Práctica 04. Diodo zener

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 04. Diodo zener"

Transcripción

1 2011 MI. Mario Alfredo Ibarra Carrillo Facultad de ingeniería 11/03/2011

2 2

3 3 Objetivos: 1. Que el alumno estudie las propiedades y comportamientos del diodo zener. 2. Que el alumno implemente un circuito regulador de tensión. Lista de experimentos 1. La curva característica del diodo zener en polarización inversa. 2. El regulador de tensión.

4 4 Material Osciloscopio Multímetro 2 generadores de funciones Analizador de espectros Fuente de poder dual Adaptadores BNC-Banana Adaptadores BNC-Caimán Cables Banana-Caimán Cables Caimán-Caimán Pinzas de punta Pinzas de corte Alambre número 20 1 protoboard 1 diodo 1N4742A El circuito de la práctica pasada: transformador, puente de diodos, capacitor de 1000.

5 5 Instrucciones para el reporte Tanto para el cuestionario previo como para el reporte: Copie la carátula de la práctica presente anotando los nombres de los integrantes del equipo por apellido. o Puede rehacer la carátula para tenerla en formato digital. o Se resta un punto de la calificación si no anota su nombre por apellido. Anote el número de grupo de laboratorio. El cuestionario previo se evalúa aparte de la realización de la práctica. Anote en su reporte lo que se pide reportar en cada pregunta de los experimentos. Sus respuestas deben estar numeradas de acuerdo a la pregunta que intentan responder. No olvide expresar sus comentarios tal como se indica al final de la práctica. Cuestionario previo 1. Cuál es la potencia máxima que disipa el diodo zener ( )? 2. Cuál es el voltaje de ruptura del zener (o simplemente el voltaje de zener)? 3. Considerando el puente de diodos con capacitor que implementó en el práctica pasada Cuánto fue el voltaje que midió en los extremos de la resistencia? Este circuito puente con capacitor se emplea como fuente de poder para todo tipo de equipo electrónico. Debido a que la señal que entrega este circuito tiene un rizo, se le anexa un circuito regulador. El circuito regulador que se implementará para su circuito puente consta de una resistencia y de un diodo tal como se ve en la figura 1. Para calcular la resistencia se deben realizar los siguientes cálculos. Figura 1. Circuito regulador de voltaje simple y basado en zener.

6 6 1. La potencia que el zener disipa es dato conocido así como su voltaje de inversa. Calcule entonces la corriente máxima que puede circular por el zener mediante la fórmula de la potencia. = 2. Considere que el puente de diodos entrega un voltaje de directa ó. A su vez, el voltaje del zener ( ) ya se conoce. Calcule entonces la caída de tensión en la resistencia. = 3. Ya se conoce la corriente que debe circular por la resistencia así como la caída de tensión en la misma. Calcule entonces el valor de la resistencia mediante la ley de Ohm. = Emplee una resistencia de un valor inmediato superior al calculado por UD.

7 7 Experimento 1. La curva característica del diodo zener en polarización inversa 1. Arme el circuito de la figura Varíe el voltaje de la fuente según indica tabla (1 pt) Registre los valores de voltaje y corriente en la tabla 1. Reporte la tabla. 4. (1 pt) Genere y reporte la gráfica de corriente contra voltaje de zener. Figura 2. Circuito usado para obtener experimentalmente la curva caracterítisca del diodo zener. Tabla 1. Curva característica del diodo zener polarizado en inversa. Vf I Vz [V] [ma] [V]

8 8 Experimento 2. El regulador de tensión Arme el circuito de la figura 3. El transformador, el puente de diodos y capacitor ya fueron implementados en la práctica pasada. Agregue la resistencia que se calculó en el cuestionario previo y agregue el zener Conecte el circuito al osciloscopio y al multímetro tal como indica la figura 3. (1 pt) Reporte el oscilograma y el voltaje del multímetro. (1 pt) Toque el diodo zener con el dedo y reporte si está caliente o frio. Figura 3.Circuito correspondiente a una fuente de voltaje regulada. Nota: El circuito regulador con resistencia y diodo es la forma más básica e ineficiente de regulación de voltaje. El diodo zener, al avanzar el tiempo disipa una gran cantidad de energía y que no será transmitida al circuito que se polarice con esta fuente.

9 9 Apéndice A. El diodo zener Curva característica del diodo zener El diodo zener es un tipo especial de diodo preparado para trabajar en la zona inversa. Cuando se alcanza la denominada tensión de ruptura o tensión de zener, en polarización inversa, el diodo recorta la onda de tensión, de este modo mantiene la tensión constante entre sus terminales dentro de ciertos márgenes. La figura 5 ilustra la curva característica en polarización inversa. Si la corriente es muy pequeña la tensión empezará a disminuir, pero si es excesiva puede destruir el diodo. Figura. Curva característica del diodo zener en polarización inversa. Esta propiedad hace que el diodo Zener sea utilizado como regulador de tensión en las fuentes de alimentación. Circuito regulador Diodo Zener Es el regulador de tensión más sencillo. Consiste de una resistencia en serie con el diodo zener tal com ilustra la figura 6. Figura 6. Circuito regulador del zener.

10 10 Cuando la tensión de entrada aumenta se produce un aumento de la corriente de entrada, como la tensión del diodo zener es constante, absorbe el exceso de corriente, mientras la resistencia absorbe esta variación de tensión. En el caso contrario, si la tensión de entrada disminuye, se produce una disminución de la corriente de entrada, como la tensión del diodo zener es constante, la tensión en la resistencia es la que disminuye. Del circuito en la figura 6 se deduce que para que el zener estabilice correctamente, la tensión mínima a su entrada (UIN), debe ser mayor que la tensión de referencia del zener (Vz). También hay un límite de tensión máxima debida a las limitaciones de potencia del dispositivo. Si se cumplen estas premisas, la tensión en la carga será muy aproximada igual a la del zener.

Práctica 03. Modulador de amplitud con diodos

Práctica 03. Modulador de amplitud con diodos 2012 Práctica 03. Modulador de amplitud con diodos MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_07_03_03 Objetivos Implementar físicamente un circuito sumador-rectificador,

Más detalles

Práctica 07. Diodo varactor

Práctica 07. Diodo varactor 2011 Práctica 07. Diodo varactor MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 12/10/2011 Objetivos: 1. Implementar físicamente un circuito que sintonice un circuito tanque.

Más detalles

Práctica 03. Demodulación homodina de AM con detector de picos

Práctica 03. Demodulación homodina de AM con detector de picos versión_01_03_01 2011 Práctica 03. Demodulación homodina de AM con detector de picos MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 2 3 Objetivos 1. Entnder las

Más detalles

Práctica 11. El JFET y la distorsión alineal

Práctica 11. El JFET y la distorsión alineal 2011 MI. Mario Alfredo Ibarra Carrillo 2011 26/02/2011 Práctica 11. El JFET y la distorsión alineal MI. Mario Alfredo Ibarra Carrillo 26/02/2011 2 3 Objetivos: 1. Obtener experimentalmente la curva corriente

Más detalles

2011 Práctica 04. Circuito tanque

2011 Práctica 04. Circuito tanque 2011 Práctica 04. Circuito tanque MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 2 3 Objetivos: 1. Implementar físicamente un circuito tanque. 2. Obtener la curva

Más detalles

Práctica 5: Diodo PIN

Práctica 5: Diodo PIN 2011 Práctica 5: Diodo PIN MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones Año 2011 Objetivos 1. Obtener las curvas características del diodo PIN 2. Medir las propiedades

Más detalles

Práctica 08. Modulación de Amplitud usando el generador de funciones. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería 04/03/2011

Práctica 08. Modulación de Amplitud usando el generador de funciones. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería 04/03/2011 2011 Práctica 08. Modulación de Amplitud usando el generador de funciones MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería 04/03/2011 2 3 Objetivos: 1. Implementar físicamente un circuito modulador

Más detalles

Práctica 3. Amplificador clase C

Práctica 3. Amplificador clase C 211 MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; UNAM 9/2/211 2 3 Objetivos: 1. Diseñar y ensamblar un circuito amplificador clase C. 2. Analizar el espectro de la señal de salida del amplificador

Más detalles

Práctica 08. El transistor bipolar de juntura

Práctica 08. El transistor bipolar de juntura 1 2011 Práctica 08. El transistor bipolar de juntura MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 12/10/2011 2 3 Objetivos: 1. Implementar un circuito de polarización por

Más detalles

Práctica 08. El transistor bipolar de juntura

Práctica 08. El transistor bipolar de juntura 2011 Práctica 08. El transistor bipolar de juntura MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 2 3 Objetivos: 1. Implementar un circuito de polarización por

Más detalles

Práctica 01. El micrófono

Práctica 01. El micrófono 2011 Práctica 01. El micrófono MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_02_03_01 Objetivos Crear una fuente de señal aleatoria para los circuitos moduladores

Más detalles

Práctica 07. CI para modulación de amplitud. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_01_01_01

Práctica 07. CI para modulación de amplitud. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_01_01_01 2012 Práctica 07. CI para modulación de amplitud MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_01_01_01 Objetivos Estudiar la modulación coherente de señales

Más detalles

Práctica 7. Simulación de Amplitud modulada con portadora de alta potencia en SIMULINK. Integrantes del grupo

Práctica 7. Simulación de Amplitud modulada con portadora de alta potencia en SIMULINK. Integrantes del grupo Universidad Nacional Autónoma de México Comunicaciones Analógicas Práctica 7 Simulación de Amplitud modulada con portadora de alta potencia en SIMULINK Integrantes del grupo 1. Nombre: 2. Nombre: 3. Nombre:

Más detalles

2012 Práctica 05. Circuitos moduladores de amplitud con semiconductores

2012 Práctica 05. Circuitos moduladores de amplitud con semiconductores 2012 Práctica 05. Circuitos moduladores de amplitud con semiconductores MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_08_01_01 Objetivos Estudiar en el dominio

Más detalles

Práctica 07. Modulación de amplitud con LM1496. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 03/03/2013 Ver_01_02_01

Práctica 07. Modulación de amplitud con LM1496. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 03/03/2013 Ver_01_02_01 2013 Práctica 07. Modulación de amplitud con LM1496 MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 03/03/2013 Ver_01_02_01 Objetivos Estudiar la modulación coherente de señales

Más detalles

Práctica 4.- Característica del diodo Zener

Práctica 4.- Característica del diodo Zener A.- Objetivos Práctica 4.- Característica del diodo ener Laboratorio de Electrónica de Dispositivos 1.-Medir los efectos de la polarización directa e inversa en la corriente por el diodo zener. 2.-Determinar

Más detalles

TRABAJO PRÁCTICO NÚMERO 3: Diodos II. Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa.

TRABAJO PRÁCTICO NÚMERO 3: Diodos II. Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa. TRABAJO PRÁCTICO NÚMERO 3: Diodos II Diodo como rectificador Objetivos Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa. Introducción teórica De la

Más detalles

Práctica 3. Universidad Nacional Autónoma de México. Comunicaciones Analógicas. Filtros activos. Integrantes del grupo

Práctica 3. Universidad Nacional Autónoma de México. Comunicaciones Analógicas. Filtros activos. Integrantes del grupo Universidad Nacional Autónoma de México Comunicaciones Analógicas Práctica 3 Filtros activos Integrantes del grupo 1. Nombre: 2. Nombre: 3. Nombre: 4. Nombre: Profesor: Ing. Mario Alfredo Ibarra Carrillo

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER

Más detalles

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 01: CONCEPTOS Y PRUEBAS BASICAS DE TRANSFORMADORES

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 01: CONCEPTOS Y PRUEBAS BASICAS DE TRANSFORMADORES Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 01: CONCEPTOS Y PRUEBAS

Más detalles

TRABAJO PRÁCTICO Nº 3 RECTIFICADORES

TRABAJO PRÁCTICO Nº 3 RECTIFICADORES RABAJO PRÁCICO Nº 3 RECIFICADORES 1) Introducción eórica Las tensiones y corrientes en cd (corriente directa ó continua) sirven para alimentar a una gran variedad de dispositivos electrónicos. Dado que

Más detalles

UNIDAD DOS 2.1. DIODOS. 211.07.-La característica del diodo D está expresada por: donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4

UNIDAD DOS 2.1. DIODOS. 211.07.-La característica del diodo D está expresada por: donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 UNIDAD DOS 2.1. DIODOS 211.07.-La característica del diodo D está expresada por: i D I 0.(e q.vd m.kt 1) 10 6.(e q.vd m. KT 1) [Amp] donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 a)

Más detalles

Práctica 07. Modulador de frecuencia con VCO

Práctica 07. Modulador de frecuencia con VCO 2011 Práctica 07. Modulador de frecuencia con VCO MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería 04/03/2011 2 3 Objetivos: Comprender el uso del VCO Emplear el VCO como modulador en frecuencia

Más detalles

PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y.

PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA OBJETIVO Familiarizar al estudiante

Más detalles

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado.

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado. ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 1 Instrumentación y Objetivos Particulares Conocer las características, principio de funcionamiento

Más detalles

CIRCUITOS DE POLARIZACIÓN DEL TRANSISTOR EN EMISOR COMÚN

CIRCUITOS DE POLARIZACIÓN DEL TRANSISTOR EN EMISOR COMÚN 1) POLARIZACIÓN FIJA El circuito estará formado por un transistor NPN, dos resistencias fijas: una en la base R B (podría ser variable) y otra en el colector R C, y una batería o fuente de alimentación

Más detalles

PRACTICA Nº 4 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA

PRACTICA Nº 4 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 4 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA OBJETIVO * Familiarizar al estudiante

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2 CARACTERÍSTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Electrónica 2009-2 13108 Medición de señales eléctricas PRÁCTICA No. 2 LABORATORIO DE NOMBRE DE LA PRÁCTICA

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA LABORATORIO DE: TRANSFORMADORES Y MOTORES DE INDUCCIÓN. GRUPO: PROFESOR ALUMNO

Más detalles

CAPITULO VI TRANSFORMADORES

CAPITULO VI TRANSFORMADORES TRANSFORMADORES APITULO VI TRANSFORMADORES Es uno de los componentes, o partes, de más frecuente empleo en electricidad y radio. La palabra misma indica que se emplea para transformar, o cambiar algo.

Más detalles

Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia

Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores

Más detalles

Electrónica Analógica

Electrónica Analógica Universidad de Alcalá Departamento de Electrónica Electrónica Analógica Ejercicios Tema 3: Diodos Referencias: Texto base: Circuitos Electrónicos. Análisis simulación y diseño, de Norbert R. Malik. Capítulo

Más detalles

FUENTE DE ALIMENTACION DE ONDA COMPLETA

FUENTE DE ALIMENTACION DE ONDA COMPLETA FUENTE DE ALIMENTACION DE ONDA COMPLETA I. OBJETIVOS Definición de una fuente de baja tensión. Análisis de tensión alterna y continúa en dicha fuente. Partes básicas de una fuente de baja tensión. Contrastación

Más detalles

Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje

Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje INTRODUCCIÓN: La región activa de un transistor es la región de operación intermedia entre corte y saturación y por lo tanto dependiendo de las polarizaciones el transistor se comportará como un amplificador.

Más detalles

PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA.

PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. 3.1.- Objetivos: Realización de test de componentes activos y pasivos para obtener, a partir de la curva

Más detalles

Práctica 4. LABORATORIO

Práctica 4. LABORATORIO Práctica 4. LABORATORIO Electrónica de Potencia Convertidor DC/DC Cúk 1. Diagrama de Bloques En esta práctica, el alumnado debe implementar un convertidor DC/DC tipo Cúk. En la Fig1 se muestra el diagrama

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica

Más detalles

DIODOS Y TRANSISTORES.

DIODOS Y TRANSISTORES. INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 2.0.0. DIODOS Y TRANSISTORES. Características del Transistor BJT. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del

Más detalles

Práctica 02. Bobinas. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_01_01_01

Práctica 02. Bobinas. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_01_01_01 2011 Práctica 02. Bobinas MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_01_01_01 Objetivos Aprender a aplicar diferentes fórmulas para el diseño de bobinas

Más detalles

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LAB. DE CIRCUITOS ELECTRÓNICOS (ING. ELÉCTRICA) EC 1181 PRACTICA Nº 9

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LAB. DE CIRCUITOS ELECTRÓNICOS (ING. ELÉCTRICA) EC 1181 PRACTICA Nº 9 UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LAB. DE CIRCUITOS ELECTRÓNICOS (ING. ELÉCTRICA) EC 1181 PRACTICA Nº 9 El VATIMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO

Más detalles

Principios eléctricos y aplicaciones digitales. Objeto de Estudio 1 Electrónica Analógica

Principios eléctricos y aplicaciones digitales. Objeto de Estudio 1 Electrónica Analógica Principios eléctricos y aplicaciones digitales Objeto de Estudio 1 Electrónica Analógica Contenido 1.1 Corriente alterna y corriente directa 1.2 Dispositivos Pasivos 1.3 Dispositivos Activos 1.4 Amplificadores

Más detalles

CURSO DE ELECTRÓNICA ANUAL

CURSO DE ELECTRÓNICA ANUAL Microchip Regional Training Center Austria 1760 - OF8. Capital Federal. (011) 3531-4668 CURSOS ANUALES 2012 CURSO DE ELECTRÓNICA ANUAL APRENDA LOS FUNDAMENTOS DE LA ELECTRÓNICA EN 36 CLASES PRÁCTICAS.

Más detalles

B Acumuladores de corriente eléctrica

B Acumuladores de corriente eléctrica 1 B Acumuladores de corriente eléctrica Condensadores Distintos tipos de condensadores. 2 3 Configuraciones para acoplar condensadores. Pilas y baterías a) Características de las pilas y baterías: Resistencia

Más detalles

DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE CAPNOGRAFO PORTATIL

DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE CAPNOGRAFO PORTATIL DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE CAPNOGRAFO P04 DISEÑO Y ELABORACIÓN DE LA FUENTE DE ALIMENTACIÓN Actividades A04-1: Diseño de las etapas que conforman la Fuente de Alimentación para equipo biomédico

Más detalles

PRACTICA Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER

PRACTICA Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER OBJETIVO Familiarizar al estudiante

Más detalles

PRACTICA 3 CIRCUITOS RECTIFICADORES OBJETIVOS:

PRACTICA 3 CIRCUITOS RECTIFICADORES OBJETIVOS: PRACTICA 3 CIRCUITOS RECTIFICADORES OBJETIVOS: El Alumno comprobará el funcionamiento de los circuitos de rectificación de media onda y de onda completa, midiendo los voltajes de salida y el voltaje de

Más detalles

Para realizar los cálculos de la potencia, tensión y corriente deben estar en valores eficaces.

Para realizar los cálculos de la potencia, tensión y corriente deben estar en valores eficaces. 5. El Transformador. Se denomina transformador: a una máquina eléctrica que permite aumentar o disminuir el voltaje o tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La

Más detalles

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse.

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse. CONDENSADOR ELÉCTRICO Un capacitor es un dispositivo formado por dos conductores, en forma de placas o láminas, separados por un material que actúa como aislante o por el vacío. Este dispositivo al ser

Más detalles

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN.

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN. JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS Práctica 6 Aplicaciones de los diodos: REGULACIÓN. Objetivo: En esta práctica el estudiante conocerá una de las aplicaciones más importantes del diodo

Más detalles

Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito.

Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito. 1 Leyes de Kirchhoff Objetivo Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito. Material 2 Amperímetro Osciloscopio Fluke Generador de onda Computador Fuente

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Medición de temperatura en un recinto cerrado. 2. Objetivos: 3. Teoría. a. Entender el diseño, operación y funcionamiento de los dispositivos de medición de temperatura. Termistores NTC. Son resistencias

Más detalles

GUIA DE EXPERIMENTOS

GUIA DE EXPERIMENTOS GUIA DE EXPERIMENTOS LABORATORIO N. 03 CURSO: Tema: Dispositivos Electrónicos Curvas Características del Diodo Zener Alumnos Integrantes:...... Nota PAGINA 1 CARACTERISTICA DEL DIODO DE RUPTURA ZENER *

Más detalles

F. Hugo Ramírez Leyva Circuitos Eléctricos I Ley de ohm

F. Hugo Ramírez Leyva Circuitos Eléctricos I Ley de ohm Práctica No. 1 Ley de Ohm Objetivo. Comprobar en forma experimental la ley de Ohm y hacer la comparación entre una resistencia lineal y no lineal Material y Equipo 1 Diodo semiconductor (1N1 o similar)

Más detalles

LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 4 RECTIFICACION DE MEDIA ONDA Y ONDA COMPLETA, FILTROS CAPACITIVOS Y REGULADORES DE VOLTAJE

LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 4 RECTIFICACION DE MEDIA ONDA Y ONDA COMPLETA, FILTROS CAPACITIVOS Y REGULADORES DE VOLTAJE LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS 1. TEMA PRÁCTICA N 4 RECTIFICACION DE MEDIA ONDA Y ONDA COMPLETA, FILTROS CAPACITIVOS Y REGULADORES DE VOLTAJE 2. OBJETIVOS 2.1. Familiarizar al estudiante con

Más detalles

Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm.

Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm. Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm. Objetivos: 1.- Conocer y utilizar el protoboard para implementar circuitos sencillos.

Más detalles

Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna

Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6: Amplificadores Operacionales 1 Introducción: El amplificador operacional (en adelante, op-amp) es un tipo de circuito integrado que se usa en un sinfín

Más detalles

DISTORSION ARMONICA FICHA TECNICA. REA00410. senoidales, esta señal no senoidal está compuesta por armónicas.

DISTORSION ARMONICA FICHA TECNICA. REA00410. senoidales, esta señal no senoidal está compuesta por armónicas. FICHA TECNICA. REA41 DISTORSION ARMONICA En México, el sistema eléctrico de potencia está diseñado para generar y operar con una señal senoidal de tensión y de corriente a una frecuencia de 6 Hz (frecuencia

Más detalles

Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos en falla

Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos en falla VIII curso de EEIBS -Práctica 2- Núcleo de Ingeniería Biomédica Facultades de Medicina e Ingeniería UdelaR. Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos

Más detalles

Calculo de resistencias limitadoras y diodo zener

Calculo de resistencias limitadoras y diodo zener Calculo de resistencias limitadoras y diodo zener La formula para el calculo de una resistencia limitadora es en general. R =(vcc-vl)/il Donde: R es la el valor de la resistencia buscada en ohm. Vcc es

Más detalles

Facultad de Ingeniería Eléctrica

Facultad de Ingeniería Eléctrica Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes Materia: Laboratorio de Electrónica Digital I Práctica Número 6 Compuertas TTL especiales Objetivo: Comprobación del funcionamiento

Más detalles

ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos.

ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos. Tema 3. Circuitos con Diodos. 1.- En los rectificadores con filtrado de condensador, se obtiene mejor factor de ondulación cuando a) la capacidad del filtro y la resistencia de carga son altas b) la capacidad

Más detalles

INGENIERÍA EN TECNOLOGÍAS DE LA INFORMACIÓN

INGENIERÍA EN TECNOLOGÍAS DE LA INFORMACIÓN INGENIERÍA EN TECNOLOGÍAS DE LA INFORMACIÓN HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Optativa II: Electricidad y Electrónica Aplicada. 2. Competencias a la que contribuye

Más detalles

INSTRUCTOR: Manuel Eduardo López

INSTRUCTOR: Manuel Eduardo López INSTRUCTOR: Manuel Eduardo López RESULTADOS EN BRUTO MEDICIÓN DE VOLTAJE PARTES I. USO DE ESCALAS DEL VOLTÍMETRO Se identifica la terminal (+) y (-) del medidor y se conecta a la fuente de alimentación,

Más detalles

1. El Generador de Inducción Trifásico

1. El Generador de Inducción Trifásico Generador de Inducción Trifásico Curva Par-Velocidad y Operación Aislada Curso: Laboratorio de Máquinas Eléctricas I Sigla: IE-0416 Documento: ie0416.practica #14.2007-2.doc Elaborado por: Ing. Mauricio

Más detalles

:: Electrónica Básica - Transistores en Circ. de Conmutación TRANSISTORES EN CIRCUITOS DE CONMUTACIÓN

:: Electrónica Básica - Transistores en Circ. de Conmutación TRANSISTORES EN CIRCUITOS DE CONMUTACIÓN Http://perso.wanadoo.es/luis_ju San Salvador de Jujuy República Argentina :: Electrónica Básica - Transistores en Circ. de Conmutación TRANSISTORES EN CIRCUITOS DE CONMUTACIÓN Muchas veces se presenta

Más detalles

MEDICIONES DE RESISTENCIA Y POTENCIA DC

MEDICIONES DE RESISTENCIA Y POTENCIA DC PRACTICA Nº 3 MEDICIONES DE RESISTENCIA Y POTENCIA DC Objetivos Analizar el funcionamiento del Puente de Wheatstone y efectuar mediciones de resistencias aplicando el método de detección de cero. Efectuar

Más detalles

REGULADOR ZENER. Objetivos Hipótesis Indicadores Metodología Conclusiones Observaciones. Tensión de entrada. Resistencia en serie.

REGULADOR ZENER. Objetivos Hipótesis Indicadores Metodología Conclusiones Observaciones. Tensión de entrada. Resistencia en serie. REGULADOR ZENER Planteamiento del problema Como usar el diodo zener en una fuente de alimentación de potencia regulada por transistores Objetivos Hipótesis Indicadores Metodología Conclusiones Observaciones

Más detalles

Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro

Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro Tecnología Electrónica Práctica 1 GRUPO (día y hora): PUESTO: Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro Medidas de resistencias Identificar, mediante

Más detalles

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año: (Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial

Más detalles

R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios.

R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios. I FUNDAMENTO TEÓRICO. LEY DE OHM Cuando aplicamos una tensión a un conductor, circula por él una intensidad, de tal forma que si multiplicamos (o dividimos) la tensión aplicada, la intensidad también se

Más detalles

Amplificador monofónico de 400W

Amplificador monofónico de 400W 1 Amplificador monofónico de 400W +75V DC R3 K R8 R9 C6 2SC5200 2SC5200 2SC5200 2SC5200 33K R2 24V 24V C2 D1 Q5 TIP42 Q6 D718 0.7V 0.7V 2.2 uf C1 R1 Q1 A733 A15 Q2 R6 C3 R7 K R D2 D3 R13 Q7 0 R15 2SC5200

Más detalles

Amplificador monofónico de 100W

Amplificador monofónico de 100W Amplificador monofónico de 0W 1 Diagrama eléctrico +47V DC 33K R3 R2 24V 24V 4.7K 0 uf C2 R6 D1 Q5 R7 C6 TIP42 0.7V 0.001 uf Q6 TIP41 0.7V 2.2 uf C1 R1 Q1 A733 A15 Q2 R4 0 uf C3 pf R5 K R8 R D3 33 R11

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º8 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6

GUIA DIDACTICA DE ELECTRONICA N º8 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

2. GALGAS EXTENSOMÉTRICAS

2. GALGAS EXTENSOMÉTRICAS Manual de Prácticas Pag.: 3-1 2. GALGAS EXTENSOMÉTRICAS 2.1. INTRODUCCIÓN. Esta sesión de prácticas tiene como objetivo profundizar en el conocimiento y manejo de las galgas extensométricas, sensores especialmente

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 2 2. OBJETIVOS CARACTERIZACIÓN

Más detalles

PRACTICA Nº 5 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER

PRACTICA Nº 5 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 5 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER OBJETIVO * Familiarizar al estudiante

Más detalles

Cuaderno de Recuperación Tecnología 3ºESO. 1ª Evaluación I.E.S. EL PALO CURSO 2010-2011 CUADERNO RECUPERACIÓN 1ª EVALUACIÓN TECNOLOGÍA 3º ESO

Cuaderno de Recuperación Tecnología 3ºESO. 1ª Evaluación I.E.S. EL PALO CURSO 2010-2011 CUADERNO RECUPERACIÓN 1ª EVALUACIÓN TECNOLOGÍA 3º ESO Cuaderno de Recuperación Tecnología 3ºESO 1ª Evaluación ALUMNO: GRUPO: FECHA INICIO DEL CUADERNO: FECHA FIN DEL CAUDERNO: Camino Viejo de Vélez s/n 29018 Málaga. Tfno. 951298521 e-mail: 29009922@averroes.cec.juntadeandalucia.es

Más detalles

Practica 3 TDM Switch Analógico

Practica 3 TDM Switch Analógico Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Comunicaciones 1 Segundo Semestre 2016 Auxiliar: Rodrigo de León Multiplexación Practica

Más detalles

Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes. Materia: Laboratorio de Electrónica Digital I

Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes. Materia: Laboratorio de Electrónica Digital I Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes Materia: Laboratorio de Electrónica Digital I Práctica Número 5 Características eléctricas de la familia TTL Objetivo:

Más detalles

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala

Más detalles

:: OBJETIVOS [1.1] :: PREINFORME [1.2]

:: OBJETIVOS [1.1] :: PREINFORME [1.2] Manejo de aparatos de medida. Identificación de componentes eléctricos de un circuito. Comparación entre los valores registrados por instrumentos de medidas eléctricas, uno análogo y otro digital. :: OBJETIVOS

Más detalles

IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica. TAREA 3 Josué Otárola Sánchez

IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica. TAREA 3 Josué Otárola Sánchez IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica TAREA 3 Josué Otárola Sánchez A84674 Ejercicio 2: Cambio de polaridad en la celda solar El montaje realizado se resume en

Más detalles

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año: (Ejercicios resueltos) Alumno: Curso: Año: Magnitudes eléctricas básicas. La Ley de Ohm Las magnitudes fundamentales de los circuitos eléctricos son: Tensión o voltaje: Indica la diferencia de energía

Más detalles

LECCION 1 MATERIALES SEMICONDUCTORES

LECCION 1 MATERIALES SEMICONDUCTORES LECCION 1 MATERIALES SEMICONDUCTORES Son materiales que tienen una resistencia eléctrica intermedia entre los conductores y los aislantes. Por efectos de temperatura en estos materiales hay electrones

Más detalles

2. Obtener experimentalmente la curva característica voltaje-corriente de un diodo

2. Obtener experimentalmente la curva característica voltaje-corriente de un diodo OBJETIVOS 1. Comprobar de forma experimental que la intensidad de corriente a través de un diodo semiconductor es una función exponencial del voltaje aplicado entre sus terminales. 2. Obtener experimentalmente

Más detalles

LABORATORIO DE ELEMENTOS DE ELECTRONICA

LABORATORIO DE ELEMENTOS DE ELECTRONICA Práctica 7 Diodos y sus aplicaciones 7.2.3 Utilice el programa simulador para probar los circuitos de la Figura 7.2.2. Para cada uno, indique el tipo de circuito de que se trata y obtenga la gráfica de

Más detalles

TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS

TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS 1) Introducción Teórica a) Generalidades TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS El transistor bipolar es un dispositivo de tres terminales (emisor, base y colector), que, atendiendo

Más detalles

Guía de laboratorio No. 4 DIODO ZENER Y AMPLIFICADOR OPERACIO- NAL

Guía de laboratorio No. 4 DIODO ZENER Y AMPLIFICADOR OPERACIO- NAL Guía de laboratorio No. 4 DIODO ZENER Y AMPLIFICADOR OPERACIO- NAL En esta guía se estudiará el diodo Zener como regulador de tensión, así como la aplicación de circuitos integrados con amplificadores

Más detalles

ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO

ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO PORTADA Nombre de la universidad Facultad de Ingeniería Ensenada Carrera Materia Alumno Nombre y número de Práctica Nombre del maestro Lugar y fecha CONTENIDO

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 4: CAPACITANCIA Determinar, a partir de su geometría, la capacitancia

Más detalles

En definitiva, la tensión sinusoidal de entrada, corriente alterna, se ha convertido en corriente continua.

En definitiva, la tensión sinusoidal de entrada, corriente alterna, se ha convertido en corriente continua. 12. Rectificador de media onda con filtro en C. Esquema eléctrico y principio de funcionamiento: un filtro de condensador es un circuito eléctrico formado por la asociación de diodo y condensador destinado

Más detalles

5. EL TRANSISTOR TRABAJANDO EN CONMUTACION. En líneas generales, el transistor puede trabajar de dos formas diferenciadas:

5. EL TRANSISTOR TRABAJANDO EN CONMUTACION. En líneas generales, el transistor puede trabajar de dos formas diferenciadas: 5. EL TRANSISTOR TRABAJANDO EN CONMUTACION EL TRANSISTOR En líneas generales, el transistor puede trabajar de dos formas diferenciadas: 1." En la zona lineal de una recta de carga. 2. a En conmutación,

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA EN COMUNICACIONES Y ELECTRÓNICA

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA EN COMUNICACIONES Y ELECTRÓNICA INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA EN COMUNICACIONES Y ELECTRÓNICA PRÁCTICAS DE CIRCUITOS LÓGICOS LABORATORIO DE COMPUTACIÓN IV PRÁCTICA 5 NOMBRE

Más detalles

LABORATORIO N 04: Compuertas Básicas, Universales y Especiales

LABORATORIO N 04: Compuertas Básicas, Universales y Especiales LORTORIO N 04: Compuertas ásicas, Universales y Especiales 1. OJETIVOS. - Verificar experimentalmente la operación de las compuertas digitales básicas: ND, OR y NOT. - Verificar experimentalmente la operación

Más detalles

Circuito Serie-Paralelo

Circuito Serie-Paralelo Circuito Serie-Paralelo Un circuito Series-Paralelo combina circuitos en serie y en paralelo, con sus respectivas características. El primer paso al analizar un circuito Serie-Paralelo es transformar el

Más detalles

Instrumentación Electrónica

Instrumentación Electrónica Práctica de Laboratorio Práctica 4 Medidas de Temperatura Práctica de laboratorio Transductores de temperatura. En esta práctica tomaremos contacto con varios transductores de temperatura, para analizar

Más detalles