimiento de equipos electrónicos Introducción. Las fuentes de alimentación de laboratorio son aparatos imprescindibles en cualquier taller de mantenimiento,
Tema: Circuitos no lineales DCSE
Tema: DCSE Índice Comparadores Schmitt triggers Rectificadores Interruptores analógicos Detectores de picos Circuitos de muestreo y retención Introducción Cómo conseguir circuitos no lineales Ausencia
ELECTRÓNICA DE POTENCIA
Ejercicio 1. ELECTRÓNICA DE POTENCIA Curso 2018 En la Figura 1 se muestra el circuito de un convertidor reductor (buck) con las siguientes características: V i =150V, f s = 150KHz, la potencia P 0 varía
INDICE 1. Sistemas Electrónicos 2. Circuitos Lineales 3. Amplificadores Operacionales 4. Diodos
INDICE 1. Sistemas Electrónicos 1 1.1. Información y señales 2 1.2. Espectro de frecuencia de las señales 3 1.3. Señales analógicas y digitales 5 1.4. Amplificación y filtrado 7 1.5. Comunicaciones 9 1.6.
Amplificador monofónico de 100W
Amplificador monofónico de W 1 Diagrama esquemático en Configuración Complementario 46V DC uf C2 R3 D1 R8 C6 R C8 R12 Q1 A15 0.7V C Q3 Q5 0.47 uf C1 20K R1 R2 2 7 3 4 Ic1 6 R5 R6 * pf D3 R14 1W 0.22 0V
ELECTRONICA GENERAL Y APLICADA-FACULTAD DE INGENIERIA. UNCuyo - Ing. Roberto HAARTH
Página1 OBJETIVOS Comprender el concepto de rectificación y filtrado de una fuente de alimentación de energía eléctrica. Reconocer las características y parámetros de rectificación de media onda y onda
GUÍA 8: TIRISTORES Y OPTOACOPLADORES TIRISTORES
GUÍA 8: TIRISTORES Y OPTOACOPLADORES TIRISTORES Los tiristores son interruptores electrónicos construidos a base de semiconductores, dependiendo del tipo de tiristor pueden ser unidireccionales (circula
2. GALGAS EXTENSOMÉTRICAS
Manual de Prácticas Pag.: 3-1 2. GALGAS EXTENSOMÉTRICAS 2.1. INTRODUCCIÓN. Esta sesión de prácticas tiene como objetivo profundizar en el conocimiento y manejo de las galgas extensométricas, sensores especialmente
2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.
1/6 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 9 Osciladores Problemas básicos 1. El oscilador en Puente de Wien de la figura 1 a) tiene dos potenciómetros que le permiten variar la frecuencia de oscilación.
SISTEMAS ELECTRÓNICOS PARA ILUMINACIÓN
SISTEMAS ELECTRÓNICOS PARA ILUMINACIÓN PARTE V: CORRECCIÓN DEL FACTOR DE POTENCIA RED ELÉCTRICA CONSUMO DE CORRIENTE LOS BALASTOS ELECTRÓNICOS SON CARGAS NO LINEALES. (FUENTE MUY IMPORTANTE DE INTERFERENCIAS)
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING)
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Cátedra de Dispositivos Electrónicos Departamento de Electricidad, Electrónica y Computación (DEEC) FACET - UNT Fuente de tensión continua regulada R S
TRABAJO PRÁCTICO Nº 2 AMPLIFICADOR OPERACIONAL
TRABAJO PRÁCTICO Nº 2 AMPLIFICADOR OPERACIONAL 2.1 Amplificador diferencial Arme el circuito de la figura 2.1. Estime cuál debería ser la tensión de colector del transistor de la derecha en el punto de
Elaboración de Proyectos
Elaboración de Proyectos -INTRODUCCIÓN Objetivo: El objetivo de este taller es el de brindarle a los participantes, los conocimientos y habilidades necesarias para poder concluir con un proyecto de carácter
UNIDAD 2: EL AMPLIFICADOR OPERACIONAL - TEORÍA
CURSO: ELECTRÓNICA ANALÓGICA UNIDAD 2: EL AMPLIFICADOR OPERACIONAL PROFESOR: JORGE ANTONIO POLANÍA La electrónica analógica se ha visto enriquecida con la incorporación de un nuevo componente básico: el
Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS.
Tema: Circuito cicloconvertidor. Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. I. OBJETIVOS. Implementar diferentes circuitos de inversores utilizando SCR S de potencia.
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. INGENIERÍA ELECTRÓNICA. El porcentaje de sobrepico está dado por la ecuación: CONTROL II
UNIERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. INGENIERÍA ELECTRÓNICA. CONTROL II El porcentaje de sobrepico está dado por la ecuación: PLANTA DE TERCER ORDEN MEDIANTE UN CIRCUITO ELECTRÓNICO. - Gerardo
E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO
Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y
ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO
ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala
Generador Solar de Energía Eléctrica a 200W CAPÍTULO VI. Diseño y simulación de los convertidores de potencia
CAPÍTULO VI Diseño y simulación de los convertidores de potencia 6.1.- Introducción Como se mencionó en el objetivo general, se necesita un sistema fotovoltaico capaz de generar energía eléctrica con una
GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES
GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES Área de EET Página 1 de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual
