ELECTRÓNICA DE POTENCIA
|
|
|
- Cristóbal Pinto de la Fuente
- hace 9 años
- Vistas:
Transcripción
1 ELECTRÓNICA DE POTENCIA RELACIÓN DE PROBLEMAS (4) PROBLEMA 20: Convertidor reductor: cálculo de inductancia En un convertidor Buck en el que podemos considerar todos los componentes ideales, la tensión de salida V o se desea fijar constante a 5 V. controlando para ello el ciclo de trabajo D. Calcular la mínima inductancia L requerida para mantener al convertidor dentro del modo de conducción continuo bajo las siguientes especificaciones: V d varía en un rango comprendido entre 10 V. y 40 V. Potencia de salida máxima: 5 W. Frecuencia de utilización: 50 KHz. PROBLEMA 21: Convertidor reductor: cálculo del rizado en la tensión de salida (1) En un convertidor Buck pueden considerarse todos los componentes ideales. Si V o = 5 V., f s = 20 KHz., L = 1 mh., C = 470 µf., V d = 12 6 V. e I o = 200 ma., calcular tanto el rizado en tensión a la salida del convertidor V o /V o como V o para los 5 voltios de salida. PROBLEMA 22: Convertidor reductor: cálculo del rizado en la tensión de salida (y 2) 200 ma. como en el problema anterior. PROBLEMA 23: Convertidor elevador: cálculo de inductancia (1) En un convertidor Boost, la tensión de entrada V d varía entre 8 V. y 16 V. y la tensión de salida V o se regula a 24 V. La frecuencia de funcionamiento f s es 20 KHz y la capacidad que se ha utilizado tiene un valor de 470 µf. Si podemos considerar todos los 1
2 componentes ideales, calcular L min para asegurar que el convertidor siempre funciona dentro del modo de conducción continuo sabiendo que la potencia de salida P o que necesita una carga conectada al convertidor es 5 W. PROBLEMA 24: Convertidor elevador: cálculo de inductancia (y 2) En un convertidor Boost, el ciclo de trabajo se ajusta para regular la tensión de salida V o a 48 voltios. La tensión de entrada V d varía en un rango comprendido entre 12 V. y 36 V., mientras que la máxima potencia de salida que se le va a pedir al convertidor es 120 W. Por razones de estabilidad, se precisa que el convertidor trabaje siempre en el modo de conducción discontinuo. La frecuencia de conmutación f s es de 50 KHz. Considerando ideales los componentes y un valor de C lo suficientemente grande, calcular el máximo valor de la inductancia que podemos usar. PROBLEMA 25: Convertidor elevador: cálculo del rizado en la tensión de salida (1) En un convertidor Boost tenemos los siguientes datos: V d = 12 V., f s = 20 KHz., L = 150 µh., C = 470 µf., V o = 24 V. e I o = 0 5 A. Calcular el rizado en tensión a la salida del convertidor V o /V o y V o para la tensión de salida deseada. PROBLEMA 26: Convertidor elevador: cálculo del rizado en la tensión de salida (y 2) 0 5 A. como en el problema anterior. PROBLEMA 27: Convertidor reductor/elevador: cálculo de inductancia De un convertidor Buck/Boost disponemos de los siguientes datos: la tensión de entrada V d varía entre 8 V. y 40 V., la tensión de salida V o se quiere regular en 15 V, la frecuencia f s es 20 KHz. y la capacidad tiene un valor de 470 µf. Calcular el valor mínimo de la inductancia que podemos colocar para que el convertidor trabaje dentro 2
3 del modo de conducción continuo si la potencia de salida que se va a demandar del convertidor es 2 W. Para simplificar los cálculos, podemos considerar todos los componentes ideales. PROBLEMA 28: Convertidor reductor/elevador: cálculo del rizado en la tensión de salida (1) En un convertidor Buck/Boost se necesita una tensión de salida V o es 15 V., la frecuencia de funcionamiento f s es 20 KHz. y la tensión de entrada V d es 12 V. En el circuito del convertidos hemos colocado una inductancia de valor L = 150 µh., una capacidad de valor C = 470 µf., y una carga que permite una corriente de salida I o de 250 ma. Calcular el rizado en tensión a la salida del convertidor V o /V o así como V o para la tensión de salida que se desea. PROBLEMA 29: Convertidor reductor/elevador: cálculo del rizado en la tensión de salida (y 2) 250 ma. como en el problema anterior. PROBLEMA 30: Convertidor reductor/elevador: cálculo del ciclo de trabajo En un convertidor Buck/Boost funcionando a 20 KHz., se dispone de una inductancia de valor de 0 05 mh. El condensador de salida es lo suficientemente grande como para poder despreciarlo y la tensión de entrada es 15 V. La tensión de salida se regula a 10 V. y el convertidor suministra a una carga una potencia de 10 W. Calcular el valor del ciclo de trabajo de este convertidor bajo estas condiciones. PROBLEMA 31: Convertidor Buck La figura 31 representa un convertidor Buck que funciona a una frecuencia de 100 KHz. La potencia de salida de dicho convertidor se desea que sea de 150 W. 3
4 i d S 1 L i L i o V d S 2 C V o R Figura 31 a) Sabiendo que la tensión de entrada varía en un margen comprendido entre 20 y 50 voltios y que se desea fijar la tensión de salida a un valor de 15 voltios controlando para ello el ciclo de trabajo, hallar el valor mínimo de la inductancia L mín a colocar para que el convertidor funcione en el modo de conducción continuo. Suponer ideales el resto de elementos del circuito. b) En las mismas condiciones del apartado anterior, calcular el máximo valor de la inductancia L máx para que el convertidor trabaje en el modo de conducción discontinuo. c) Para una tensión de salida de valor 15 voltios, una tensión de entrada de 50 voltios y suponiendo una capacidad de valor 300 µf., calcular el valor de V o a la salida del convertidor. (Suponer una inductancia de valor 10 µh.) d) Qué efecto cualitativo tendría sobre este rizado la colocación de un filtro paso bajo de frecuencia de corte 5 KHz.? PROBLEMA 32: Convertidor Buck/Boost Se va a realizar el estudio de un convertidor Buck/Boost (reductor/elevador). a) Dibujar el esquema circuital de este convertidor. b) Explicar el funcionamiento de este convertidor. c) Obtener la relación V o /V d para el caso de funcionamiento en modo de conducción continua. Nota: se debe deducir dicha relación; en caso contrario, no puntuará el apartado. d) Las características de este convertidor son las siguientes: la frecuencia de trabajo es de 50 KHz., la inductancia del circuito tiene un valor de 25 µh. y la capacidad C 4
5 puede considerarse de un valor lo suficientemente elevado como para poder despreciarla a la hora de realizar los cálculos. La tensión de entrada del convertidor tiene un valor de 30 V. y la salida se desea regular a un valor de 20 V. El convertidor debe suministrar una potencia de 50 W. Calcular el valor del ciclo de trabajo y explicar su significado. PROBLEMA 33: Convertidor Cúk Otro tipo de convertidor es el que a continuación se detalla mediante su esquema circuital de la figura 33. Este convertidor fue ideado por Cúk y en su honor se le debe el nombre. i L1 V L1 L 1 V C1 C 1 V L2 L 2 i L2 V d S D C R V o Figura 33 Realizar un estudio de este convertidor según los dos estados de conmutación posibles del interruptor S para deducir la expresión que relaciona la tensión de salida con la tensión de entrada (comprobar que se llega a la misma expresión que para el convertidor reductor/elevador). Nota: como siempre, los elementos claves son las dos inductancias que aparecen en el circuito. Teniendo en cuenta que <V L1 > = 0 se llegará a una relación entre V C1 y V d y teniendo en cuenta que <V L2 > = 0 se llegará a una relación entre V C1 y V o. Juntando ambas expresiones se llega al resultado final. 5
PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva:
POBLEMAS DE EXAMEN 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: 1 V in = 2 V s sen(wt) i in 2 a) Explicar brevemente el funcionamiento
Fundamentos de Electrónica de Potencia Ingeniero Técnico Industrial. Especialidad Electricidad Departamento de Tecnología Electrónica
Ingeniero Técnico Industrial. Especialidad Electricidad Departamento de Tecnología Electrónica OCW- Universidad de Málaga http://ocw.uma.es Trujillo, F.D.; Pozo, A; Triviño, A (2011) Electrónica de Potencia.
ELECTRÓNICA DE POTENCIA
Ejercicio 1. ELECTRÓNICA DE POTENCIA Curso 2018 En la Figura 1 se muestra el circuito de un convertidor reductor (buck) con las siguientes características: V i =150V, f s = 150KHz, la potencia P 0 varía
Se desea diseñar una fuente de alimentación conmutada con las especificaciones y la topología del D 2 T 1. v 1 - i S N 1 N 3 N 2 D 3.
CONOCATORIA EXTRAORDINARIA CURSO 009/0: 0 de Septiembre de 00 Problema Se desea diseñar una fuente de alimentación conmutada con las especificaciones y la topología del convertidor CC/CC que se muestra
EJERCICIO 1 EJERCICIO 2
EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la
Diseño de un convertidor DC DC reductor tipo BUCK
Diseño de un convertidor DC DC reductor tipo BUCK Ejemplo para la asignatura Electrónica Industrial 24 de abril de 2007 1. Requerimientos V in = 12V V o = 5V I max = 1A I min = 100mA (MC) v o < 50mV f
Problema 1 (2 puntos, tiempo recomendado 50 minutos)
Problema 1 (2 puntos, tiempo recomendado 50 minutos) En la figura 1 se representa un rectificador trifásico totalmente controlado, que alimenta a una carga resistiva a través de un filtro L. Datos: Tensión
intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.
1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga
1.- La señal de salida v o en t = 5ms. a) -60V b) 60V c) 75V d) -75V. 2.- La señal de salida v o en t = 15ms. a) -60V b) 60V c) 75V d) -75V
A. A.1.- En el circuito de la figura los diodos son ideales. La señal de entrada v i es sinusoidal de 50 Hz de frecuencia y 100 V de amplitud. En el primer semiperiodo v i es positiva. Calcular: 1.- La
Práctico Convertidores DC-DC
Práctico DC-DC Electrónica de Potencia - 2016 Práctico Convertidores DC-DC Electrónica de Potencia Curso 2016 Ejercicio 1 (Problema 8 - Primer Parcial 2001) Un convertidor Buck (o chopper reductor) está
PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17. TEMA 3: Amplificadores operacionales
PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17 TEMA 3: Amplificadores operacionales 1.- Hallar v o en el circuito de la figura. 2.- El circuito representado es un
EJERCICIO 1 EJERCICIO 2
EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la
CONVERTIDOR ELEVADOR Y CONVERTIDOR REDUCTOR
CAPITUO 2 CONVERTIDOR EEVADOR Y CONVERTIDOR REDUCTOR 2.1 Introducción os convertidores de CD-CD son circuitos electrónicos de potencia que transforman un voltaje de corriente continua en otro nivel de
CAPITULO 3 PROPUESTA DEL DISEÑO DEL CIRCUITO. funciona, así, como la obtención de valores de dispositivos del CFP para su
CAPITULO 3 PROPUESTA DEL DISEÑO DEL CIRCUITO 3.1 INTRODUCCIÓN En este capítulo se verá el diseño del circuito, las diferentes etapas en las que funciona, así, como la obtención de valores de dispositivos
Configuraciones "entrelazadas" o "en contrafase".
Configuraciones "entrelazadas" o "en contrafase". Cuando se opera con corrientes elevadas, y/o se desea minimizar el rizado, es posible llegar a requerir filtros cuyos componentes resultan inaceptables
Examen de Electrónica Industrial. 29 de junio de 2005
Examen de Electrónica Industrial. 29 de junio de 25 Tiempo: 2 horas. Problema (2 puntos) En el circuito de la figura: a) Obtener el valor medio de la tensión en la carga (en la fuente de corriente) Mientras
Examen de Electrónica Industrial. 1 de septiembre de 2006 Tiempo: 2:30 horas.
Examen de Electrónica ndustrial. de septiembre de 006 Tiempo: :30 horas. Problema ( punto) En la figura se muestra un circuito de disparo de tiristores usando un UJT. La tensión de alimentación del circuito
Problemas Tema 6. Figura 6.3
Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,
Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD
Generador olar de Energía Eléctrica a 00W CAPÍTU III Convertidores CD-CD 3.1.- Introducción En muchas aplicaciones industriales se requiere convertir un voltaje fijo de una fuente de cd en un voltaje variable
GRADO: Ingeniería Electrónica Industrial y Automática (OBLIGATORIA, 6 ECTS) CURSO: 3º CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA
SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: Electrónica de Potencia GRADO: Ingeniería Electrónica Industrial y Automática (OBLIGATORIA, 6 ECTS) CURSO: 3º CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA
TECNOLOGÍA ELECTRÓNICA
TECNOLOGÍA ELECTÓNICA Boletín de problemas de Tema 1: Circuitos eléctricos de corriente continua Ejercicios a entregar por el alumno en clase de tutorías en grupo Semana 27/09 01/10: 1, 2 y 4 1. Los condensadores
Departamento de Tecnología Electrónica. Para el circuito de la Figura C1, donde el ángulo de disparo del tiristor T es de 90º, i o. v O.
CONOCAORIA ORDINARIA CURSO 007/08: 3 de Junio de 008 Cuestión ( punto, tiempo recomendado 5 minutos) Para el circuito de la Figura C, donde el ángulo de disparo del tiristor es de 90º, 0 ef f= 50 Hz v
ASIGNATURA GAIA ELECTRONICA DE POTENCIA CURSO KURTSOA NOMBRE IZENA FECHA DATA 15 / 02 / 2003 I L. R=15 Ohm
EJERCICIO 1 Se necesita alimentar con una tensión media de 30 V a una carga puramente resistiva R=15 Ω (ver figura 1). Para ello se emplea un rectificador en puente monofásico alimentado mediante un transformador
PROBLEMAS TEMA 1 INTRODUCCIÓN. DEFINICIONES BÁSICAS
INTRODUCCIÓN. DEFINICIONES BÁSICAS PROBLEMA 1 Se desea obtener un filtro paso banda que cumpla las especificaciones indicadas en la plantilla de atenuación de la figura a partir de un filtro paso bajo
Aplicaciones del diodo
Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.
Aplicaciones del diodo
Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.
Examen de Electrónica Industrial - 30 de junio de 2008
Examen de Electrónica Industrial - 3 de junio de 28 Tiempo: 2 horas El valor de cada subapartado aparece indicado en el mismo En todos los problemas se deben justificar todos los pasos que se den para
DISEÑO DE UNA FUENTE CONMUTADA PARA PC
DISEÑO DE UNA FUENTE CONMUTADA PARA PC Se pretende diseñar una fuente para uso en una computadora personal que entregue voltajes de salida de 5 y, usando como topología una fuente de conmutada del tipo
CAPITULO XIII RECTIFICADORES CON FILTROS
CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Fuente de tensión continua regulada
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Cátedra de Dispositivos Electrónicos Departamento de Electricidad, Electrónica y Computación (DEEC) FACET - UNT Fuente de tensión continua regulada R S
Convertidor DC-DC. Gerardo Fonseca, Josemario Chávez, Néstor Meléndez, Jadher Báez. Universidad Nacional de Ingeniería, Managua, Nicaragua.
Convertidor DC-DC. Gerardo Fonseca, Josemario Chávez, Néstor Meléndez, Jadher Báez. Universidad Nacional de Ingeniería, Managua, Nicaragua. [email protected] [email protected] [email protected]
El convertidor reductor-elevador o también conocido como buck-boost suministra un voltaje de salida que puede ser mayor o menor al de la entrada, asi
El convertidor reductor-elevador o también conocido como buck-boost sumistra un voltaje de salida que puede ser mayor o menor al de la entrada, asi mismo la polaridad del voltaje de salida es versa a la
Reguladores por conmutación. Configuraciones con transformador de aislamiento. Operación en el régimen de corriente no interrumpida.
Reguladores por conmutación. Configuraciones con transformador de aislamiento. Operación en el régimen de corriente no interrumpida. I-Regulador "de retroceso" ( flyback ). a)configuración. b)circuito
7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff.
7. ircuitos de corriente alterna. orriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 0. uál es la capacidad de un circuito oscilante si la carga máxima
Inversores Resonantes
Inversores Resonantes Actualmente, en los sistemas electrónicos de alimentación modernos se requiere: Una alta calidad. Un tamaño y peso pequeño. Aumentar la densidad de potencia. Buen rendimiento en la
Aplicaciones del diodo
Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 53 1.1. Rectificador de media onda... 55 1.2. Rectificador de onda completa... 56 1.3. Rectificador de media onda con condensador... 57
Departamento de Tecnología Electrónica. Para el circuito de la Figura C1, donde el ángulo de disparo del tiristor T es de 90º, i o. v O.
CONVOCATORIA ORDINARIA CURSO 007/08: 3 de Junio de 008 Cuestión ( punto, tiempo recomendado 5 minutos) Para el circuito de la Figura C, donde el ángulo de disparo del tiristor T es de 90º, 0 V ef f= 50
III-Regulador reductor-elevador inversor de voltaje (buckboost). Circuito conversor elevador-reductor de tensión inversor de polaridad.
III-Regulador reductor-elevador inversor de voltaje (buckboost). Circuito conversor elevador-reductor de tensión inversor de polaridad. Hay un solo conmutador completamente controlado (el dispositivo Q
SISTEMAS ELECTRÓNICOS PARA ILUMINACIÓN
SISTEMAS ELECTRÓNICOS PARA ILUMINACIÓN PARTE V: CORRECCIÓN DEL FACTOR DE POTENCIA RED ELÉCTRICA CONSUMO DE CORRIENTE LOS BALASTOS ELECTRÓNICOS SON CARGAS NO LINEALES. (FUENTE MUY IMPORTANTE DE INTERFERENCIAS)
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011 MATERIA: ELECTROTECNIA INSTRUCCIONES GENERALES Y VALORACIÓN TIEMPO:
RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL
CPÍTULO 3 RÉGIMEN PERMNENTE DE CORRIENTE LTERN SINUSOIDL PR1. TEÓRICO-PRÁCTICO FSORES... 2 PR2. TEÓRICO-PRÁCTICO FSORES... 2 PR3. MÉTODOS SISTEMÁTICOS... 3 PR4. POTENCIS... 3 PR5. POTENCIS... 4 PR6. POTENCIS...
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
OPCIÓN A En la asociación de condensadores de la figura, calcular: a) Capacidad equivalente del circuito. b) Carga que adquiere cada condensador al aplicar una tensión de 13 V entre los puntos entre los
Diseño estático de un convertidor DC/DC reductor-elevador bidireccional
Diseño estático de un convertidor DC/DC reductor-elevador bidireccional MARCELA GONZÁLEZ VALENCIA Tecnológica de Pereira. Pereira, Colombia. [email protected] ALFONSO ALZATE GÓMEZ Titular de la
APELLIDOS: NOMBRE: TEORÍA (Responder Razonadamente)
CURSO 12-13. 2º PARCIAL, 22 de Enero de 2.013. Curso de Adaptación al Grado en Tecnologías Industriales. Asignatura: MAQUINAS Y ACCIONAMIENTOS ELECTRICOS TEORÍA (Responder Razonadamente) 1.- La máquina
Modelado y diseño de compensación de lazo en fuentes de alimentación conmutadas
Modelado y diseño de compensación de lazo en fuentes de alimentación conmutadas Parte 1ª Artículo cedido por Linear Technology Introducción www.linear.com Autor: Henry J. Zhang, Director de Ingeniería
TEST. EXAMEN DE CIRCUITOS 22 de junio de 2000 NOMBRE: 1ª PREGUNTA RESPUESTA 2ª PREGUNTA RESPUESTA 3ª PREGUNTA RESPUESTA
NOMBRE: TEST 1ª PREGUNTA RESPUESTA Una capacidad C y una impedancia Z están en serie. Las tensiones en C, en Z y en el conjunto en serie tienen igual módulo. La impedancia Z tiene que ser: A. Impedancia
EXAMEN ELCTRÓNICA ANALÓGICA.- CONVOCATORIA JULIO º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL
EJERCICIO 1.-(Calificación máxima 16 puntos) Sea el circuito de la figura 1: 1 El circuito se utiliza para controlar el paso de la señal de entrada eg(t) a la salida out, haciendo funcionar al diodo D
Generador Solar de Energía Eléctrica a 200W CAPÍTULO VI. Diseño y simulación de los convertidores de potencia
CAPÍTULO VI Diseño y simulación de los convertidores de potencia 6.1.- Introducción Como se mencionó en el objetivo general, se necesita un sistema fotovoltaico capaz de generar energía eléctrica con una
Generador Solar de Energía Eléctrica a 200W CAPÍTULO VII. Implementaciones y resultados Implementación de los convertidores elevadores
CAPÍTULO VII Implementaciones y resultados 7.1.- Implementación de los convertidores elevadores Al finalizar con las simulaciones se prosiguió a la construcción de los convertidores de potencia. Se implementó
PROBLEMAS SOBRE FUENTES REGULADAS
UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA III PROBLEMAS SOBRE FUENTES REGULADAS Autores: Francisco S. López, Federico
9. SIMULACIONES CON PSPICE
En este capítulo, con la ayuda del programa de simulación PSPICE, se realizará la simulación de los dos tipos de convertidores cc-cc básicos: el convertidor elevador y el convertidor reductor. Debido a
FUENTES DE ALIMENTACIÓN CONMUTADAS
FUENTE ALIMENTACIÓN LINEAL FUENTE DE ALIMENTACIÓN CONMUTADA Las fuentes conmutadas son de circuitos relativamente complejos, pero podemos siempre diferenciar cuatro bloques constructivos básicos: 1) En
PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17. TEMA 1: Repaso de la Teoría de redes lineales
PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17 TEMA 1: Repaso de la Teoría de redes lineales 1.- Para el circuito de la figura, calcular la diferencia de potencial
Reguladores por conmutación.
Reguladores por conmutación. Un regulador por conmutación es un circuito conversor DC/DC que produce una salida de tensión (o corriente) continua de valor regulado en base a una alimentación continua que
Madrid. Examen. 2º Ingeniería. pide: 1. Representar la α igual a 90º. v o. Figura 1
Examen Febrero 2009 Electrónica Industrial I 2º Ingeniería Técnica Industrial en Electricidad Cuestión 1 (1,5 puntos) Para el rectificador trifásico de media onda con diodo de libre circulación mostrado
4. El diodo semiconductor
4. El diodo semiconductor Objetivos: Comprobar el efecto de un circuito rectificador de media onda con una onda senoidal de entrada. Observar cómo afecta la frecuencia en el funcionamiento de un diodo
Introducción. Diagrama de Bloques.
Temario. 4.- Fuentes de Alimentación Conmutadas. 4h 4.1.- Introducción. 4.2.- Modelos de transformadores. 4.3.- Convertidor flyback. 4.4.- Convertidor forward. 4.5.- Convertidor push-pull. 4.6.- Convertidores
Examen Parcial Electrónica Industrial (22/03/01)
Examen Parcial Electrónica Industrial (22/03/01) 1) Un Montacargas es accionado por un motor de corriente continua con los siguientes datos nominales: Va = 230 V, Ia = 27 A, Ps = 4.9 kw, n = 1750 rpm,
Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos
Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos EJERCICIO 1: Rectificador de onda completa con puente de diodos
CUADERNO DE RECUPERACIÓN PRIMERA EVALUACIÓN
6/2/2014 TECNOLOGÍA CUADERNO DE RECUPERACIÓN PRIMERA EVALUACIÓN NOMBRE: CURSO: 4º ESO I.E.S LOS PACOS DEPARTAMENTO DE TECNOLOGIA Electricidad Básica ACT 1.1 PROBLEMAS DE LEY DE OHM 1. DETERMINA LA TENSION
LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 6
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE CONVERSORES ESTÁTICOS 1. TEMA PRÁCTICA N 6 CONVERSORES DC-DC CONFIGURACIONES BÁSICAS: REDUCTOR
Practica 3.- Aplicaciones del diodo de unión.
Practica 3.- Aplicaciones del diodo de unión. A.- Objetivos. Estudiar varias aplicaciones del diodo de unión como son el diodo como circuito recortador, rectificador con filtro y doblador de tensión con
Diseño y construcción de un convertidor dc/dc tipo Boost con PWM ajustable
Scientia et Technica Año XXII, Vol. 22, No. 1, marzo de 2017. Universidad Tecnológica de Pereira. ISSN 0122-1701 9 Diseño y construcción de un convertidor dc/dc tipo Boost con PWM ajustable Design and
Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización
Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito
ELECTRÓNICA DE POTENCIA
ELECTRÓNICA DE POTENCIA RELACIÓN DE PROBLEMAS (3) PROBLEMA 12: Diodo de libre circulación En la figura 12 se muestra el circuito con diodo de libre circulación donde dicho diodo ha sido sustituido por
Electrónica 2. Práctico 2 Osciladores
Electrónica 2 Práctico 2 Osciladores Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,
Introducción al control de fuentes conmutadas.
Introducción al control de fuentes conmutadas. En una fuente conmutada ideal la tensión de salida es una función de la tensión de entrada y del valor del ciclo de trabajo definido. En la práctica existirán
B. 0.1 S [Ω 1] E. Cualquier valor C. 0.2 Ω F. Diferente (especifique detrás)
EXAMEN DE CICUITOS 8 de setiembre de 2000 NOMBE: TONCAL (6 CÉDITOS) - E.S.I.I. SAN SEBASTIÁN TEST 1ª PEGUNTA ESPUESTA Una inductancia L y una impedancia Z están en serie. Las tensiones en L, en Z y en
Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:
Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta
Prof. J.D. Aguilar Peña Departamento de Electrónica. Universidad Jaén
lectrónica de Potencia UNDAD Nº 0. NTRDUCCÓN A A ASGNATURA UNDAD Nº 1. RPAS D CNCPTS Y DSPSTS SMCNDUCTRS D PTNCA UNDAD Nº. AMPFCADRS D PTNCA UNDAD Nº 3. DSPSTS D CUATR CAPAS UNDAD Nº 4. CNRTDRS Tema 7.-
1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una resistencia
Física 3 - Turno : Mañana Guia N 6 - Primer cuatrimestre de 2010 Transitorios, Circuitos de Corriente Alterna, Transformadores 1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una
BLOQUE I MEDIDAS ELECTROTÉCNICAS
1.- Un galvanómetro cuyo cuadro móvil tiene una resistencia de 40Ω, su escala está dividida en 20 partes iguales y la aguja se desvía al fondo de la escala cuando circula por él una corriente de 1 ma.
OSCILADORES SENOIDALES. Problemas
Universidad Nacional de osario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTÓNICA III OSCILADOES SENOIDALES Problemas Javier
CAPITULO XII PUENTES DE CORRIENTE ALTERNA
CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este
GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo
GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres
- Comprobar experimentalmente, las relaciones de transformación de impedancia, voltaje y corriente de un transformador ideal.
1. Objetivos -Proponer, simular, calcular y reproducir para el análisis, la topología de diversos circuitos acoplados magnéticamente (al menos 6). Dos con acople en aire, dos con núcleo abierto y dos con
Carga, backup y equilibrado de supercondensadores sin esfuerzo. Escrito por Carlos Martinez Domingo, 10 de Enero de :19
Mientras sigue disminuyendo el coste de producción de supercondensadores (también llamados ultracondensadores), éstos siguen haciéndose con un hueco del mercado entre los condensadores convencionales y
Transitorios, Circuitos de Corriente Alterna, Transformadores.
Física 3 Guia 5 - Corrientes variables Verano 2016 Transitorios, Circuitos de Corriente Alterna, Transformadores. 1. Un condensador de 3µF se carga a 270 V y luego se descarga a través de una resistencia
Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte
Proves d accés a la universitat Electrotecnia Serie 1 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva los ejercicios
ANÁLISIS DE CIRCUITOS. 1º Ingeniería en Telecomunicación 4ª Relación de problemas
ANÁLISIS DE IRUITOS 1º Ingeniería en Telecomunicación 4ª Relación de problemas 1. alcule la impedancia equivalente de las asociaciones de la figura, para una frecuencia de 1 khz.. 2. Dado el circuito de
7 TOPOLOGÍAS DE VSC-HVDC
7 TOPOLOGÍAS DE VSC-HVDC Las topologías clásicas de convertidores de potencia implementados en sistemas de VSC-HVDC son: 1. Convertidores de dos niveles. 2. Convertidor multinivel, basado en topología
PROBLEMAS DE EXAMEN DE CUADRIPOLOS
POLEMAS DE EXAMEN DE CUADIPOLOS POLEMA 1 4 A la frecuencia! 0 = 10 rad/s la tensión V se hace cero. Sabiendo que a esa frecuencia el valor de la tensión V = 5 voltios, calcular: C a) Valores de L, C y
Aplicaciones Fuentes Switching
Aplicaciones Fuentes Switching 1 ÍNDICE Aplicaciones de fuentes controladas Elevador con un LM 78S40 Reductor con un TL-497 Conversor de 12 Vdc a 220 Vac Cargador de Baterías Fuente para PC UPS On-Line
Electrónica 1. Práctico 3 Diodos 1
Electrónica 1 Práctico 3 Diodos 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,
APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA TRIFÁSICOS
PRÁCTICA Nº 5 APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA TRIFÁSICOS Departamento de Ingeniería Eléctrica E.T.S.I.I. Página 1 de 9 DESCRIPCIÓN DE LA PRÁCTICA APLICACIONES A CIRCUITOS DE CORRIENTE ALTERNA
Los voltajes de operación del convertidor CD/CD que se necesitaron fueron: desde
Capítulo 3 3 Diseño del convertidor CD/CD 3.1 Condiciones del convertidor CD/CD Los voltajes de operación del convertidor CD/CD que se necesitaron fueron: desde 145.14 V dc hasta 70.0 V dc como voltajes
CUADERNO DE RECUPERACIÓN PRIMERA EVALUACIÓN
10/2/2016 TECNOLOGÍA CUADERNO DE RECUPERACIÓN PRIMERA EVALUACIÓN NOMBRE: CURSO: 4º ESO DEPARTAMENTO DE TECNOLOGIA ACT 1.1 PROBLEMAS DE LEY DE OHM Electricidad Básica NOTA: Unidad-1 ENTREGA 1. DETERMINA
