REGULADOR ZENER. Objetivos Hipótesis Indicadores Metodología Conclusiones Observaciones. Tensión de entrada. Resistencia en serie.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "REGULADOR ZENER. Objetivos Hipótesis Indicadores Metodología Conclusiones Observaciones. Tensión de entrada. Resistencia en serie."

Transcripción

1 REGULADOR ZENER Planteamiento del problema Como usar el diodo zener en una fuente de alimentación de potencia regulada por transistores Objetivos Hipótesis Indicadores Metodología Conclusiones Observaciones Conocer la cantidad de tensión de referencia que se puede controlar. Conocer los parámetros que hacen posible el funcionamie nto del diodo zener Aumento de la capacidad de paso de potencia Mejora del factor de regulación al utilizar la ganancia de corriente del transistor Tensión de entrada. Resistencia en serie. Corriente de entrada. Características de avalancha Método experimental La ruptura en avalancha del funcionamiento del diodo zener no es destructiva, con tal que no se exceda la disipación de potencia nominal de la unión. Se ha apreciado q el regulador zener tiene bastante uso en la vida electrónica.

2 EL REGULADOR ZENER 1

3 OBJETIVOS.- Conocer la cantidad de tensión de referencia que se puede controlar. Conocer los parámetros que hacen posible el funcionamiento del diodo zener. 2

4 INTRODUCCIÓN Hemos visto que un diodo semiconductor normal puede estar polarizado tanto en directa como inversamente. En directa se comporta como una pequeña resistencia. En inversa se comporta como una gran resistencia. Veremos ahora un diodo de especiales características que recibe el nombre de diodo zener. El diodo zener trabaja exclusivamente en la zona de característica inversa y, en particular, en la zona del punto de ruptura de su característica inversa Esta tensión de ruptura depende de las características de construcción del diodo, se fabrican desde 2 a 200 voltios. Polarizado en directa actúa como un diodo normal y por tanto no se utiliza en dicho estado 3

5 Qué es un regulador? Es un dispositivo electrónico diseñado con el objetivo de proteger aparatos eléctricos y electrónicos delicados de variaciones de diferencia de potencial (tensión/voltaje), descargas eléctricas y "ruido" existente en la corriente alterna de la distribución eléctrica. Los reguladores de tensión están presentes en las fuentes de alimentación de corriente continua reguladas, cuya misión es la de proporcionar una tensión constante a su salida. Un regulador de tensión eleva o disminuye la corriente para que el voltaje sea estable, es decir, para que el flujo de voltaje llegue a un aparato sin irregularidades. Esto, a diferencia de un "supresor de picos" el cual únicamente evita los sobre voltajes repentinos (picos). Un regulador de voltaje puede o no incluir un supresor de picos. El diodo Zener.- Es un tipo especial de diodo preparado para trabajar en la zona inversa. Cuando se alcanza la denominada tensión Zener en polarización inversa, ante un aumento de la corriente a través del diodo, éste mantiene la tensión constante entre sus terminales dentro de ciertos márgenes. Si la corriente es muy pequeña la tensión empezará a disminuir, pero si es excesiva puede destruir el diodo. Esta propiedad hace que el diodo Zener sea utilizado como regulador de tensión en las fuentes de alimentación. 4

6 Comportamiento del Zener.- El llamado diodo Zener, cuyas características en polarización directa son análogas a las del diodo de unión, pero que en polarización inversa se comporta de manera distinta, lo que le permite tener una serie de aplicaciones. Cuando el diodo esta polarizado inversamente, una pequeña corriente circula por él, llamada corriente de saturación I s, esta corriente permanece relativamente constante mientras aumentamos la tensión inversa hasta que el valor de ésta alcanza V z, llamada tensión Zener (que no es la tensión de ruptura zener), para la cual el diodo entra en la región de colapso. La corriente empieza a incrementarse rápidamente por el efecto avalancha. En esta región, pequeños cambios de tensión producen grandes cambios de corriente. El diodo zener mantiene la tensión prácticamente constante entre sus extremos para un amplio rango de corriente inversa. Obviamente, hay un drástico cambio de la resistencia efectiva de la unión PN. 5

7 Caracterización del Zener El diodo zener viene caracterizado por: Tensión Zener V z. Rango de tolerancia de V z. (Tolerancia: C: ±5%) Máxima corriente Zener en polarización inversa I. z Máxima potencia disipada. Máxima temperatura de operación del zener. Constitución de un Diodo Zener Los zener se fabrican por procesos de aleación o difusión según sean las características que se deseen obtener. De modo general, podemos decir que para diodos con tensión de ruptura inferior a 9 V. Presentan mejores características cuando se fabrican por aleación, mientras que cuando las tensiones de ruptura son superiores a los 12 voltios se fabrican por difusión, para las tensiones entre 9 y 12 voltios el proceso de fabricación depende de otros factores. Proceso de fabricación por aleación: Este método consiste en calentar a una temperatura de unos 650º, una pequeña pastilla de cristal de silicio tipo N, a la que se le coloca encima una minúscula cantidad de material tipo P. Al calentarlos se produce la aleación entre ambos en una zona de forma circular. Proceso de fabricación por Difusión: Este tipo de diodos se obtienen depositando en una delgada lamina de cristal de silicio, boro por una cara (para la formación del materia tipo P ) y por la otra vapor de fósforo ( para la formación del materia tipo N) el conjunto se introduce en un horno a una temperatura superior a 1200ºC el calor provocara que en el cristal de silicio penetre el fósforo por un lado y el boro por el otro, difundiéndose ambos materiales en el cristal de silicio. 6

8 El tipo de encapsulado es igual que el de los diodos rectificadores. Aunque como veremos mas adelante no se comportan como ellos, es por eso que en sismología electrónica la forma de representarlos es también diferente. Código de identificación del ZENER Existen tres tipos de identificación de los diodos zener. El mas moderno consiste en tres letras seguidas de un numero de serie y el valor que hace referencia a la tensión zener. 1. Es un B, indicativa de que se trata de un elemento semiconductor de silicio. 2. Es una Z, indica que se trata de un diodo zener. 3. Es una X o Z indica que se trata de aplicaciones profesionales. Después ira el número de serie indicado por el fabricante y la tensión zener, utilizando la V como coma decimal. Por ejemplo: BZX-79-5V1 En ocasiones se le añade una letra más que nos indicara la tolerancia de la tensión zener, según el siguiente código: A---- 1% B---- 2% C---- 5% D----10% E----15% 7

9 Otro código es el que utiliza También tres letras y el numero de serie del fabricante, siendo 1. Es un O, indicativa de que se trata de un elemento semiconductor 2. Es AZ, indica que se trata de un diodo zener 3. El numero de serie del fabricante Y por ultimo el código americano, que al igual que los diodos rectificadores seria: 1N seguido por un número de serie Diseño del Regulador Zener. Es importante conocer el intervalo de variación de la tensión de entrada (V AA ) y de la corriente de carga (I L ) para diseñar el circuito regulador de manera apropiada. La resistencia R debe ser escogida de tal forma que el diodo permanezca en el modo de tensión constante sobre el intervalo completo de variables. La ecuación del nodo para el circuito de la figura 4 nos dice que: Para asegurar que el diodo permanezca en la región de tensión constante (ruptura), se examinan los dos extremos de las condiciones de entrada salida: La corriente a través del diodo I es mínima cuando la corriente de carga I es Z L máxima y la fuente de tensión V es mínima. AA La corriente a través del diodo I es máxima cuando la corriente de carga I es Z L mínima y la fuente de tensión V AA es máxima. 8

10 Cuando estas características de los dos extremos se insertan en la ecuación (3), se encuentra: Igualando las ecuaciones (4) y (5) llegamos a que: En un problema práctico, es razonable suponer que se conoce el intervalo de tensiones de entrada, el intervalo de corriente de salida y el valor de la tensión zener deseada. La ecuación (6) representa por tanto una ecuación con dos incógnitas, las corrientes zener máxima y mínima. Se encuentra una segunda ecuación examinando la figura 5. Para evitar la porción no constante de la curva característica una regla práctica que constituye un criterio de diseño aceptable es escoger la máxima corriente zener 10 veces mayor que la mínima, es decir: 9

11 La ecuación (6) se podrá entonces reescribir de la siguiente manera: Resolviendo entonces para la máxima corriente zener, se obtiene: Ahora que se tiene la máxima corriente zener, el valor de R se puede calcular de cualquiera de las ecuaciones (4) ó (5). No es suficiente con especificar el valor de R, también se debe seleccionar la resistencia apropiada capaz de manejar la potencia estimada. La máxima potencia vendrá dada por el producto de la tensión por la corriente, utilizando el máximo de cada valor. 10

12 CARACTERÍSTICAS DEL REGULADOR DE VOLTAJE CON ZENER El diodo zener se puede utilizar para regular una fuente de voltaje. Este semiconductor se fabrica en una amplia variedad de voltajes y potencias Estos van desde menos de 2 voltios hasta varios cientos de voltios, y la potencia que pueden disipar va desde 0.25 watts hasta 50 watts o más. La potencia que disipa un diodo zener es simplemente la multiplicación del voltaje para el que fue fabricado por la corriente que circula por él. Pz = Vz x Iz Esto significa que la máxima corriente que puede atravesar un diodo zener es: Iz = Pz/Vz. Donde: - Iz = Corriente que pasa por el diodo Zener - Pz = Potencia del diodo zener (dato del fabricante) - Vz = Voltaje del diodo zener (dato del fabricante) 11

13 APLICACIÓNES.- Una de las aplicaciones más usuales de los diodos zener es su utilización como reguladores de tensión. Los reguladores de tensión se encuentran en todo tipo de dispositivos y equipos incluyendo la automoción, el gran consumo, informática, las comunicaciones y la industria médica y de la iluminación. Qué hace un regulador con Zener? Un regulador con Zener ideal mantiene un voltaje fijo predeterminado, a su salida, sin importar si varía el voltaje en la fuente de alimentación y sin importar como varíe la carga que se desea alimentar con este regulador. La figura 4 muestra el circuito de un diodo usado como regulador. Este circuito se diseña de tal forma que el diodo zener opere en la región de ruptura, aproximándose así a una fuente ideal de tensión. El diodo zener está en paralelo con una resistencia de carga R L y se encarga de mantener constante la tensión entre los extremos de la resistencia de carga (V out =V Z ), dentro de unos límites requeridos en el diseño, a pesar de los cambios que se puedan producir en la fuente de tensión V AA, y en la corriente de carga I L. 12

14 Analicemos a continuación el funcionamiento del circuito. Consideremos primero la operación del circuito cuando la fuente de tensión proporciona un valor V AA constante pero la corriente de carga varia. Las corrientes I L = V Z /R L e I Z están ligadas a través de la ecuación: Y para las tensiones: Por lo tanto: Si V AA y V Z permanecen constantes, V R debe de serlo también (V R = I T R). De esta forma la corriente total I T queda fijada a pesar de las variaciones de la corriente de carga. Esto lleva a la conclusión de que si I L aumenta, I Z disminuye y viceversa (debido a la ecuación (1)). En consecuencia V Z no permanecerá absolutamente constante, variará muy poco debido a los cambios de I Z que se producen para compensar los cambios de I. L Si ahora lo que permanece constante es la corriente de carga y la fuente de tensión V AA varía, un aumento de ésta produce un aumento de I T y por tanto de I Z pues I L permanece constante, y lo contrario si se produjera una disminución de V AA. Tendríamos lo mismo que antes, una tensión de salida prácticamente constante, las 13

15 pequeñas variaciones se producirían por las variaciones de I para compensar las Z variaciones de V AA. REGULADOR DE TENSIÓN EN VACÍO (SIN CARGA) Él estará entre un mínimo y un máximo, y el regulador tiene que funcionar bien entre esos 2 valores (vsmáx y vsmín).en este caso vs lo pondremos como una pila variable. Además para que funcione correctamente el zener tiene que trabajar en la zona de ruptura. Para que esté en ruptura se tiene que cumplir: 14

16 Escuela Profesional de Ingeniería Eléctrica Facultad de Ingeniería Eléctrica y Electrónica Ciclo 2010-A REGULADOR DE TENSIÓN CON CARGA Paraa comprobar que estamos en ruptura calculamos desde los bornes de la tensión V Z : el equivalente de Thevenin 15

17 Como en el anterior caso los valores del circuito tienen que estar entre un máximo y un mínimo: El zener absorbe la corriente sobrante (I Z variable) y la resistencia (R) la tensión sobrante. Entonces a la salida la forma de la onda es la siguiente: 2ª APROXIMACIÓN: 16

18 El circuito equivalente sería de la siguiente forma: A ese circuito se le aplica la superposición: Como la superposición es la suma de estos 2 circuitos la solución será esta: Con esto se ve que lo que hace el zener es "Amortiguar el rizado". 17

19 REGULADOR DE TENSION CON UN TRANSISTOR En este circuito la corriente de entrada sigue los cambios de la corriente por la carga, sin embargo, en el regulador paralelo la corriente por la carga se mantenía constante. Al haber sustituido la resistencia serie por un transistor, este regulador tiene un mayor rendimiento que el anteriormente visto, por lo que se utiliza en circuitos de mayor potencia. Si se produce una baja en el valor de la resistencia de carga, la corriente de entrada al circuito estabilizador aumenta y por donde, también aumenta la corriente por la resistencia R1, como el diodo zener mantiene su tensión constante, aumenta la caída de tensión en R1, con lo que la tensión colector-base del transistor aumenta, volviéndose menos conductivo, y estabilizando el aumento inicial de corriente. Probador / Medidor de Diodos Zener Con el avance del tiempo los componentes electrónicos van mejorando tanto en su calidad como en su empaque, pero esto no sucede en los diodos zener, los cuales son casi imposible de identificar por su encapsulado carente de inscripciones. Para suplir esa falta presentamos este práctico instrumento de taller que nos permitirá saber el valor de un diodo y, al mismo tiempo, si esta funcionando correctamente. 18

20 El circuito consta de dos secciones. La primera se encarga de oscilar sobre el bobinado de baja tensión de un transformador de alimentación. En su bobinado de 220v se presenta una tensión acorde al ajuste del oscilador, efectuado por el potenciómetro de 10K. Rectificada y filtrada, la tensión resultante es limitada en corriente y aplicada al zener, el cual cortará en el nivel de voltaje para el cual está fabricado. Con un voltímetro de continua podremos saber, entonces, el valor de esa tensión. Forma de uso: 1. Colocar el zener a medir en los bornes de prueba 2. Girar el potenciómetro a su mínimo recorrido (que quede en 10K) 3. Encender el instrumento (en caso de ser un tester) 4. Encender el probador de zener 5. Comenzar a girar el potenciómetro 6. La tensión en el instrumento aumentará gradualmente 7. Donde se detenga la cresta será la tensión de trabajo del diodo Dada su simpleza este circuito puede ser armado sobre una regleta de conexiones o en una placa universal sin problema alguno. Si alguien decide diseñar un circuito impreso y nos lo envía, desde ya muchas gracias 19

Práctica 4.- Característica del diodo Zener

Práctica 4.- Característica del diodo Zener A.- Objetivos Práctica 4.- Característica del diodo ener Laboratorio de Electrónica de Dispositivos 1.-Medir los efectos de la polarización directa e inversa en la corriente por el diodo zener. 2.-Determinar

Más detalles

Práctica 1.- Característica del diodo Zener

Práctica 1.- Característica del diodo Zener A.- Objetivos Práctica 1.- Característica del diodo ener 1.-Medir los efectos de la polarización directa e inversa en la corriente por el diodo zener. 2.-Determinar experimentalmente y representar la característica

Más detalles

Práctica 04. Diodo zener

Práctica 04. Diodo zener 2011 MI. Mario Alfredo Ibarra Carrillo Facultad de ingeniería 11/03/2011 2 3 Objetivos: 1. Que el alumno estudie las propiedades y comportamientos del diodo zener. 2. Que el alumno implemente un circuito

Más detalles

DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE CAPNOGRAFO PORTATIL

DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE CAPNOGRAFO PORTATIL DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE CAPNOGRAFO P04 DISEÑO Y ELABORACIÓN DE LA FUENTE DE ALIMENTACIÓN Actividades A04-1: Diseño de las etapas que conforman la Fuente de Alimentación para equipo biomédico

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º10 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6

GUIA DIDACTICA DE ELECTRONICA N º10 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

UNIDAD TEMÁTICA NO 3. DIODO ZENER

UNIDAD TEMÁTICA NO 3. DIODO ZENER 3.1 DIODO ZENER UNIDAD TEMÁTICA NO 3. DIODO ZENER 3.1.1 Características generales del diodo Zener Los diodos zener, también se llaman diodo de suitcheo rápido, son diodos que están diseñados para mantener

Más detalles

TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS

TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS 1) Introducción Teórica a) Generalidades TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS El transistor bipolar es un dispositivo de tres terminales (emisor, base y colector), que, atendiendo

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º8 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6

GUIA DIDACTICA DE ELECTRONICA N º8 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

INSTRUCTOR: Manuel Eduardo López

INSTRUCTOR: Manuel Eduardo López INSTRUCTOR: Manuel Eduardo López RESULTADOS EN BRUTO MEDICIÓN DE VOLTAJE PARTES I. USO DE ESCALAS DEL VOLTÍMETRO Se identifica la terminal (+) y (-) del medidor y se conecta a la fuente de alimentación,

Más detalles

Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje

Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje INTRODUCCIÓN: La región activa de un transistor es la región de operación intermedia entre corte y saturación y por lo tanto dependiendo de las polarizaciones el transistor se comportará como un amplificador.

Más detalles

Para realizar los cálculos de la potencia, tensión y corriente deben estar en valores eficaces.

Para realizar los cálculos de la potencia, tensión y corriente deben estar en valores eficaces. 5. El Transformador. Se denomina transformador: a una máquina eléctrica que permite aumentar o disminuir el voltaje o tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La

Más detalles

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala

Más detalles

Calculo de resistencias limitadoras y diodo zener

Calculo de resistencias limitadoras y diodo zener Calculo de resistencias limitadoras y diodo zener La formula para el calculo de una resistencia limitadora es en general. R =(vcc-vl)/il Donde: R es la el valor de la resistencia buscada en ohm. Vcc es

Más detalles

R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios.

R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios. I FUNDAMENTO TEÓRICO. LEY DE OHM Cuando aplicamos una tensión a un conductor, circula por él una intensidad, de tal forma que si multiplicamos (o dividimos) la tensión aplicada, la intensidad también se

Más detalles

ELECTRÓNICA. 1. Qué es la electrónica? 2. Componentes electrónicos Pasivos

ELECTRÓNICA. 1. Qué es la electrónica? 2. Componentes electrónicos Pasivos ELECTRÓNICA 1. Qué es la electrónica? Es el campo de la ingeniería y de la física que estudia el diseño de circuitos que permiten generar, modificar o tratar una señal eléctrica (circuitos electrónicos).

Más detalles

Electrónica Analógica

Electrónica Analógica Universidad de Alcalá Departamento de Electrónica Electrónica Analógica Ejercicios Tema 3: Diodos Referencias: Texto base: Circuitos Electrónicos. Análisis simulación y diseño, de Norbert R. Malik. Capítulo

Más detalles

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado.

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado. ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 1 Instrumentación y Objetivos Particulares Conocer las características, principio de funcionamiento

Más detalles

LECCION 1 MATERIALES SEMICONDUCTORES

LECCION 1 MATERIALES SEMICONDUCTORES LECCION 1 MATERIALES SEMICONDUCTORES Son materiales que tienen una resistencia eléctrica intermedia entre los conductores y los aislantes. Por efectos de temperatura en estos materiales hay electrones

Más detalles

CIRCUITOS DE POLARIZACIÓN DEL TRANSISTOR EN EMISOR COMÚN

CIRCUITOS DE POLARIZACIÓN DEL TRANSISTOR EN EMISOR COMÚN 1) POLARIZACIÓN FIJA El circuito estará formado por un transistor NPN, dos resistencias fijas: una en la base R B (podría ser variable) y otra en el colector R C, y una batería o fuente de alimentación

Más detalles

COMPONENTES ELECTRÓNICOS BÁSICOS

COMPONENTES ELECTRÓNICOS BÁSICOS BÁSICOS 1.- INTRODUCCIÓN La electrónica ocupa un lugar muy importante en la sociedad actual, forma parte de la industria, del hogar, de la medicina, etc. Se puede definir como la ciencia que estudia los

Más detalles

DISTORSION ARMONICA FICHA TECNICA. REA00410. senoidales, esta señal no senoidal está compuesta por armónicas.

DISTORSION ARMONICA FICHA TECNICA. REA00410. senoidales, esta señal no senoidal está compuesta por armónicas. FICHA TECNICA. REA41 DISTORSION ARMONICA En México, el sistema eléctrico de potencia está diseñado para generar y operar con una señal senoidal de tensión y de corriente a una frecuencia de 6 Hz (frecuencia

Más detalles

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse.

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse. CONDENSADOR ELÉCTRICO Un capacitor es un dispositivo formado por dos conductores, en forma de placas o láminas, separados por un material que actúa como aislante o por el vacío. Este dispositivo al ser

Más detalles

Tutorial de motores paso a paso (PaP)

Tutorial de motores paso a paso (PaP) Tutorial de motores paso a paso (PaP) 1 INTRODUCCIÓN Autor: José Antonio Casas ihouses@iespana.es - 21-1-2004 Los motores paso a paso (PaP en adelante) a diferencia de los motores CC ( motores de contínua

Más detalles

CIRCUITOS LOGICOS DE TRES ESTADOS.

CIRCUITOS LOGICOS DE TRES ESTADOS. Página 1 CIRCUITOS LOGICOS DE TRES ESTADOS. Las señales lógicas se componen de dos estados normales, Alto y Bajo (1 o 0). Sin embargo, algunas salidas tienen un tercer estado eléctrico que no es un estado

Más detalles

UNIDAD DOS 2.1. DIODOS. 211.07.-La característica del diodo D está expresada por: donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4

UNIDAD DOS 2.1. DIODOS. 211.07.-La característica del diodo D está expresada por: donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 UNIDAD DOS 2.1. DIODOS 211.07.-La característica del diodo D está expresada por: i D I 0.(e q.vd m.kt 1) 10 6.(e q.vd m. KT 1) [Amp] donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 a)

Más detalles

F. Hugo Ramírez Leyva Circuitos Eléctricos I Ley de ohm

F. Hugo Ramírez Leyva Circuitos Eléctricos I Ley de ohm Práctica No. 1 Ley de Ohm Objetivo. Comprobar en forma experimental la ley de Ohm y hacer la comparación entre una resistencia lineal y no lineal Material y Equipo 1 Diodo semiconductor (1N1 o similar)

Más detalles

LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN

LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN Objetivos. Estudiar y familiarizarse con el tablero de conexiones (Protoboard ) y la circuitería experimental. Aprender a construir circuitos

Más detalles

PRACTICAS DE ELECTRÓNICA. Práctica 0 - IDENTIFICACIÓN DE COMPONENTES

PRACTICAS DE ELECTRÓNICA. Práctica 0 - IDENTIFICACIÓN DE COMPONENTES 1. Reconocimiento de componentes. 2. El condensador: carga y descarga. 3. El condensador como temporizador. 4. Diodos. 5. Diodos-transformadores. 6. Relés. 7. Transistores. PRACTICAS DE ELECTRÓNICA ELECTRÓNICA

Más detalles

PROYECTO DE APLICACIÓN: LUZ AUTOMATICA NOCTURNA

PROYECTO DE APLICACIÓN: LUZ AUTOMATICA NOCTURNA UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE FILOSOFIA, HUMANIDADES Y ARTES DEPARTAMENTO DE FÍSICA Y QUÍMICA CÁTEDRA: ELECTRÓNICA GENERAL Alumna: Caño Cabrera, Claudia Alejandra rodri_mari2007@yahoo.com.ar

Más detalles

Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna

Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6: Amplificadores Operacionales 1 Introducción: El amplificador operacional (en adelante, op-amp) es un tipo de circuito integrado que se usa en un sinfín

Más detalles

Instrumentación Electrónica

Instrumentación Electrónica Práctica de Laboratorio Práctica 4 Medidas de Temperatura Práctica de laboratorio Transductores de temperatura. En esta práctica tomaremos contacto con varios transductores de temperatura, para analizar

Más detalles

CIRCUITO CON RESISTENCIAS EN SERIE

CIRCUITO CON RESISTENCIAS EN SERIE Instituto de Educación Secundaria Nº 2 Ciempozuelos Avda. de la Hispanidad s/n 28350 Ciempozuelos (Madrid) C.C. 28062035 CIRCUITO CON RESISTENCIAS EN SERIE Se dice que dos o más resistencias están conectadas

Más detalles

CAPITULO VI: Generadores de Sonido

CAPITULO VI: Generadores de Sonido CAPITULO VI GENERADORES DE SONIDOS GENERADOR DE CODIGO MORSE En el circuito de la fig. 6.1 se observa un 555 en configuración de multivibrador astable, funcionando como un práctico oscilador para código

Más detalles

B Acumuladores de corriente eléctrica

B Acumuladores de corriente eléctrica 1 B Acumuladores de corriente eléctrica Condensadores Distintos tipos de condensadores. 2 3 Configuraciones para acoplar condensadores. Pilas y baterías a) Características de las pilas y baterías: Resistencia

Más detalles

TEMA 4. ELECTRÓNICA ANALÓGICA

TEMA 4. ELECTRÓNICA ANALÓGICA TEMA 4. ELECTRÓNICA ANALÓGICA 1. INTRODUCCIÓN La electrónica es la ciencia que estudia y diseña dispositivos relacionados con el comportamiento de los electrones en la materia. Se encarga del control de

Más detalles

ELECTRÓNICO DE MANTENIMIENTO Y REPARACIÓN Código: 7208

ELECTRÓNICO DE MANTENIMIENTO Y REPARACIÓN Código: 7208 ELECTRÓNICO DE MANTENIMIENTO Y REPARACIÓN Código: 7208 Modalidad: Teleformación Duración: 56 horas Objetivos: Este curso permite adquirir los conocimientos necesarios para el buen desempeño de un oficio.

Más detalles

Medición de la temperatura de la bobina motor del compresor

Medición de la temperatura de la bobina motor del compresor Medición de la temperatura de la bobina motor del compresor Para asegurar una larga vida del compresor, la temperatura de la bobina del motor debe estar por debajo de ciertos límites, en todas las condiciones

Más detalles

IES RIBERA DE CASTILLA LA CORRIENTE ELÉCTRICA

IES RIBERA DE CASTILLA LA CORRIENTE ELÉCTRICA UNIDAD 9 LA CORRIENTE ELÉCTRICA La intensidad de la corriente. Corriente eléctrica. Conductores. Tipos. Intensidad. Unidades. Sentido de la corriente. Corriente continua y alterna. Resistencia. Resistencia

Más detalles

Industrial. Dpto. de Tecnología. I.E.S. Cristóbal de Monroy.

Industrial. Dpto. de Tecnología. I.E.S. Cristóbal de Monroy. 1 El transistor En el mercado podemos encontrar infinidad de modelos diferentes de transistores. Es uno de los componentes electrónicos más versátiles. Está formado por la unión de tres cristales semiconductores.

Más detalles

Departamento de Tecnología I.E.S. Mendiño. Electrónica Analógica 4º E.S.O. Alumna/o :...

Departamento de Tecnología I.E.S. Mendiño. Electrónica Analógica 4º E.S.O. Alumna/o :... Departamento de Tecnología I.E.S. Mendiño Electrónica Analógica 4º E.S.O. Alumna/o :... Electrónica Analógica 1.- El diodo. Los diodos son elementos electrónicos fabricados con silicio que sólo permiten

Más detalles

Desafíos de las pilas en equipos electrónicos portátiles. Escrito por gm2 Viernes, 08 de Abril de 2011 08:39

Desafíos de las pilas en equipos electrónicos portátiles. Escrito por gm2 Viernes, 08 de Abril de 2011 08:39 Los avances en las tecnologías de procesamiento de semiconductores han hecho posible la existencia de dispositivos de alto rendimiento más pequeños a precios muy competitivos. Estos factores han abierto

Más detalles

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V. 1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 53 1.1. Rectificador de media onda... 55 1.2. Rectificador de onda completa... 56 1.3. Rectificador de media onda con condensador... 57

Más detalles

ASOCIACIÓN DE RESISTENCIAS Los principales tipos de conexión son: serie, paralelo, serie-paralelo (o mixta), triángulo, estrella.

ASOCIACIÓN DE RESISTENCIAS Los principales tipos de conexión son: serie, paralelo, serie-paralelo (o mixta), triángulo, estrella. ASOCACÓN DE ESSENCAS Los principales tipos de conexión son: serie, paralelo, serie-paralelo (o mixta), triángulo, estrella. CONEXÓN La forma externa de conectar los bornes de los aparatos eléctricos se

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER

Más detalles

Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos en falla

Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos en falla VIII curso de EEIBS -Práctica 2- Núcleo de Ingeniería Biomédica Facultades de Medicina e Ingeniería UdelaR. Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 4: CAPACITANCIA Determinar, a partir de su geometría, la capacitancia

Más detalles

ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos.

ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos. Tema 3. Circuitos con Diodos. 1.- En los rectificadores con filtrado de condensador, se obtiene mejor factor de ondulación cuando a) la capacidad del filtro y la resistencia de carga son altas b) la capacidad

Más detalles

En definitiva, la tensión sinusoidal de entrada, corriente alterna, se ha convertido en corriente continua.

En definitiva, la tensión sinusoidal de entrada, corriente alterna, se ha convertido en corriente continua. 12. Rectificador de media onda con filtro en C. Esquema eléctrico y principio de funcionamiento: un filtro de condensador es un circuito eléctrico formado por la asociación de diodo y condensador destinado

Más detalles

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA curso 15-16

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA curso 15-16 3º ESO TPR Tema Electrónica sencilla 2015-16 página 1 de 11 TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA curso 15-16 Índice de contenido 1 Electrónica...2 2 Circuitos más claros: separamos + y de la pila...2 3 El

Más detalles

Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes. Materia: Laboratorio de Electrónica Digital I

Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes. Materia: Laboratorio de Electrónica Digital I Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes Materia: Laboratorio de Electrónica Digital I Práctica Número 5 Características eléctricas de la familia TTL Objetivo:

Más detalles

PRÁCTICAS DE ELECTRÓNICA DIGITAL

PRÁCTICAS DE ELECTRÓNICA DIGITAL PRÁCTICAS DE ELECTRÓNICA DIGITAL Práctica 0: CONEXIÓN DE LOS CIRCUITOS INTEGRADOS (C.I.) 1º: Para que funcionen correctamente, han de estar conectados a una tensión de 5V. Para realizar esto, el polo (+)

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Medición de temperatura en un recinto cerrado. 2. Objetivos: 3. Teoría. a. Entender el diseño, operación y funcionamiento de los dispositivos de medición de temperatura. Termistores NTC. Son resistencias

Más detalles

Circuitos rectificadores con diodos

Circuitos rectificadores con diodos Circuitos rectificadores con diodos Práctica 3 Índice General 3.1. Objetivos................................ 29 3.2. Introducción teórica.......................... 29 3.3. Ejercicios Propuestos..........................

Más detalles

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN.

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN. JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS Práctica 6 Aplicaciones de los diodos: REGULACIÓN. Objetivo: En esta práctica el estudiante conocerá una de las aplicaciones más importantes del diodo

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.

Más detalles

TEMPORIZADORES Y RELOJES

TEMPORIZADORES Y RELOJES TEMPORIZADORES Y RELOJES Circuitos de tiempo Astable No tiene estado estable. Se usa para generar relojes. Monoestable 1 estado estable y otro inestable. Se usa como temporizador. Biestable 2 estados estables.

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.

Más detalles

CAPITULO 2 CONVERTIDORES DE POTENCIA. El constante progreso y evolución de la ciencia y la tecnología ha provocado en los últimos

CAPITULO 2 CONVERTIDORES DE POTENCIA. El constante progreso y evolución de la ciencia y la tecnología ha provocado en los últimos CAPITULO 2 CONVERTIDORES DE POTENCIA 2.1 INTRODUCCIÓN El constante progreso y evolución de la ciencia y la tecnología ha provocado en los últimos años un fuerte cambio en el tipo de cargas conectadas a

Más detalles

PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA.

PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. 3.1.- Objetivos: Realización de test de componentes activos y pasivos para obtener, a partir de la curva

Más detalles

Divisores de voltaje. 2. Divisor de voltaje ideal. 1.1 Puntos a tratar

Divisores de voltaje. 2. Divisor de voltaje ideal. 1.1 Puntos a tratar Divisores de voltaje Un divisor de voltaje es un circuito simple que reparte la tensión de una fuente entre una o más impedancias conectadas. Con sólo dos resistencias en serie y un voltaje de entrada,

Más detalles

Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico

Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico 1. Objetivos Comprobación experimental de la ley de Ohm a través de la determinación del valor de una resistencia comercial.

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Electrónica 2009-2 13108 Medición de señales eléctricas PRÁCTICA No. 2 LABORATORIO DE NOMBRE DE LA PRÁCTICA

Más detalles

UNIDAD 3: TRANSITORES DE UNION BIPOLAR (BJT S) 1.-OPERACIÓN DEL TRANSISTOR BIPOLAR

UNIDAD 3: TRANSITORES DE UNION BIPOLAR (BJT S) 1.-OPERACIÓN DEL TRANSISTOR BIPOLAR UNIDAD 3: TRANSITORES DE UNION BIPOLAR (BJT S) 1.-OPERACIÓN DEL TRANSISTOR BIPOLAR El transistor de unión bipolar (del inglés Bipolar Junction Transistor, o sus siglas BJT) es un dispositivo electrónico

Más detalles

Práctica 5. Demodulador FSK mediante PLL

Práctica 5. Demodulador FSK mediante PLL Práctica 5. Demodulador FS mediante PLL 5.. Objetivos Estudiar el funcionamiento de un PLL y su aplicación para la demodulación de una señal modulada FS. 5.. El PLL LM565 El LM565 es un circuito de fase

Más detalles

Principios eléctricos y aplicaciones digitales. Objeto de Estudio 1 Electrónica Analógica

Principios eléctricos y aplicaciones digitales. Objeto de Estudio 1 Electrónica Analógica Principios eléctricos y aplicaciones digitales Objeto de Estudio 1 Electrónica Analógica Contenido 1.1 Corriente alterna y corriente directa 1.2 Dispositivos Pasivos 1.3 Dispositivos Activos 1.4 Amplificadores

Más detalles

Efecto de la capacitancia en las largas longitudes de cables de mando en la actuación de contactores

Efecto de la capacitancia en las largas longitudes de cables de mando en la actuación de contactores Efecto de la capacitancia en las largas longitudes de cables de mando en la actuación de contactores 0. Introducción: El contactor es el aparato de conexión muy importante en las aplicaciones industriales

Más detalles

Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA

Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones en serie y en paralelo. Comprobar experimentalmente las

Más detalles

EJERCICIO 1 EJERCICIO 2

EJERCICIO 1 EJERCICIO 2 EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la

Más detalles

FUENTE DE ALIMENTACION DE ONDA COMPLETA

FUENTE DE ALIMENTACION DE ONDA COMPLETA FUENTE DE ALIMENTACION DE ONDA COMPLETA I. OBJETIVOS Definición de una fuente de baja tensión. Análisis de tensión alterna y continúa en dicha fuente. Partes básicas de una fuente de baja tensión. Contrastación

Más detalles

Diodos. Introducción. Unión PN

Diodos. Introducción. Unión PN Diodos. Introducción Los resistores y condensadores tienen la particularidad de comportarse de la misma manera en un circuito independientemente del sentido en que la corriente los atraviesa. En el caso

Más detalles

B. Arranque de Motor con Voltaje Reducido

B. Arranque de Motor con Voltaje Reducido Generadores Enfriados por Líquido - Manual de Aplicación B. Arranque de Motor con Voltaje Reducido Aunque la caída de voltaje causa diferentes problemas, una reducción controlada en las terminales del

Más detalles

ELECTRÓNICA DE POTENCIA

ELECTRÓNICA DE POTENCIA ELECTRÓNICA DE POTENCIA RELACIÓN DE PROBLEMAS (3) PROBLEMA 12: Diodo de libre circulación En la figura 12 se muestra el circuito con diodo de libre circulación donde dicho diodo ha sido sustituido por

Más detalles

ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO

ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO 2. ELEMENTOS DE UN CIRCUITO 3. MAGNITUDES ELÉCTRICAS 4. LEY DE OHM 5. ASOCIACIÓN DE ELEMENTOS 6. TIPOS DE CORRIENTE 7. ENERGÍA ELÉCTRICA. POTENCIA 8. EFECTOS DE LA

Más detalles

TRABAJO PRÁCTICO NÚMERO 3: Diodos II. Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa.

TRABAJO PRÁCTICO NÚMERO 3: Diodos II. Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa. TRABAJO PRÁCTICO NÚMERO 3: Diodos II Diodo como rectificador Objetivos Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa. Introducción teórica De la

Más detalles

TRABAJO PRÁCTICO INTEGRADOR COMPROBADOR DEL ESTADO DE UNA BATERÍA UTILIZANDO LEDS

TRABAJO PRÁCTICO INTEGRADOR COMPROBADOR DEL ESTADO DE UNA BATERÍA UTILIZANDO LEDS U.N.S.J. F.F.H.A. TRABAJO PRÁCTICO INTEGRADOR COMPROBADOR DEL ESTADO DE UNA BATERÍA UTILIZANDO LEDS Alumno: CALABRÓ, RODOLFO Cátedra: ELECTRÓNICA GENERAL Y APLICADA Carrera: Profesorado de Tecnología Fecha:

Más detalles

EJERCICIO 1 EJERCICIO 2

EJERCICIO 1 EJERCICIO 2 EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la

Más detalles

MÉTODOS DE RESOLUCIÓN DE CIRCUITOS

MÉTODOS DE RESOLUCIÓN DE CIRCUITOS MÉTODOS DE RESOLUCIÓN DE CIRCUITOS Un circuito eléctrico está formado por elementos activos (generadores) y pasivos (resistencias, condensadores, y bobinas). En muchas ocasiones estos elementos forman

Más detalles

MCBtec Mas información en

MCBtec Mas información en MCBtec Mas información en www.mcbtec.com INDICE: DISEÑO FUENTES DE ALIMENTACIÓN LINEALES 1. Introducción. 2. Estructura básica. 3. Conexión red eléctrica. 4. Fusible. 5. Filtro de red. 6. Transformador.

Más detalles

Unidad didáctica: "Electrónica Analógica"

Unidad didáctica: Electrónica Analógica Unidad didáctica: "Electrónica Analógica" 1.- Introducción. 2.- La resistencia. 3.- El condensador. 4.- El diodo. 5.- El transistor. 1.- Introducción. La electrónica se encarga de controlar la circulación

Más detalles

1. Los conductores eléctricos. Las resistencias fijas y variables.

1. Los conductores eléctricos. Las resistencias fijas y variables. 1. Los conductores eléctricos. Las resistencias fijas y variables. La corriente eléctrica continua (DC), se puede explicar como el flujo de electrones por un conductor. Para definir este transporte, se

Más detalles

MEDICIONES DE RESISTENCIA Y POTENCIA DC

MEDICIONES DE RESISTENCIA Y POTENCIA DC PRACTICA Nº 3 MEDICIONES DE RESISTENCIA Y POTENCIA DC Objetivos Analizar el funcionamiento del Puente de Wheatstone y efectuar mediciones de resistencias aplicando el método de detección de cero. Efectuar

Más detalles

RESISTENCIAS EN PARALELO

RESISTENCIAS EN PARALELO INDICE RESISTENCIA LEY DE OHM TEMPERATURA POTENCIA ENERGIA LEY DE JOULE RESISTENCIAS EN SERIE RESISTENCIAS EN PARALELO CIRCUITOS MIXTOS Familia electricidad /electrónica C:problema 1 RESISTENCIA R L s

Más detalles

TEMA II: COMPONENTES PASIVOS.

TEMA II: COMPONENTES PASIVOS. TEMA II: COMPONENTES PASIVOS. PROBLEMA 2.1. De un determinado resistor variable, con ley de variación lineal, se conoce el valor de su corriente nominal I n = 30 ma, y de su resistencia nominal Rn = 2K.

Más detalles

PRÁCTICA Nº 1. INSTRUMENTOS DE MEDICIÓN

PRÁCTICA Nº 1. INSTRUMENTOS DE MEDICIÓN PÁCTICA Nº 1. INSTUMENTOS DE MEDICIÓN OBJETIVO Describir las características y funcionamiento del equipo de laboratorio de uso común en el laboratorio de física II. FUNDAMENTO TEÓICO La importancia de

Más detalles

CAPITULO VI TRANSFORMADORES

CAPITULO VI TRANSFORMADORES TRANSFORMADORES APITULO VI TRANSFORMADORES Es uno de los componentes, o partes, de más frecuente empleo en electricidad y radio. La palabra misma indica que se emplea para transformar, o cambiar algo.

Más detalles

Divisor de tensión y puente de Wheatstone

Divisor de tensión y puente de Wheatstone Divisor de tensión y puente de Wheatstone Experiencia 4 1.- OBJETIVOS 1. Derivar pequeñas tensiones a partir de una tensión disponible. 2. Si se conecta una carga al divisor de tensión (resistencia de

Más detalles

CEDEHP Profesor: Agustín Solís M. Medición y análisis de componentes y circuitos electrónicos CUESTIONARIO NRO. 2. El Transistor

CEDEHP Profesor: Agustín Solís M. Medición y análisis de componentes y circuitos electrónicos CUESTIONARIO NRO. 2. El Transistor CUESTIONARIO NRO. 2 El Transistor 1.- El transistor es un dispositivo electrónico semiconductor que cumple funciones de? R: amplificador, oscilador, conmutador o rectificador. 2.- El término "transistor"

Más detalles

ACTIVIDADES DE ELECTRÓNICA

ACTIVIDADES DE ELECTRÓNICA ACTIVIDADES DE ELECTRÓNICA 1. Dibuja el símbolo de los siguientes componentes electrónicos y explica su función: COMPONENTE IMAGEN REAL SÍMBOLO FUNCIÓN RESISTENCIA FIJA POTENCIÓMETRO LDR TERMISTOR (NTC)

Más detalles

Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro

Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro Tecnología Electrónica Práctica 1 GRUPO (día y hora): PUESTO: Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro Medidas de resistencias Identificar, mediante

Más detalles

Tema 3. Resistores Variables

Tema 3. Resistores Variables Tema 3. Resistores Variables Definición y partes Aplicaciones Indice Montaje en reóstato Montaje en potenciómetro Leyes de variación Conformidad y resolución Tipos y construcción Parámetros definitorios

Más detalles

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS LEYES DE LOS CIRCUITOS ELECTRICOS CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS Con estas leyes podemos hallar las corrientes y voltajes en cada una de las resistencias de los diferentes circuitos de CD.

Más detalles

Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD

Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD Generador olar de Energía Eléctrica a 00W CAPÍTU III Convertidores CD-CD 3.1.- Introducción En muchas aplicaciones industriales se requiere convertir un voltaje fijo de una fuente de cd en un voltaje variable

Más detalles

CONDUCTORES Y AISLANTES CORRIENTE ELÉCTRICA ELEMENTOS BÁSICOS DE UN CIRCUITO SENTIDO DE LA CORRIENTE ELÉCTRICA TECNOLOGÍAS 4ºE.S.O.

CONDUCTORES Y AISLANTES CORRIENTE ELÉCTRICA ELEMENTOS BÁSICOS DE UN CIRCUITO SENTIDO DE LA CORRIENTE ELÉCTRICA TECNOLOGÍAS 4ºE.S.O. CONTENIDOS. Pag 1 de 1 Nombre y Apellidos: Grupo: Nº de lista: CONDUCTORES Y AISLANTES Inicialmente los átomos tienen carga eléctrica neutra, es decir. Nº de protones = Nº de electrones. Si a un átomo

Más detalles

Guía de seguridad eléctrica en el laboratorio

Guía de seguridad eléctrica en el laboratorio Guía de seguridad eléctrica en el laboratorio La presente guía de seguridad pretende establecer unas normas mínimas de comportamiento durante la realización de las prácticas para evitar accidentes derivados

Más detalles

2. GALGAS EXTENSOMÉTRICAS

2. GALGAS EXTENSOMÉTRICAS Manual de Prácticas Pag.: 3-1 2. GALGAS EXTENSOMÉTRICAS 2.1. INTRODUCCIÓN. Esta sesión de prácticas tiene como objetivo profundizar en el conocimiento y manejo de las galgas extensométricas, sensores especialmente

Más detalles

IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica. TAREA 3 Josué Otárola Sánchez

IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica. TAREA 3 Josué Otárola Sánchez IE1117 - Temas especiales II en máquinas eléctricas: Energía solar fotovoltaica TAREA 3 Josué Otárola Sánchez A84674 Ejercicio 2: Cambio de polaridad en la celda solar El montaje realizado se resume en

Más detalles

Parámetros eléctricos Parámetros eléctricos de los Sistemas Digitales

Parámetros eléctricos Parámetros eléctricos de los Sistemas Digitales Parámetros eléctricos Parámetros eléctricos de los Sistemas Digitales Dr. Jose Luis Rosselló Grupo Tecnología Electrónica Universidad de las Islas Baleares! Introducción! Parámetros estáticos! Parámetros

Más detalles

LOS COLORES Y LAS RESISTENCIAS ELÉCTRICAS

LOS COLORES Y LAS RESISTENCIAS ELÉCTRICAS LOS COLORES Y LAS RESISTENCIAS ELÉCTRICAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD. ELECTRÓNICA. ETAPA ESO. BACHILLERATO. Resumen El mundo del color y la tecnología están muy relacionados,

Más detalles