DISEÑO DE UNA FUENTE CONMUTADA PARA PC

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISEÑO DE UNA FUENTE CONMUTADA PARA PC"

Transcripción

1 DISEÑO DE UNA FUENTE CONMUTADA PARA PC Se pretende diseñar una fuente para uso en una computadora personal que entregue voltajes de salida de 5 y, usando como topología una fuente de conmutada del tipo FORWARD-FYBACK. ESPECIFICACIONES DE DISEÑO Fuente conmutada: Salida 0 A A Regulación de línea de 5% Regulación de carga de % DISEÑO A continuación se presenta un diagrama de bloques del diseño que se ha de implementar: Figura 4. Diagrama en Bloque Fuente PC.

2 Como se puede ver el circuito consta de seis partes principales las cuales son: Etapa común, la cual es la toma desde la fuente de corriente alterna, el rectificador y el dispositivo de conmutación. Salida regulada de 5 a 0 A. Salida regulada de a A. Control del ciclo de trabajo de la fuente. Control de la frecuencia. Modulador de ancho de pulso. Para lograr tener un voltaje DC a la entrada se la fuente, se rectificará y filtrará el voltaje de la línea AC, como se muestra en la siguiente figura: Figura5. Puente rectificador. Se diseña el circuito para que rectifique la onda AC, de entrada y luego la filtre, resultando en un valor DC de 50, para esto se usa la siguiente ecuación: C 4 I 3 f rp p dc * m * 57.98µ F (0)(0) 55 DC µ 4 F Para un voltaje de rizo (p-p) de 5, una frecuencia de 0 Hz, un voltaje medio (m) de 55, una corriente (Idc) de 0,5 A, y un voltaje DC de 50 se tiene que el capacitor debe ser:

3 C 4* Idc 3 f rp p dc * m 4 * 0.5 3(0)(0) 57.98µ F 5. 8µ F TOPOOGÍA DE A ETAPA DE POTENCIA a topología para implementar la etapa de potencia en esta fuente es la de Forward-Flyback, la idea fundamental de esta topología es aprovechar la energía de desmagnetización del transformador para ser consumida en la carga R. Además en esta topología se van a tener dos tensiones de salida completamente reguladas, la tensión va a depender del ciclo de trabajo, y la tensión va a depender del ciclo de trabajo y de la frecuencia de conmutación del transistor; para lograr esto es suficiente que el semiconvertidor Forward opere en modo de conducción continuo, mientras que el Flyback debe operar en modo de conducción discontinuo. Figura6. Etapa de Potencia.

4 REGUACIÓN DE AS SAIDAS Según el diagrama de bloques representado al principio de esta exposición, es preciso cerrar las dos realimentaciones. El control del ciclo de trabajo se efectuará captando la tensión de salida, puesto que esta solo depende de este parámetro, mientras que el control de la frecuencia se hará a partir de la salida, pues una vez fijado el ciclo de trabajo esta tensión solo dependerá de la frecuencia. CONTRO DE CICO DE TRABAJO Para este caso se implementará un PID, realizado con un 74, como se observa en la figura: fz fz πr C πr C fp fp 0 R + R3 π C R R 0 3 Figura7. Control Ciclo de Trabajo. CONTRO DE A FRECUENCIA Para este segundo caso, se ha diseñado simplemente un regulador PI, porque se trata de estabilizar un sistema de primer orden

5 Figura8. Control de Frecuencia. CIRCUITO DE CONTRO a función de este circuito es la de proporcionar al interruptor de potencia la señal rectangular necesaria para el correcto funcionamiento del circuito, en función de dos voltajes de control d (procedente del regulador de ciclo de trabajo) y f (procedente del regulador de frecuencia). Por lo tanto la onda de control se podrá modificar en función de dos parámetros de control, además este circuito deberá ser capaz de proporcionar la corriente necesaria para el conmutador. OSCIADOR CONTROADO POR OTAJE (CO) Para su implementación se utilizará el M566, su misión es la de generar ondas triangulares y cuadradas a una frecuencia proporcional a un voltaje de control. Esta frecuencia es de muy fácil ajuste ya que depende además de una resistencia y un capacitor conectados externamente al circuito.

6 Figura9. Oscilador controlado por oltaje. Este circuito integrado fue escogido por sus características de estabilidad y fácil implementación. COMPARADOR Para implementar esta topología se usará un M3, al cual se le introducirá por su patilla no inversora la señal triangular procedente del 566, y por su patilla inversora un voltaje continuo d obteniéndose a la salida de este un tren de pulsos debido a la comparación de las dos señales, es decir, cada vez que la señal triangular supere el voltaje de referencia d el comparador se saturará al voltaje de alimentación, mientras que de lo contrario se saturará al voltaje de alimentación negativo. Como este comparador posee una topología de colector abierto habrá que adicionar además una resistencia de Pull-up conecta al voltaje de alimentación positiva a la salida del operacional.

7 Figura 0. Comparador. SEECCIÓN DE A FRECUENCIA DE FUNCIONAMIENTO a elección de la frecuencia de funcionamiento depende del tiempo de conmutación del transistor a usar, así no importa que tan alta se desee siempre se tendrá esa limitante. Debido a que la frecuencia de conmutación será establecida por el semiconvertidor Flyback una vez que el ciclo de trabajo haya sido fijado por el convertidor forward, la elección de la frecuencia de funcionamiento se hará con relación al convertidor Flyback. Para un convertidor Flyback (retroceso) se tiene que: Donde: f t t + ( T + T ) * in 0 max 0 min00n 0 min + t t es el tiempo de conmutación del transistor. T es el nivel de variación de la entrada.

8 Ahora, para un Tt de 5 ns, una variación en la línea de ±5%, y una variación en la salida de ±%, sustituyendo los valores en la ecuación se va a tener que: f 5*0 9 50(5 + 5).76*00N.4 *.76 + f DISEÑO DE TRANSFORMADOR El correcto funcionamiento del convertidor depende del adecuado dimensionamiento del transformador, es por esto que hay que prestar especial cuidado en su diseño. Cuando el transistor esté saturado este trabajará normalmente en la fuente Forward, pero cuando el transistor se corte el transformador hará las veces de bobina en el semiconvertidor Flyback. De las especificaciones de diseño impuestas se pueden determinar las siguientes constantes: N * 0 in 50 M 50 in 0.08 Si se hace que el ciclo de trabajo de la fuente sea igual 0.4, y se calcula el parámetro:

9 γ R 50Ω 3.33* 0 f.75khz 4 Se puede calcular la inductancia del primario del transformador mediante la ecuación: d γ 3.33* mH M 0.08 Para implementar el transformador se usa el núcleo de Siemens N7 de ferrita, tamaño E30, que posee un margen de variación de 0 a 00 Khz y un área efectiva Ae60 mm. Se sabe que la densidad de flujo magnético en el transformador durante un período de conmutación es: B max in na dt e Ahora, como no se sabe cual es el valor de n, se hace n, y con esto se calcula la densidad de flujo: B dt 50*0.4 *.33* in max nae Ahora, se puede calcular una condición para el factor de inductancia del núcleo, el cual va a determinar el ancho del alambre con el que se harán los enrollados: A A e B max in f γ M

10 Sustituyendo los valores en la última ecuación se obtiene que A < 0.57 H, se escoge un A 600nH, con lo que se obtiene para el núcleo escogido un g0. mm. Ahora se puede calcular el número de vueltas por devanado usado las siguientes ecuaciones: n n n N d γ A A d A Donde n, n y n son el número de vueltas del devanado principal, el de la fuente Forward y el de la fuente Flyback respectivamente. CÁCUO DE A INDUCTANCIA PARA E SEMICONERTIDOR FORWARD Se sabe que cuanto mayor sea la corriente de carga a la cual la tensión de salida aumenta en forma indeseable es menor, la corriente pico en el transistor es menor, aumenta el tamaño y el peso de la fuente, y disminuye la rapidez de reacción de la fuente frente a cambios en la carga. Es por esto que es necesario calcular el valor mínimo de la inductancia en función de los parámetros, para esto se cuenta con la ecuación: + T + 00 N P t tt T 5 9 5* * *0 (.7).68 in t 5 min 0 min uH

11 Además para tener en salida una corriente máxima de 0 A se debe cumplir que: uh uh d T P I f d T max max + Entonces se escoge un inductor de 38 µh. DISEÑO FINA Figura. Circuito final fuente PC.

CONVERTIDOR ELEVADOR Y CONVERTIDOR REDUCTOR

CONVERTIDOR ELEVADOR Y CONVERTIDOR REDUCTOR CAPITUO 2 CONVERTIDOR EEVADOR Y CONVERTIDOR REDUCTOR 2.1 Introducción os convertidores de CD-CD son circuitos electrónicos de potencia que transforman un voltaje de corriente continua en otro nivel de

Más detalles

REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Fuente de tensión continua regulada

REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Fuente de tensión continua regulada REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Cátedra de Dispositivos Electrónicos Departamento de Electricidad, Electrónica y Computación (DEEC) FACET - UNT Fuente de tensión continua regulada R S

Más detalles

Qué es una fuente de alimentación? Una fuente de alimentación es un dispositivo que convierte la corriente eléctrica alterna a corriente continua.

Qué es una fuente de alimentación? Una fuente de alimentación es un dispositivo que convierte la corriente eléctrica alterna a corriente continua. Su Historia Qué es una fuente de alimentación? Una fuente de alimentación es un dispositivo que convierte la corriente eléctrica alterna a corriente continua. También llamadas rectificadores, transformadores,

Más detalles

Generador Solar de Energía Eléctrica a 200W CAPÍTULO VII. Implementaciones y resultados Implementación de los convertidores elevadores

Generador Solar de Energía Eléctrica a 200W CAPÍTULO VII. Implementaciones y resultados Implementación de los convertidores elevadores CAPÍTULO VII Implementaciones y resultados 7.1.- Implementación de los convertidores elevadores Al finalizar con las simulaciones se prosiguió a la construcción de los convertidores de potencia. Se implementó

Más detalles

FUENTES DE ALIMENTACION CONMUTADA INSTRUCTOR RAUL ROJAS REATEGUI

FUENTES DE ALIMENTACION CONMUTADA INSTRUCTOR RAUL ROJAS REATEGUI FUENTES DE ALIMENTACION CONMUTADA INSTRUCTOR RAUL ROJAS REATEGUI CLASIFICACIÓN 1. SEGÚN LA TECNOLOGIA UTILIZADA a. Fuente Lineal. Utilizan un transformador para disminuir el voltaje de línea (120 o 220V).

Más detalles

Introducción. La transferencia inalámbrica se logra bajo el principio de la inducción magnética en

Introducción. La transferencia inalámbrica se logra bajo el principio de la inducción magnética en Introducción La transferencia inalámbrica se logra bajo el principio de la inducción magnética en un transformador, sabiendo que en este se puede introducir un entrehierro. Para esto se decidió partir

Más detalles

FUENTES DE ALIMENTACIÓN CONMUTADAS

FUENTES DE ALIMENTACIÓN CONMUTADAS FUENTE ALIMENTACIÓN LINEAL FUENTE DE ALIMENTACIÓN CONMUTADA Las fuentes conmutadas son de circuitos relativamente complejos, pero podemos siempre diferenciar cuatro bloques constructivos básicos: 1) En

Más detalles

Inversores Resonantes

Inversores Resonantes Inversores Resonantes Actualmente, en los sistemas electrónicos de alimentación modernos se requiere: Una alta calidad. Un tamaño y peso pequeño. Aumentar la densidad de potencia. Buen rendimiento en la

Más detalles

Reguladores de voltaje

Reguladores de voltaje Reguladores de voltaje Comenzamos con un voltaje de ca y obtenemos un voltaje de cd constante al rectificar el voltaje de ca y luego filtrarlo para obtener un nivel de cd, y, por último, lo regulamos para

Más detalles

Reguladores por conmutación. Configuraciones con transformador de aislamiento. Operación en el régimen de corriente no interrumpida.

Reguladores por conmutación. Configuraciones con transformador de aislamiento. Operación en el régimen de corriente no interrumpida. Reguladores por conmutación. Configuraciones con transformador de aislamiento. Operación en el régimen de corriente no interrumpida. I-Regulador "de retroceso" ( flyback ). a)configuración. b)circuito

Más detalles

Contenido. Capítulo 2 Semiconductores 26

Contenido. Capítulo 2 Semiconductores 26 ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión

Más detalles

Fuentes de alimentación. Lineales

Fuentes de alimentación. Lineales Fuentes de alimentación Lineales Regulador integrado 7805 Diagrama en bloques Mediciones Diagrama en bloques Fuente de alimentación lineal Fuente no regulada ni estabilizada Fuente regulada y estabilizada

Más detalles

Convertidor DC-DC. Gerardo Fonseca, Josemario Chávez, Néstor Meléndez, Jadher Báez. Universidad Nacional de Ingeniería, Managua, Nicaragua.

Convertidor DC-DC. Gerardo Fonseca, Josemario Chávez, Néstor Meléndez, Jadher Báez. Universidad Nacional de Ingeniería, Managua, Nicaragua. Convertidor DC-DC. Gerardo Fonseca, Josemario Chávez, Néstor Meléndez, Jadher Báez. Universidad Nacional de Ingeniería, Managua, Nicaragua. gipf01@gmail.com boycool_jose_@hotmail.com cutodesdeaqui@yahoo.es

Más detalles

Fuente de poder Parte 2 ISC. EDER CHAVEZ ACHA

Fuente de poder Parte 2 ISC. EDER CHAVEZ ACHA Fuente de poder Parte 2 ISC. EDER CHAVEZ ACHA Es importante señalar que cada fabricante de fuentes de poder tiene diseños personalizados por lo que no todas las fuentes de poder son exactamente iguales

Más detalles

Electrónica 2. Práctico 2 Osciladores

Electrónica 2. Práctico 2 Osciladores Electrónica 2 Práctico 2 Osciladores Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

UNIVERSIDAD AUTONOMA DE QUERETARO Facultad de Informática

UNIVERSIDAD AUTONOMA DE QUERETARO Facultad de Informática ELECTRÓNICA ANALÓGICA(1302). ÁREA DE CONOCIMIENTO: ARQUITECTURA DE LAS COMPUTADORAS CRÉDITOS: 7 HORAS TEÓRICAS ASIGNADAS A LA SEMANA: 2 HORAS PRÁCTICAS ASIGNADAS A LA SEMANA: 2 PROGRAMAS EDUCATIVOS EN

Más detalles

ASIGNATURA GAIA ELECTRONICA DE POTENCIA CURSO KURTSOA NOMBRE IZENA FECHA DATA 15 / 02 / 2003 I L. R=15 Ohm

ASIGNATURA GAIA ELECTRONICA DE POTENCIA CURSO KURTSOA NOMBRE IZENA FECHA DATA 15 / 02 / 2003 I L. R=15 Ohm EJERCICIO 1 Se necesita alimentar con una tensión media de 30 V a una carga puramente resistiva R=15 Ω (ver figura 1). Para ello se emplea un rectificador en puente monofásico alimentado mediante un transformador

Más detalles

INVERSORES RESONANTES

INVERSORES RESONANTES 3 INVERSORES RESONANTES 3.1 INTRODUCCIÓN Los convertidores de CD a CA se conocen como inversores. La función de un inversor es cambiar un voltaje de entrada en CD a un voltaje simétrico de salida en CA,

Más detalles

CAPITULO XIII RECTIFICADORES CON FILTROS

CAPITULO XIII RECTIFICADORES CON FILTROS CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:

Más detalles

OSCILADORES SINUSOIDALES Y NO SINUSOIDALES

OSCILADORES SINUSOIDALES Y NO SINUSOIDALES OSCILADORES SINUSOIDALES Y NO SINUSOIDALES GUÍA DE LABORATORIO Nº 4 Profesor: Ing. Aníbal Laquidara. J.T.P.: Ing. Isidoro Pablo Perez. Ay. Diplomado: Ing. Carlos Díaz. Ay. Diplomado: Ing. Alejandro Giordana

Más detalles

Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador

Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador Práctica No. 5 Circuitos RC Objetivo Ver el comportamiento del circuito RC y sus aplicaciones como integrador y diferenciador Material y Equipo Resistencias de varios valores Capacitores de cerámicos,

Más detalles

Electrónica de Potencia Introducción. Mgs. Ing. Damian Eleazar Sal y Rosas Celi

Electrónica de Potencia Introducción. Mgs. Ing. Damian Eleazar Sal y Rosas Celi Electrónica de Potencia Introducción Indice Rol de le Electrónica de potencia Electrónica de Potencia vs Electrónica Lineal Análisis de un circuito electrónico de potencia Aplicaciones Proyectos 2009 UNI

Más detalles

ELECTRONICA GENERAL Y APLICADA-FACULTAD DE INGENIERIA. UNCuyo - Ing. Roberto HAARTH

ELECTRONICA GENERAL Y APLICADA-FACULTAD DE INGENIERIA. UNCuyo - Ing. Roberto HAARTH Página1 OBJETIVOS Comprender el concepto de rectificación y filtrado de una fuente de alimentación de energía eléctrica. Reconocer las características y parámetros de rectificación de media onda y onda

Más detalles

Inversores. Conversión de continua en alterna

Inversores. Conversión de continua en alterna Inversores Conversión de continua en alterna Introducción Introducción Los inversores son circuitos que convierten la corriente continua en corriente alterna. Los inversores transfieren potencia desde

Más detalles

Inversores. Conversión de continua a alterna

Inversores. Conversión de continua a alterna Inversores Conversión de continua a alterna Introducción Convierten corriente continua a alterna. Motores de alterna de velocidad ajustable. Sistemas de alimentación ininterrumpida. Dispositivos de corriente

Más detalles

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN Andrés González 393 APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN 1. Por qué el núcleo del transformador es de hierro o acero? Podría ser de otro material? El núcleo

Más detalles

Diseño de un convertidor DC DC reductor tipo BUCK

Diseño de un convertidor DC DC reductor tipo BUCK Diseño de un convertidor DC DC reductor tipo BUCK Ejemplo para la asignatura Electrónica Industrial 24 de abril de 2007 1. Requerimientos V in = 12V V o = 5V I max = 1A I min = 100mA (MC) v o < 50mV f

Más detalles

Laboratorio de Introducción a la Electrónica de Potencia Práctica 6

Laboratorio de Introducción a la Electrónica de Potencia Práctica 6 Alumnos: Grupo: PRÁCTICA 6: DISEÑO Y VERIFICACIÓN DE UN TROCEADOR CLASE E. TIPOS DE DISPARO DE MOSFETS. CONTROLADOR CONMUTADO PARA MOTORES DE DC OBJETIVO: Estudio de las características básicas de los

Más detalles

PRÁCTICA 5. CONVERTIDOR DC/DC ELEVADOR

PRÁCTICA 5. CONVERTIDOR DC/DC ELEVADOR PRÁCTICA 5. CONVERTIDOR DC/DC ELEVADOR 1. Objetivo En esta práctica se estudiará el funcionamiento de un circuito convertidor de continua tipo boost (elevador) utilizando el integrado SG3524 como modulador

Más detalles

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2. 1/6 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 9 Osciladores Problemas básicos 1. El oscilador en Puente de Wien de la figura 1 a) tiene dos potenciómetros que le permiten variar la frecuencia de oscilación.

Más detalles

Wireless power transfer

Wireless power transfer Universidad Carlos III de Madrid Repositorio institucional e-archivo Trabajos académicos http://e-archivo.uc3m.es Proyectos Fin de Carrera 2012 Wireless power transfer Montalvo Cano, Raquel http://hdl.handle.net/10016/16087

Más detalles

V cc t. Fuente de Alimentación

V cc t. Fuente de Alimentación Fuente de Alimentación de Tensión Fuente de alimentación: dispositivo que convierte la tensión alterna de la red de suministro (0 ), en una o varias tensiones, prácticamente continuas, que alimentan a

Más detalles

S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 31

S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 31 S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 31 2.4 Convertidor de Subida de Voltaje. 2.4.1. Topología Boost. La topología Boost es un convertidor de potencia, el cual genera una tensión

Más detalles

3bymesa magnéticos. Una solución para cada diseño. Componentes magnéticos 2017

3bymesa magnéticos. Una solución para cada diseño. Componentes magnéticos 2017 3bymesa magnéticos Una solución para cada diseño Componentes magnéticos 2017 3bymesa magnéticos Más de 30 años de experiencia en este campo nos avalan como una de las principales referencias en el sector

Más detalles

Laboratorio de Introducción a la Electrónica de Potencia Práctica 6

Laboratorio de Introducción a la Electrónica de Potencia Práctica 6 Alumnos: Grupo: PRÁCTICA 6: DISEÑO Y VERIFICACIÓN DE UN TROCEADOR CLASE E. TIPOS DE DISPARO DE MOSFETS. CONTROLADOR CONMUTADO PARA MOTORES DE DC OBJETIVO: Estudio de las características básicas de los

Más detalles

PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva:

PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: POBLEMAS DE EXAMEN 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: 1 V in = 2 V s sen(wt) i in 2 a) Explicar brevemente el funcionamiento

Más detalles

3.2. Diseño de las Tarjetas Impresas Construcción de las tarjetas Impresas Estructura de Almacenamiento

3.2. Diseño de las Tarjetas Impresas Construcción de las tarjetas Impresas Estructura de Almacenamiento Tabla de contenido Resumen... ii Agradecimientos... iv Índice de Figuras... vii Índice de Tablas... ix Nomenclatura... x Abreviaciones... xi 1. Introducción General... 1 1.1. Introducción... 1 1.2. Objetivos...

Más detalles

Curso Eléctrico Palas P&H 4100XPC Codelco Andina.

Curso Eléctrico Palas P&H 4100XPC Codelco Andina. Curso Eléctrico Palas P&H 4100XPC Codelco Andina. Sist em a RPC y Sup r esora Introducción La cabina RPC se encarga mantener una potencia reactiva los mas cercana a uno, descargando bancos de condensadores

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION Electrónica y Dispositivos FUENTES DE AIMENTACION a generación y distribución de la energía eléctrica, se realiza utilizando corriente alterna Mientras que la mayoría de los circuitos y dispositivos electrónicos

Más detalles

Las fuentes de alimentación se pueden clasificar de forma general en dos grandes grupos: las fuentes lineales y las conmutadas.

Las fuentes de alimentación se pueden clasificar de forma general en dos grandes grupos: las fuentes lineales y las conmutadas. 1. Introducción Una fuente de alimentación es un dispositivo que convierte la corriente alterna, proveniente de la red eléctrica, en corriente continua. Este proceso de transformación se realiza para adecuar

Más detalles

CUESTIONES DEL TEMA - IV

CUESTIONES DEL TEMA - IV ema 5: Osciladores de elajación... Presentación En el tema 5 se tratan distintos circuitos que producen en su salida ondas de tipo cuadradas, triangulares, pulso, etc. : a) Se analiza el comportamiento

Más detalles

Fuentes de alimentación. Lineales y conmutadas

Fuentes de alimentación. Lineales y conmutadas Fuentes de alimentación Lineales y conmutadas Diagrama en bloques Fuente de alimentación lineal Fuente no regulada ni estabilizada Fuente regulada y estabilizada TRANSFORMADOR RECTIFICADOR FILTRO REGULADOR

Más detalles

ARRANQUE DE LÁMPARAS FLUORESCENTES

ARRANQUE DE LÁMPARAS FLUORESCENTES 4 ARRANQUE DE LÁMPARAS FLUORESCENTES 4. INTRODUCCIÓN En el uso de sistemas de iluminación fluorescente es necesario alimentar a la lámpara de descarga con el voltaje adecuado para evitar un mal funcionamiento

Más detalles

1. PRESENTANDO A LOS PROTAGONISTAS...

1. PRESENTANDO A LOS PROTAGONISTAS... Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión

Más detalles

Laboratorio de Electrónica de Potencia

Laboratorio de Electrónica de Potencia Laboratorio de Electrónica de Potencia Práctica 2 Nombre: No. Cédula: Rectificadores no controlados de onda completa Objetivo General: Utilizar el OrCAD para simular y analizar circuitos rectificadores

Más detalles

AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD

AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA

Más detalles

DATOS DE IDENTIFICACIÓN DEL CURSO

DATOS DE IDENTIFICACIÓN DEL CURSO DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: ELECTRÓNICA ACADEMIA A LA QUE Electrónica Analógica Básica PERTENECE: NOMBRE DE LA MATERIA: Laboratorio de Electrónica 1 CLAVE DE LA MATERIA: ET 204 CARÁCTER

Más detalles

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 GENERADORES DE SEÑAL UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos

Más detalles

Introducción al control de fuentes conmutadas.

Introducción al control de fuentes conmutadas. Introducción al control de fuentes conmutadas. En una fuente conmutada ideal la tensión de salida es una función de la tensión de entrada y del valor del ciclo de trabajo definido. En la práctica existirán

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION Dispositivos Electrónicos y Tecnología Electrónica FUENTES DE AIMENTACION a generación y distribución de la energía eléctrica, se realiza utilizando corriente alterna Mientras que la mayoría de los circuitos

Más detalles

Fundamento de las Telecomunicaciones

Fundamento de las Telecomunicaciones Fundamento de las Telecomunicaciones Grupo # 2 Tema : Osciladores en Gran Escala de Integración Integrantes: -Jessica Reyes -Francisco Robles -Celeste Cerón -Marisela -Félix Salamanca -Guillermo Soto Lunes

Más detalles

Electrónica Analógica

Electrónica Analógica Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto

Más detalles

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS.

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS. Tema: Circuito cicloconvertidor. Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. I. OBJETIVOS. Implementar diferentes circuitos de inversores utilizando SCR S de potencia.

Más detalles

CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN 8.1 EL PROBLEMA DE LOS FILTROS PASIVOS

CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN 8.1 EL PROBLEMA DE LOS FILTROS PASIVOS CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN Uno de los tópicos que ha recibido mayor atención en la compensación de armónicas en los últimos años, es el de los filtros activos de potencia. Estos filtros están

Más detalles

Resistencia, símbolo general Resistencia regulable Resistencia dependiente de la tensión. Varistor

Resistencia, símbolo general Resistencia regulable Resistencia dependiente de la tensión. Varistor NORMA DGE- SIMBOLOS GRAFICOS EN ELECTRICIDAD SECCION 5 COMPONENTES PASIVOS BASICOS SECCION 5 COMPONENTES PASIVOS BASICOS 050 Resistencias, Condensadores e Inductancias Código o Número Símbolo - Resistencias

Más detalles

ELECTRÓNICA DE POTENCIA

ELECTRÓNICA DE POTENCIA ELECTRÓNICA DE POTENCIA RELACIÓN DE PROBLEMAS (4) PROBLEMA 20: Convertidor reductor: cálculo de inductancia En un convertidor Buck en el que podemos considerar todos los componentes ideales, la tensión

Más detalles

lntroduccion a las fuentes Conmutadas Figura 1

lntroduccion a las fuentes Conmutadas Figura 1 1.1. Fuentes Conmutadas lntroduccion a las fuentes Conmutadas Figura 1 aplicaciones industriales y comerciales. Las fuentes conmutadas fueron desarrolladas inicialmente para aplicaciones militares y aerospaciales

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Electrónica de Potencia Trabajo Práctico Anual

Electrónica de Potencia Trabajo Práctico Anual Curso: R5051 Docente Ing. Flavio Narvaja Electrónica de Potencia Trabajo Práctico Anual JTP Ing. Oscar Pugliese Ayudantes Ing. F. Fiamberti Ing. M. Mass Grupo N 4 Año 2015 V.1.0 AMPLIFICADOR CLASE D Autores

Más detalles

Laboratorio Nº3. Procesamiento de señales con transistores

Laboratorio Nº3. Procesamiento de señales con transistores Laboratorio Nº3 Procesamiento de señales con transistores Objetivos iseñar redes de polarización para operar transistores JT y JFT en modo activo, y evaluar la estabilidad térmica de puntos de operación,

Más detalles

Estudio de Rectificadores Trifásicos

Estudio de Rectificadores Trifásicos OpenCourseWare de la Universidad del País Vasco / Euskal Herriko Unibertsitatea http://ocw.ehu.es Estudio de Rectificadores Trifásicos 1.- Presentación e introducción a los rectificadores trifásicos con

Más detalles

Práctico Inversores. Electrónica de Potencia. Curso (Examen de Electrónica de Potencia 1-23 de febrero de 1996)

Práctico Inversores. Electrónica de Potencia. Curso (Examen de Electrónica de Potencia 1-23 de febrero de 1996) Práctico Inversores Electrónica de Potencia Curso 2016 Ejercicio 1 (Examen de Electrónica de Potencia 1-23 de febrero de 1996) Sea un inversor trifásico de tensión (VSI) compuesto por sus tres ramas inversoras

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

Las Fuentes de Alimentación Conmutadas (Switching). Tutorial de Electrónica

Las Fuentes de Alimentación Conmutadas (Switching). Tutorial de Electrónica Las Fuentes de Alimentación Conmutadas (Switching). Tutorial de Electrónica Introducción Las fuentes de alimentación convencionales usan transformadores operando a 50 Hz y que suelen ser inconvenientes,

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

Tema 6 Regulación de velocidad de motores

Tema 6 Regulación de velocidad de motores Tema 6 Regulación de velocidad de motores 1. Velocidad de los motores de corriente alterna... 1 2. Conmutación de polos... 2 3. Variación de frecuencia... 3 4. Funcionamiento del regulador de velocidad...

Más detalles

INVERSORES DC AC. Reconocer los inversores dc ac mediante investigación para conocer sus formas de ondas.

INVERSORES DC AC. Reconocer los inversores dc ac mediante investigación para conocer sus formas de ondas. INVERSORES DC AC RESUMEN: Los inversores transforman la corriente continua en corriente alterna mediante el switcheo de transistores, esto se aplica en el control de la magnitud y la frecuencia de la señal

Más detalles

AMPLIFICADORES DE POTENCIA- CLASIFICACION A ; AB ; B y C

AMPLIFICADORES DE POTENCIA- CLASIFICACION A ; AB ; B y C AMPLIFICADORES DE POTENCIA- CLASIFICACION A ; AB ; B y C Al estudiar Amplificación con un transistor partimos de la premisa que la etapa estaba polarizada ( I C y V CE de C.C.) en el centro de la recta

Más detalles

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C.

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. 1. INTRODUCCION La forma como se produce el flujo magnético en las máquinas de corriente contínua (cc), estas máquinas se clasifican en: EXCITACIÓN INDEPENDIENTE

Más detalles

Práctica 4. LABORATORIO

Práctica 4. LABORATORIO Práctica 4. LABORATORIO Electrónica de Potencia Convertidor DC/DC Cúk 1. Diagrama de Bloques En esta práctica, el alumnado debe implementar un convertidor DC/DC tipo Cúk. En la Fig1 se muestra el diagrama

Más detalles

UNIVERSIDAD DE COSTA RICA

UNIVERSIDAD DE COSTA RICA UNIVERSIDAD DE COSTA RICA IE-035 LABORATORIO DE MÁQUINAS ELÉCTRICAS I EXPERIMENTO 5 - GRUPO 0 PROFESOR: JUAN RAMON RODRÍGUEZ Transformador Monofásico. Relación de transformación y Circuito Equivalente.

Más detalles

CONTROL A LAZO ABIERTO PARA UN MOTOR DC SIMPLE RESUMEN

CONTROL A LAZO ABIERTO PARA UN MOTOR DC SIMPLE RESUMEN CONTROL A LAZO ABIERTO PARA UN MOTOR DC SIMPLE Pablo A. Velásquez G. Departamento de Ingeniería Eléctrica y Computación, The Ohio State University Email: velasquezgarrido.1@osu.edu RESUMEN Este artículo

Más detalles

Instrumental y Dispositivos Electrónicos

Instrumental y Dispositivos Electrónicos Instrumental y Dispositivos Electrónicos DepartamentoAcadémico Electrónica Facultad de Ingeniería 2014 Diagrama de bloques de una fuente de alimentación lineal RED 220 V TRANSFORMACIÓN RECTIFICACIÓN FILTRADO

Más detalles

Fuentes Reguladas Lineales

Fuentes Reguladas Lineales Fuentes Reguladas ineales 1 Fuentes Reguladas Clasificaciones. Fuentes reguladas Discretas Fuentes reguladas ntegradas Reguladores Series Reguladores en paralelo 2 1 Fuentes Reguladas Diagrama en bloque

Más detalles

Fuente de voltaje de 5V y 12V a 1 Amp. Esta fuente de voltaje dual es ideal para la mayoría de los proyectos de electrónica

Fuente de voltaje de 5V y 12V a 1 Amp. Esta fuente de voltaje dual es ideal para la mayoría de los proyectos de electrónica Fuente de voltaje de 5V y 12V a 1 Amp Esta fuente de voltaje dual es ideal para la mayoría de los proyectos de electrónica Tabla de Contenido DEFINICIÓN FUNCIONAMIENTO LISTA DE PARTES ENSAMBLE REFERENCIAS

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

Electrónica de Potencia - Inversores Curso Temas tratados en clase. C. Briozzo.

Electrónica de Potencia - Inversores Curso Temas tratados en clase. C. Briozzo. Electrónica de Potencia - Inversores Curso 2015. Temas tratados en clase. C. Briozzo. I. Introducción 1. Propósito de un inversor. Conexión de un sistema de un sistema de AC con uno de DC. Transferencia

Más detalles

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V. 1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga

Más detalles

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc INDICE Prólogo XI Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de 1 cc 1.1. Introducción 1 1.2. Magnitudes más relevantes del circuito electrónico 2 1.2.1. Tensión eléctrica 2 1.2.2. Intensidad

Más detalles

EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA

EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA Rev: 2.0 (Octubre/2016) Autor: Unai Hernández (unai@labsland.com) Contenido 1. Circuitos con resistencias... 3 1.1 Experimentar con asociaciones

Más detalles

Práctica No. 6 del Curso "Meteorología y Transductores". "Convertidores ADC y DAC"

Práctica No. 6 del Curso Meteorología y Transductores. Convertidores ADC y DAC Objetivos. Práctica No. 6 del Curso "Meteorología y Transductores". "Convertidores ADC y DAC" Comprobar por medio de simulaciones el funcionamiento de los convertidores analógico digital (ADC) y el digital

Más detalles

Plan de Estudios. b) Comprender los principios operativos y limitaciones de los principales componentes usados en Electrónica de Potencia.

Plan de Estudios. b) Comprender los principios operativos y limitaciones de los principales componentes usados en Electrónica de Potencia. 85 Plan de Estudios 1.- Descripción Carrera : Ingeniería Eléctrica Asignatura : Electrónica de Potencia Clave : IEE - 444 Créditos : 3 (tres) Pre Requisitos : IEE 353 Electrónica Horas Teóricas : 4 (Cuatro)

Más detalles

Inductancia. La inductancia es la capacidad de. magnético, como sucede con un capacitor en un campo eléctrico. Bobina de 1500 vueltas y pila de 6 [V]

Inductancia. La inductancia es la capacidad de. magnético, como sucede con un capacitor en un campo eléctrico. Bobina de 1500 vueltas y pila de 6 [V] Inductancia La inductancia es la capacidad de almacenar energía debido a un campo magnético, como sucede con un capacitor en un campo eléctrico. Bobina de 500 vueltas y pila de 6 [V] Inductancia La inductancia

Más detalles

Diseño y simulación de un convertidor CD-CD tipo Full-Bridge dual de baja potencia.

Diseño y simulación de un convertidor CD-CD tipo Full-Bridge dual de baja potencia. Diseño y simulación de un convertidor CD-CD tipo Full-Bridge dual de baja potencia. Ismael Sánchez Rincón, Juan Antonio Arízaga Silva Maestría en Ingeniería en Automatización de Procesos Industriales,

Más detalles

Ejercicios propuestos para el tercer parcial. Figura 1. Figura 2

Ejercicios propuestos para el tercer parcial. Figura 1. Figura 2 Ejercicios propuestos para el tercer parcial. 1) Qué función cumple la resistencia R ubicada entre la compuerta y el cátodo mostrada en la figura 1, y cómo afecta a la activación del SCR? Figura 1. 2)

Más detalles

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes.

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes. INDUCCION ELECTROMAGNETICA Funcionamiento de Transformadores CAAPPÍ ÍTTUU LOO L 12 Ley de Faraday Ley de Lenz Transformadores :: OBJETIVOS [12.1] Entender en que consiste el fenómeno de la inducción electromagnética

Más detalles

INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales

INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales INDICE Prólogo XI Prólogo a la Edición en Español XIV Capítulo 1. Principios del Modelado y Procesamiento de Señal 1 1.1. Sinergia hombre computador 3 1.2. Características tensión corriente y transferencia

Más detalles

ELECTRÓNICA INDUSTRIAL FUENTES DE ALIMENTACIÓN CONMUTADAS

ELECTRÓNICA INDUSTRIAL FUENTES DE ALIMENTACIÓN CONMUTADAS ELECTRÓNICA INDUSTRIAL FUENTES DE ALIMENTACIÓN CONMUTADAS 6 B ELECTRÓNICA 2011 1. INTRODUCCIÓN Todo dispositivo electrónico requiere de una fuente de alimentación para su funcionamiento. Si bien bajos

Más detalles

El Smart Controller, PSIM. Diseño de un controlador de voltaje dispuesto en un convertidor DC/DC reductor de tensión.

El Smart Controller, PSIM. Diseño de un controlador de voltaje dispuesto en un convertidor DC/DC reductor de tensión. Convertidores de potencia y sus aplicaciones. Análisis con el PSIM. Fernández H El Smart Controller, PSIM. Diseño de un controlador de voltaje dispuesto en un convertidor DC/DC reductor de tensión. Resumen-

Más detalles

Electrónica 1. Práctico 5 Transistores 1

Electrónica 1. Práctico 5 Transistores 1 Electrónica 1 Práctico 5 Transistores 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

FUENTES NO REGULADAS DE CC. Cátedra: Electrónica Analógica I

FUENTES NO REGULADAS DE CC. Cátedra: Electrónica Analógica I FUENTES NO REGULADAS DE CC Cátedra: Electrónica Analógica I RECTIFICADOR Convierte la tensión alterna suministrada por la red en una tensión pulsada unidireccional, con valor medio no nulo. v 1 v o N 2

Más detalles

APUNTE: EL TRANSFORMADOR

APUNTE: EL TRANSFORMADOR APUNTE: EL TRANSFORMADOR Área de EET Página 1 de 6 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 2002. Página 2 de 6 INDICE

Más detalles

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

Necesita Corriente Alterna. Generador de Tensión Continua CARGA A

Necesita Corriente Alterna. Generador de Tensión Continua CARGA A Generador de Tensión Continua CARGA A Necesita Corriente Alterna Lo que queremos obtener Lo que obtenemos Obtengo un tren de pulsos. La forma del tren de pulsos depende del inversor Luego hay que aplicar

Más detalles

Proyecto de curso. Control I II

Proyecto de curso. Control I II Proyecto de curso Control I - 27141 2017-II Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones Universidad Industrial de Santander Bucaramanga, agosto de 2017 1. Introducción La caracterización

Más detalles

CONVERSION DE VOLTAJE A FRECUENCIA Y CONVERSION DE FRECUENCIA A VOLTAJE

CONVERSION DE VOLTAJE A FRECUENCIA Y CONVERSION DE FRECUENCIA A VOLTAJE CONVERSION DE VOLTAJE A FRECUENCIA Y CONVERSION DE FRECUENCIA A VOLTAJE CONVERTIDORES V/F (CVF) El término convertidor de voltaje a frecuencia (CVF) se refiere a que la frecuencia de alguna senal periódica

Más detalles

MODULO Nº14 INVERSORES

MODULO Nº14 INVERSORES MODULO Nº14 INVERSORES UNIDAD: CONVERTIDORES CC - CA TEMAS: Convertidores CC CA. Conceptos Básicos del Transformador. Inversor Monofásico Push Pull. Inversor Monofásico en Puente. Inversor Trifásico en

Más detalles

Conversión AC-DC monofásicos. Configuraciones no controladas. I.- Circuito monofásico no controlado con carga resistiva.

Conversión AC-DC monofásicos. Configuraciones no controladas. I.- Circuito monofásico no controlado con carga resistiva. Conversión AC-DC monofásicos. Configuraciones no controladas I.- Circuito monofásico no controlado con carga resistiva. Formas de onda del circuito conversor AC-DC monofásico con carga R El diodo entra

Más detalles