Practicas de INTERFACES ELECTRO-ÓPTICOS PARA COMUNICACIONES
|
|
|
- Juan José Guzmán Miranda
- hace 9 años
- Vistas:
Transcripción
1 Practicas de INTERFACES ELECTROÓPTICOS PARA COMUNICACIONES Francisco Javier del Pino Suárez
2 Práctica 1. Fotorresistencias Objetivos Esta práctica está dedicada al estudio de las fotorresistencias. A partir de las hojas de características de este dispositivo se diseñará dos circuitos útiles para caracterizar la iluminación del laboratorio. Material El Laboratorio de Dispositivos Optoelectrónicos suministrará la fotorresistencia NORP1 (RS stock no ). El resto de componentes (resistencias, condensadores, circuitos integrados, latiguillos, placa protoboard, etc.) deberá traerlo cada alumno. Montaje 1: Oscilador con frecuencia controlada por luz. Realizar un oscilador que genere una señal cuadrada con una amplitud V pp =5V siguiendo cualquiera de los esquemas propuestos en la figura 1. Calcular C para que la frecuencia para oscuridad (según hoja de características de la fotorresistencia) sea mayor que 50 Hz. 1 8 C 1 R C 1 R 1 SALIDA SALIDA INVERTIDA SALIDA C C (a) (b) Fig 1 (a) Oscilador de ciclo útil del 50% (b) Oscilador de ciclo útil variable. Una vez tengamos el circuito oscilando, medir la frecuencia de salida con y sin iluminación. A partir de estos datos calcular el valor de la fotorresistencia y el nivel de iluminación en lúmenes para ambos estados. Montaje : Caracterización de la iluminación del laboratorio El circuito de la figura muestra una red de polarización de un transistor bipolar en configuración emisor común. Calcular los valores de los componentes para que
3 cuando haya máxima iluminación, en el colector tengamos 5V. La tensión de alimentación será de V cc =10V y el transistor bipolar puede ser el BC547 o el NA. V CC R C V o R B R E Fig Emisor común Medir la frecuencia de oscilación y la magnitud de la señal en el colector con y sin iluminación. Explicar los resultados.
4 Práctica. Fotodiodos Objetivos En esta práctica se obtendrá en el osciloscopio la curva de un fotodiodo así como la dependencia de la misma con la iluminación recibida. Como aplicación práctica del uso de los fototransistores se hará un sencillo montaje que servirá de sensor de iluminación o de oscuridad. Material El Laboratorio de Dispositivos Optoelectrónicos suministrará el fotodiodo PD481. El resto de componentes (resistencias, condensadores, circuitos integrados, latiguillos, placa protoboard, etc.) deberá traerlo cada alumno. Montaje En este apartado se obtendrá en el osciloscopio la curva de un fotodiodo. Se apreciará también cómo al iluminar el fotodiodo la curva se desplaza hacia corrientes negativas debido a la generación de corriente inversa tal y como se explica en clase de teoría. Para ello se realizará el montaje de la figura 3, el cual consta de cuatro amplificadores operacionales. La función de cada uno de ellos, referenciados de de izquierda a derecha, es la siguiente: 1. Oscilador de frecuencia y amplitud controlada. Su función es la de generar una señal de carga y descarga de un condensador que es bastante parecida a una señal triangular. Seguidor de tensión para no cargar la etapa anterior 3. Etapa básica convertidora de corriente a tensión. La tensión aplicada a la entrada (ánodo del fotodiodo, el cátodo está puesto a tierra por medio de un cortocircuito virtual) hace que circule una corriente por el fotodiodo la cual circula a su vez por la resistencia de 100k dando como resultado una tensión a la salida. 4. Etapa inversora. Permite invertir la señal de la etapa anterior para tener la relación directa con la corriente del dispositivo. Utilizando el circuito de la figura 3, representar en el osciloscopio y dibujar en papel las curvas características de los siguientes dispositivos: 1. Diodo rectificador. Fotodiodo PD481, con y sin iluminación. Para ello, una vez representada la curva en la pantalla del osciloscopio, iluminar el fotodiodo mediante la lámpara del laboratorio. Se deberá apreciar como la curva del fotodiodo se desplaza hacia corrientes negativas.
5 33k 10k 1uF V V V V V d 10k V V I d V V I d 10k 6k Fig 3 Montaje para la visualización de la curva de un fotodiodo. Nota1: Para obtener la curva deberemos visualizar en el osciloscopio la señal V d en el canal 1 y la señal I d 10k en el canal. Seguidamente debemos cambiar el osciloscopio de visualización Y(t) a señal XY. En la memoria se deberá explicar el funcionamiento de cada una de las partes del circuito y justificar los valores de los componentes y los resultados obtenidos.
6 Práctica 3. LEDs Objetivos En esta práctica se visualizarán en el osciloscopio las curvas características de diferentes LEDs con emisiones en distintas longitudes de onda. Durante el transcurso de esta práctica se realizará además una demostración del uso del medidor de espectro óptico C7473 de HAMAMATSU, que consistirá en medir el espectro de emisión de los LEDs estudiados. Material El Laboratorio de Dispositivos Optoelectrónicos suministrará los LEDs a medir. El resto de componentes (resistencias, condensadores, circuitos integrados, latiguillos, placa protoboard, etc.) deberá traerlo cada alumno. Montaje Utilizando el circuito de la figura 5, representar en el osciloscopio y dibujar en papel las curvas características de los siguientes dispositivos: 3. Diodo rectificador 4. LED verde: HLMP LED amarillo: HLMP LED rojo: HLMP LED infrarrojo: GL480 Para ello se deberá calcular R 1, R y R 3 para cada uno de los dispositivos citados de forma que se vea la curva característica completa y no se sature cuando circula la corriente máxima que admite el dispositivo. 33k R 3 1uF V V V V V d V V I d V V I d R 3 R 1 R 3 R Fig 4 Montaje para la visualización de la curva de un LED. En la memoria se deberá justificar los valores de los componentes y los resultados obtenidos.
7 Práctica 4. Fototransistores Objetivos En esta sesión se realizarán dos montajes como aplicación práctica de los fototransistores: el primero consiste en un sensor de iluminación u oscuridad y el segundo en un detector de paso. Material El Laboratorio de Dispositivos Optoelectrónicos suministrará el fototransistor PT481F y el zumbador. Así mismo, para el segundo montaje se suministrará el LED infrarrojo GL480. El resto de componentes (resistencias, condensadores, circuitos integrados, latiguillos, placa protoboard, etc.) deberá traerlo cada alumno. Montaje 1: Sensor de iluminación u oscuridad En este apartado se diseñará un sensor de iluminación o de oscuridad según el gusto del consumidor. Para ello se partirá del circuito de la figura 4a. En éste circuito se comprobará el nivel de señal continua en (V ft ) con y sin iluminación para una tensión de alimentación de 6 voltios. Una vez echo esto, se diseñará un divisor de tensión para obtener un valor intermedio entre los anteriores (V div ). El divisor utilizado es el de la figura 4b y la tensión de alimentación es la misma. Finalmente utilizaremos un operacional como comparador de forma que la iluminación u oscuridad cambie los valores de las entradas inversora y no inversora, obteniendo de este modo el sensor buscado. Como indicador utilizaremos un zumbador, el cual se activa cuando se le aplica una tensión continua de alrededor de unos 4 voltios. El circuito comparador se muestra en la figura 4c. Note que dependiendo de si queremos que el circuito se active con iluminación u oscuridad conectaremos a las entradas del operacional uno u otro circuito. V CC V CC PT481F V ft V R 1 V div V V CC R V CC Zumbador (a) (b) (c) Fig 5 Sensor de iluminación u oscuridad.
8 En la memoria se deberá indicar que configuración se ha tomado y los valores de los componentes utilizados. Montaje : Detector de paso Los detectores de paso son dispositivos muy utilizados en la vida diaria. Este tipo de circuitos los podemos encontrar en ascensores, puertas automáticas, etc. Básicamente están compuestos por un emisor y un receptor que trabajan a la misma longitud de onda, generalmente infrarrojo. En nuestro caso, trabajaremos con el diodo emisor de luz GL480 y el fototransistor PT481F. El emisor consta de un circuito 555 configurado como oscilador. El esquema que debemos utilizar se muestra en la figura 6. La resistencia R se debe calcular de forma que no se supere la corriente máxima que admite el dispositivo. 10V uF R A =100 7 R B =10k R 3 6 C=1.5uF Fig 6 Emisor. Este circuito emite unos pulsos a una frecuencia de: f osc = 1.44 ( R R )C A B El receptor está compuesto por un fototransistor, un filtro pasoalto y un comparador no inversor. Su configuración se muestra en la figura 7.
9 10V 10uF R 1 = R 3 =5k 10k R =500 C=4.7uF V V V V Fig 7 Receptor. La frecuencia de corte y la ganancia del filtro vienen dadas por las siguientes expresiones: f c = 1.44 π R C A V = R R 3 Los pulsos que emite el emisor son captados por el fototransistor que se satura y se corta a la frecuencia emitida por el LED. Esta señal, al tener una frecuencia superior a la frecuencia de corte del filtro, pasa a la salida del mismo amplificada (A V ). Esta señal se compara con el nivel de referencia impuesto por el potenciómetro y si es superior genera un nivel alto a la salida lo cual hace que suene el zumbador. A la salida del circuito se puede conectar un contador o cualquier otro dispositivo actuador. En la memoria se deberá justificar los valores de los componentes indicando las frecuencias y niveles de las señales en los diferentes puntos del circuito.
PRÁCTICA Nº1. DIODOS. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua.
PRÁCTICA Nº1. DIODOS CURVA CARACTERÍSTICA DEL DIODO. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua. Figura 1. Montaje eléctrico para polarizar
1. PRESENTANDO A LOS PROTAGONISTAS...
Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión
Práctica 2. El Circuito Integrado NE555 como oscilador astable y como detector de pulsos fallidos. 9 El Circuito Integrado NE555: Montaje y Prueba
L-2 9 El Circuito Integrado NE555: Montaje y Prueba 1. Objetivo de la práctica El objetivo de esta práctica es mostrar el comportamiento del CI 555, uno de los dispositivos más extendidos en el diseño
PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL
PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL El objetivo de esta práctica es la medida en el laboratorio de distintos circuitos con el amplificador operacional 741. Analizaremos aplicaciones
TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO ASIGNATURA: OPTOELECTRÓNICA
TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO ASIGNATURA: OPTOELECTRÓNICA REALIZÓ: RAUL NAVA CERVANTES SEPTIEMBRE 2009. PRESENTACIÓN
Electrónica Analógica
Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II
INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio
Práctica 2: Amplificador operacional I
Práctica 2: Amplificador operacional I 1. Introducción. En esta práctica se estudian varios circuitos típicos de aplicación de los amplificadores operacionales, caracterizados por utilizar realimentación
Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos
Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos EJERCICIO 1: Rectificador de onda completa con puente de diodos
Contenido. Capítulo 2 Semiconductores 26
ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión
PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT
PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)
EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA
EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA Rev: 1.0 (Mayo/2016) Autor: Unai Hernández ([email protected]) Contenido 1. Circuitos con resistencias... 3 1.1 Experimentar con asociaciones de
PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN
PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)
PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU
PRÁCTICA 1 MODULACIONES LINEALES 1.1.- Modulación de Amplitud: AM 1.2.- Modulación en doble banda Lateral: DBL 1.3.- Modulación en banda Lateral Única: BLU Práctica 1: Modulaciones Lineales (AM, DBL y
INDICE. XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo
INDICE Prefacio XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo 3 1.1. introducción 1.2. teoría de funcionamiento 5 1.3. parámetros del JFET 1.3.1. notación 11
CONTENIDO PRESENTACIÓN. Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1
CONTENIDO PRESENTACIÓN Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1 1.1 INTRODUCCIÓN...1 1.2 EL DIODO...2 1.2.1 Polarización del diodo...2 1.3 CARACTERÍSTICAS DEL DIODO...4 1.3.1 Curva característica
CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA
CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA Joaquín Agulló Roca 3º ESO CIRCUITOS ELECTRICOS MAGNITUDES ELECTRICAS La carga eléctrica (q) de un cuerpo expresa el exceso o defecto
BJT como amplificador en configuración de emisor común con resistencia de emisor
Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................
Laboratorio Circuitos no Lineales con AO
Objetivos Laboratorio Circuitos no Lineales con AO Describir cómo funcionan los circuitos activos con diodos. Comprender el funcionamiento de una báscula Schmitt trigger Textos de Referencia Principios
CIRCUITOS CON TRANSISTORES
CIRCUITOS CON TRANSISTORES Sensor de luz Videotutorial de la práctica A. DESCRIPCIÓN En esta práctica emplearemos unos componentes nuevos que son los transistores, los utilizaremos en esta práctica para
EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA
EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA Rev: 2.0 (Octubre/2016) Autor: Unai Hernández ([email protected]) Contenido 1. Circuitos con resistencias... 3 1.1 Experimentar con asociaciones
Práctica Nº 4 - Aplicaciones del Amplificador Operacional con realimentación
Práctica Nº 4 - Aplicaciones del Amplificador Operacional con realimentación Objetivos - Estudiar el AO en configuraciones de amplificador inversor, amplificador no inversor e integrador. - Comparar los
PROGRAMA DE LA ASIGNATURA: ELECTRONICA GENERAL
HOJA 1 DE 6 PROGRAMA DE LA ASIGNATURA: ELECTRONICA GENERAL CENTRO: ESCUELA TECNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE MINAS TITULACION: INGENIERO INDUSTRIAL ESPECIALIDAD: MECANICA CURSO: 5º TIPO
PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR
PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus
Electrónica Analógica Amplificadores Operacionales Práctica 4
APELLIDOS:......NOMBRE:... APELLIDOS:...NOMBRE:.... EJERCICIO 1 El circuito de la figura 1 representa el circuito equivalente de un AO. En este ejercicio pretendemos ver como se comporta la ganancia del
Practica 3.- Aplicaciones del diodo de unión.
Practica 3.- Aplicaciones del diodo de unión. A.- Objetivos. Estudiar varias aplicaciones del diodo de unión como son el diodo como circuito recortador, rectificador con filtro y doblador de tensión con
FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR
AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR Prof. Carlos Navarro Morín 2010 practicas del manual de (Opamps) Haciendo uso del amplificador operacional LM741 determinar el voltaje de salida
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones
1.3.- Dos bombillas en paralelo con interruptor independiente. Aplicación: Bombillas en las distintas habitaciones de una vivienda.
Prácticas de electricidad y electrónica para realizar con el entrenador eléctrico. En tu cuaderno debes explicar el funcionamiento de cada circuito, una vez realizado. 1.- CIRCUITOS BÁSICOS 1.1.- Timbre
Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º
Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º PRÁCTICA 1. 2 Contenido 1 OBJETIVOS... 4 2 CONCEPTOS TEÓRICOS... 4 2.1 Propiedades
GRADO EN INGENIERÍA MECÁNICA ELECTRÓNICA BÁSICA
2016-07-01 08:28:39 GRADO EN INGENIERÍA MECÁNICA 101214 - ELECTRÓNICA BÁSICA Información general Tipo de asignatura : Obligatoria Coordinador : Albert Monté Armenteros Curso: Segundo Trimestre: 1 Créditos:
Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador
Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador Material y Equipo Resistencias de varios valores Capacitores de cerámicos,
TEMA : LA ELECTRÓNICA
Electrónica 3º E.S.O. 1 TEMA : LA ELECTRÓNICA 1. ELEMENTOS COMPONENTES DE LOS CIRCUITOS ELECTRÓNICOS. 1.1. Resistencias. Una resistencia es un operador o componente eléctrico que se opone al paso de la
INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc
INDICE Prólogo XI Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de 1 cc 1.1. Introducción 1 1.2. Magnitudes más relevantes del circuito electrónico 2 1.2.1. Tensión eléctrica 2 1.2.2. Intensidad
DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en:
PRÁCTICA 1. DISEÑO Y RESPUESTA EN FRECUENCIA 1 Objetivo. DE UN MEDIDOR DE AC Diseñar y construir un voltímetro elemental de corriente alterna utilizando un puente rectificador de media onda y otro de onda
DATOS DE IDENTIFICACIÓN DEL CURSO
DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: ELECTRÓNICA ACADEMIA A LA QUE Electrónica Analógica Básica PERTENECE: NOMBRE DE LA MATERIA: Laboratorio de Electrónica 1 CLAVE DE LA MATERIA: ET 204 CARÁCTER
Laboratorio Amplificador Diferencial Discreto
Objetivos Laboratorio mplificador Diferencial Discreto Verificar el funcionamiento de un amplificador discreto. Textos de Referencia Principios de Electrónica, Cap. 17, mplificadores Diferenciales. Malvino,
Práctica 4 Detector de ventana
Práctica 4 Detector de ventana Objetivo de la práctica Analizar el comportamiento de un detector de ventana Al terminar esta práctica, el discente será capaz de: Comprender el funcionamiento de un circuito
PRÁCTICA 4. Polarización de transistores en emisor/colector común
PRÁCTICA 4. Polarización de transistores en emisor/colector común 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la polarización de un transistor y la influencia de distintos parámetros
Práctica 2. El Circuito Integrado NE555 como oscilador astable y como detector de pulsos fallidos. 7 El Circuito Integrado NE555: Introducción Teórica
P-2 7 El Circuito Integrado NE555: Introducción Teórica 1. Objetivo de la práctica El objetivo de esta práctica es introducir al alumno en el uso y configuración del CI NE555. Este dispositivo electrónico
AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL
AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL Tensión de red baja (V1) Tensión de red alta (V1) Cable de red en circuito abierto Fusible de entrada o c.a. en circuito abierto Interruptor en circuito abierto
Parcial_1_Curso.2012_2013. Nota:
Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.
COMPONENTES ELECTRÓNICOS
UD 2.- COMPONENTES ELECTRÓNICOS 2.1. RESISTENCIA FIJA O RESISTOR 2.2. RESISTENCIAS VARIABLES 2.3. EL RELÉ 2.4. EL CONDENSADOR 2.5. EL DIODO 2.6. EL TRANSISTOR 2.7. MONTAJES BÁSICOS CON COMPONENTES ELECTRÓNICOS
Práctica 5 Diseño de circuitos con componentes básicos.
Práctica 5 Diseño de circuitos con componentes básicos. Descripción de la práctica: -Con esta práctica, se pretende realizar circuitos visualmente útiles con componentes más simples. Se afianzarán conocimientos
AUDIOCAPACIMETRO (BC548/BC558)
Fichas coleccionables que se publican mensualmente, con circuitos prácticos de fácil FICHA Nº 237 - SABER Nº 133 AUDIOCAPACIMETRO (BC548/BC558) La frecuencia del sonido emitido por el parlante depende
GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN
GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ (20112007038) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Observar la amplificación del transistor mediante un análisis y diseño
SENSOR INFRARROJO EMISOR Y RECEPTOR
SENSOR INFRARROJO EMISOR Y RECEPTOR Marco Teorico Diodo LED Un diodo es un dispositivo electrónico provisto de dos electrodos, cátodo y ánodo, que tiene la propiedad de ser conductor en el sentido cátodo-ánodo,
6. MATERIALES SEMICONDUCTORES.
6. MATERIALES SEMICONDUCTORES. Hasta ahora, se han estudiado los componentes electrónicos pasivos (resistores, condensadores y relés), que son aquellos componentes que no modifican ni amplifican la señal
OSCILADORES SINUSOIDALES Y NO SINUSOIDALES
OSCILADORES SINUSOIDALES Y NO SINUSOIDALES GUÍA DE LABORATORIO Nº 4 Profesor: Ing. Aníbal Laquidara. J.T.P.: Ing. Isidoro Pablo Perez. Ay. Diplomado: Ing. Carlos Díaz. Ay. Diplomado: Ing. Alejandro Giordana
Práctica Complementaria: Detector de color
Práctica Complementaria: Detector de color Autores: Justo Barroso Fontalba, Benjamín Díaz Aranzana, Fco Javier Suvires García Asignatura: Laboratorio de electrónica Profesor: M.A. López Gordo Fecha: 18-01-11
INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO
INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO OBJETIVO Estudio de las diferentes partes de un osciloscopio y realización de medidas con este instrumento. Introducción Un osciloscopio consta
PRÁCTICAS ELECTRÓNICA ANALÓGICA
TECNOLOGÍA PRÁCTICAS NIVEL: 4ºESO ELECTRÓNICA ANALÓGICA 1 LISTA DE MATERIALES... 2 2 CARACTERÍSTICAS DE ALGUNOS COMPONENTES... 3 2.1 RELÉS... 3 2.2 TRANSISTORES... 3 2.3 CIRCUITOS INTEGRADOS... 3 3 PLACA
4.- Detector de humedad. Material necesario: T1 = Transistor NPN BC547 T2 = Transistor NPN BD137 R1 = 2K2 R2 = 2K2 R3 = 220 Ω
4.- Detector de humedad Material necesario: T1 = Transistor NPN BC547 T2 = Transistor NPN BD137 R1 = 2K2 R2 = 2K2 R3 = 220 Ω Funcionamiento Al introducir los electrodos en agua o simplemente en tierra
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos
Parcial_2_Curso.2012_2013
Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique
DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107)
CÓDIGO: PAG.: 1 I Redes s I. (2107) PROPÓSITOS Esta asignatura es la continuación de los estudios en electrónica que deben cursar los estudiantes del ciclo común en el plan de estudio de y es requisito
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADOR DIFERENCIAL DISCRETO
AMPLIFICADOR DIFERENCIAL DISCRETO LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Se implementarán los circuitos planteados en la guía entregada del laboratorio
Materiales Semiconductores TRABAJO PRÁCTICO Nº 5 Circuitos Rectificadores y Filtrado Analógico
Materiales Semiconductores TRABAJO PRÁCTICO Nº 5 Circuitos Rectificadores y Filtrado Analógico Objetivos: Identificar los parámetros y características fundamentales de los circuitos rectificadores y de
Laboratorio 4: Circuito de control de potencia con Triac
Electrónica y Automatización 05 Laboratorio 4: Circuito de control de potencia con Triac En este laboratorio se analizará un circuito capaz de excitar un Triac mediante pulsos de ancho variable sincronizados
Cuando necesitamos una señal triangular sin más, es decir, de amplitud y frecuencia fijas, utilizamos el circuito de la figura 18.
Generador de señal triangular En determinadas ocasiones es preciso disponer de una señal que varíe linealmente su valor desde un máximo hasta un mínimo y viceversa, de forma alternativa. Esto ocurre en
1. Medidor de potencia óptica
En este anexo se va a hablar del instrumental de laboratorio más importante utilizado en la toma de medidas. Este instrumental consta básicamente de tres elementos: el medidor de potencia óptica, el osciloscopio
1.- La señal de salida v o en t = 5ms. a) -60V b) 60V c) 75V d) -75V. 2.- La señal de salida v o en t = 15ms. a) -60V b) 60V c) 75V d) -75V
A. A.1.- En el circuito de la figura los diodos son ideales. La señal de entrada v i es sinusoidal de 50 Hz de frecuencia y 100 V de amplitud. En el primer semiperiodo v i es positiva. Calcular: 1.- La
PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA CON CROCODILE. Lucía Defez Sánchez Profesora de la asignatura tecnología en la ESO
PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA CON CROCODILE Lucía Defez Sánchez Profesora de la asignatura tecnología en la ESO 1 OBJETO Se elabora el presente cuaderno de prácticas con el fin de facilitar la
PRÁCTICAS DE ELECTRÓNICA 4º E.S.O.
PRÁCTICAS DE ELECTRÓNICA 4º E.S.O. DEPARTAMENTO DE TECNOLOGÍA I.E.S. SEFARAD www.tecnosefarad.com ALUMNO/A: GRUPO: 1. INTRODUCCIÓN Las prácticas se realizarán de la siguiente manera: En este cuaderno se
COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7
COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7 SEMICONDUCTORES Termistores Foto resistores Varistores Diodo Rectificador Puente Rectificador Diodo de Señal Diodo PIN Diodo Zener Diodo Varactor Fotodiodo
P R O G R A M A C I Ó N D E M Ó D U L O Í N D I C E
NOMBRE DEL CENTRO I.E.S. ARUCAS DOMINGO RIVERO CURSO 2012-2013 DEPARTAMENTO Electricidad CICLO FORMATIVO Instalaciones Eléctricas y Automáticas NIVEL Vº Bº Jefe/a Departamento: Firmado: Profesores/as:
PRÁCTICA 13. CIRCUITO AMPLIFICADOR MONOETAPA CON BJT
PRÁCTICA 13. CIRCUITO AMPLIFICADOR MONOETAPA CON BJT 1. Objetivo Se pretende conocer el funcionamiento de un amplificador monoetapa basado en un transistor BJT Q2N2222. 2. Material necesario Se necesita
UDI 4: ELECTRÓNICA ANALÓGICA
UDI 4: ELECTRÓNICA ANALÓGICA 1. CONCEPTO DE ELECTRÓNICA. DIFERENCIAS CON LA ELECTRICIDAD Electrónica: movimiento de electrones a través del vacío, gases o materiales semiconductores. Electricidad: movimiento
PRÁCTICA 4. Montaje y evaluación de sistemas secuenciales.
Tiempo: 2 semanas 1.- Objetivos: Laboratorio de Fundamentos de tecnología de Computadores. PRÁCTICA 4 Montaje y evaluación de sistemas secuenciales. El objetivo de este módulo es familiarizar al alumno
PRÁCTICA 2: MODULACIONES ANGULARES. Modulación FM
PRÁCTICA 2: MODULACIONES ANGULARES Modulación FM Práctica 2: Modulaciones Angulares - Modulación FM Pag 2 1.- OBJETIVOS: Modulación de Frecuencia: FM Modulación de Frecuencia Comprobar el funcionamiento
LABORATORIO DE CIRCUITOS ELECTRÓNICOS. Circuito detector de intensidad luminosa artificial
LABORATORIO DE CIRCUITOS ELECTRÓNICOS Circuito detector de intensidad luminosa artificial Julio 2016 Índice general 1. INTRODUCCIÓN 2 1.1. Fundamentos del diseño.......................................
ELECTRONICA ANALOGICA I
1 Bibliografía de referencia Boylestad R., Nasheslsky, Electrónica: teoría de circuitos, Ed. Prentice Hall, 6ta. Edición Boylestad R.- Nashelsky L., Electrónica: Teoría de circuitos y dispositivos electrónicos,
PRÁCTICA 4 COMPONENTES OPTOELECTRÓNICOS Y ELECTROMECÁNICOS Conmutador basado en relé
TRI.4.- Interruptor controlado por IR Pág 1 PRÁCTICA 4 COMPONENTES OPTOELECTRÓNICOS Y ELECTROMECÁNICOS Duración estimada: 3 semanas Objetivos de la práctica: 1. Utilizar elementos optoelectrónicos en un
CIRCUITOS ELECTRÓNICOS, DIODO LED
Laboratorio electrónico Nº 3 CIRCUITOS ELECTRÓNICOS, DIODO LED Objetivo Aplicar los conocimientos de circuitos electrónicos Familiarizarse con los dispositivos y componentes electrónicos Objetivo específico
DISEÑO Y CONSTRUCCIÓN DE MICRORROBOTS
Seminario Departamento de Electrónica (Universidad de Alcalá) DISEÑO Y CONSTRUCCIÓN DE MICRORROBOTS CNY-70: Sensor reflectivo de infrarrojos (www.vishay.com) ALUMNO: VÍCTOR MANUEL LÓPEZ MANZANO 5º curso
Experiencia P57: Amplificador seguidor de emisor Sensor de voltaje
Sensor de voltaje Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores P57 Common Emitter.DS (Vea al final de la (Vea al final de la experiencia) experiencia) Equipo necesario Cant.
MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP.
MÓDULO Nº9 AMPLIFICADORES OPERACIONALES UNIDAD: CONVERTIDORES TEMAS: Introducción a los Amplificadores Operacionales. Definición, funcionamiento y simbología. Parámetros Principales. Circuitos Básicos.
TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV CIRCUITOS AMPLIFICADORES
TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV EB 21 TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV EB 22 CIRCUITOS AMPLIFICADORES MOD. MCM5/EV EB 23 CIRCUITOS OSCILADORES
PRACTICA Nº 2 CIRCUITOS NO LINEALES CON AMPLIFICADORES OPERACIONALES PREPARACIÓN TEÓRICA
9 PRACTICA Nº CIRCUITOS NO LINEALES CON AMPLIFICADORES OPERACIONALES PREPARACIÓN TEÓRICA.- INTRODUCCION En diversas situaciones se requiere el empleo de circuitos que modifican en forma no-lineal las señales
1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo.
Contenido Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia Curvas de operación del PUT y Osciladores de Relajación. Objetivos Específicos Analizar el
TRABAJO PRÁCTICO INTEGRADOR COMPROBADOR DEL ESTADO DE UNA BATERÍA UTILIZANDO LEDS
U.N.S.J. F.F.H.A. TRABAJO PRÁCTICO INTEGRADOR COMPROBADOR DEL ESTADO DE UNA BATERÍA UTILIZANDO LEDS Alumno: CALABRÓ, RODOLFO Cátedra: ELECTRÓNICA GENERAL Y APLICADA Carrera: Profesorado de Tecnología Fecha:
PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II
PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional (op-amp), en particular de tres de sus montajes típicos que
RECTIFICACIÓN DE MEDIA ONDA
RECTIFICACIÓN DE MEDIA ONDA I. OBJETIVOS Definir lo que es una fuente de baja tensión. Analizar los componentes a utilizar. Montaje del circuito. Análisis de tensión (AC-DC). Determinar las gráficas a
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Obtener la ganancia del circuito a partir del modelo en pequeña señal del transistor BJT. 3. Observar como varían
CURSO: ELECTRÓNICA BÁSICA UNIDAD 3: OSCILADORES - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA INTRODUCCIÓN
CURSO: ELECTRÓNICA BÁSICA UNIDAD 3: OSCILADORES - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA INTRODUCCIÓN Muy a menudo dispositivos electrónicos tales como receptores, transmisores y una gran variedad de aparatos
Practicas tema6 (Componentes electrónicos activos) P1 Nombre y apellidos: FP básica
Practicas tema6 (Componentes electrónicos activos) P1 DIODOS s: Comprender el funcionamiento de un DIODO Herramientas y material: Diodo LED, resistencia, potenciómetro, pila de petaca e interruptor, polímetro.
CIRCUITOS CON C.I. 555 Temporizadores
CIRCUITOS CON C.I. 555 Temporizadores Videotutorial de la práctica A. DESCRIPCIÓN En esta práctica vamos a montar una serie de circuitos temporizadores utilizando el circuito integrado (CI) 555. En un
UNIVERSIDAD DON BOSCO
CICLO 02-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 02 NOMBRE DE LA PRACTICA: Diodo de Unión Bipolar LUGAR DE EJECUCIÓN:
TRABAJO PRÁCTICO Nº 4 FUENTES
TRABAJO PRÁCTICO Nº 4 FUENTES 4.1 Rectificadores Todo método que se utilice para generar una tensión continua a partir de la tensión de línea de 220V debe empezar por obtener una tensión de valor medio
Rectificación no controlada Electrónica de potencia
Rectificación no controlada Electrónica de potencia Curso: º I..Industrial 7/8 Índice.- Introducción....- Rectificadores.....- Rectificador monofásico de media onda. Carga resistiva.....- Rectificador
LUCES SECUENCIALES REVERSIBLES DE 6 LED. Simula que tienes un scanner o una alarma en tu vehículo
LUCES SECUENCIALES REVERSIBLES DE 6 LED Simula que tienes un scanner o una alarma en tu vehículo Tabla de Contenido DEFINICIÓN FUNCIONAMIENTO LISTA DE PARTES ENSAMBLE DEFINICIÓN 4017 El 4017b es un circuito
Medida de la característica estática de un diodo
Práctica 4 Medida de la característica estática de un diodo Índice General 4.1. Objetivos................................ 39 4.2. Introducción teórica.......................... 40 4.3. Medida de la Característica
TEMPORIZADOR Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica
Electrónica II. Guía 6 1 / 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). TEMPORIZADOR - 555. Objetivos
Capítulo 1 Introducción Mecatrónica Sistemas de medición Ejemplos de diseño... 5
ÍNDICE Listas... ix Figuras... ix Tablas... xv Temas para discusión en clase... xvi Ejemplos... xviii Ejemplos de diseño... xix Ejemplos de diseño encadenado... xx Prefacio... xxi Capítulo 1 Introducción...
Electrónica 1. Práctico 2 Amplificadores operacionales 2
Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
PRÁCTICA 1. CARACTERIZACIÓN DE DIODOS DE POTENCIA
PRÁCTICA 1. CARACTERIZACIÓN DE DIODOS DE POTENCIA 1. Objetivo En esta práctica se caracteriza el comportamiento estático y dinámico de diferentes diodos de potencia. Comparando los resultados se podrán
CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 5 Objetivos CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL * Realizar montajes de circuitos electrónicos
CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS
CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS COMBINACIONALES INTEGRADOS CIRCUITOS INTEGRADOS SECUENCIALES: FLIP-FLOPS, REGISTROS Y CONTADORES CONSEJOS PARA LA ELABORACIÓN DE DIAGRAMAS LÓGICOS DE CIRCUITOS
COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica
Electrónica II. Guía 4 1/1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). COMPARADORES. Objetivos
Electrónica II. Guía 4
Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). COMPARADORES Objetivo General Verificar
