PRÁCTICA PD2 CIRCUITOS RECORTADORES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA PD2 CIRCUITOS RECORTADORES"

Transcripción

1 elab, Laboratorio Remoto de Electrónica ITESM, Depto. de Ingeniería Eléctrica PRÁCTICA PD2 CIRCUITOS RECORTADORES OBJETIVOS Utilizar la característica no lineal de los diodos rectificadores en un circuito recortador. Aplicar una forma de onda de voltaje especifica a un circuito recortador (o limitador) con el objeto de conformar diferentes formas de onda. Entender teóricamente y de forma experimental el funcionamiento de los circuitos recortadores. 1.1 INTRODUCCIÓN La función principal de un circuito recortador es la de recortar una porción de una señal alternante. También puede ser la de limitar el valor máximo que puede tomar una señal de referencia o bien una señal de control, en cuyo caso estos circuitos son también conocidos como circuitos limitadores. Esta acción es llevada a cabo mediante diodos semiconductores en combinación con elementos resistivos y fuentes de voltaje. Los circuitos recortadores se encuentran normalmente en dos configuraciones: serie y paralelo. Al observar las Figuras 1 y 2, se ha de notar que el nombre asignado a cada una de las configuraciones de recortadores se refiere en esencia a como se encuentra colocado el diodo con respecto al voltaje de salida en el circuito. Mientras que en las figuras 1 y 2 el nivel de recorte es de 0 volts, en la Figura 3 se ilustra un circuito recortador en el cual se agrego una fuente de corriente directa, el resultado es un cambio en el nivel de recorte de la señal de acuerdo al valor de la fuente. Circuito recortador típico en serie y formas de onda de voltajes. R Figura 1. Circuito recortador serie y formas de onda de voltaje de entrada y salida. 1

2 Circuito recortador típico en paralelo y formas de onda de voltajes. R Figura 2. Circuito recortador en paralelo y formas de onda de voltaje de entrada y salida. t R V B V B t Figura 3. Circuito recortador en paralelo con fuente de CD y forma de onda de voltaje de entrada y salida para un valor de V B positivo. Observando estas figuras se puede constatar que los circuitos rectificadores de media onda y de onda completa, constituyen un tipo especial de circuitos recortadores, en donde se establece el nivel de corte a cero volts. Consideraciones a tomar en cuenta al analizar un circuito recortador Para el análisis de estos circuitos normalmente es posible usar el modelo simplificado del diodo y considerar despreciable su resistencia interna. Esta aproximación se puede hacer tomando en cuenta que la caída de voltaje en el dispositivo es igual al voltaje de umbral ( threshold voltage ), siendo este aproximadamente de V Th =0.7 V para los diodos de silicio y V Th =0.3 V para los diodos de germanio. El análisis de circuitos recortadores con ondas de voltaje de entrada rectangulares es más fácil de realizar, debido a que cada nivel de voltaje se puede tratar como una entrada de directa y el voltaje de salida se determina para cada intervalo de tiempo correspondiente. Bibliografía 2

3 Libro de Texto: Microelectronics; Circuit Analysis and Design Donal A. Neamen, McGraw Hill, 3 rd Edition, 2007 Libros de Consulta: Electronic Devices Thomas L. Floyd, Prentice Hall, 6 th Edition, 2002 Electronic Circuits; Analysis, Simulation, and Design Norbert R. Malik, Prentice Hall, 1995 Electronic Devices and Circuits Robert T. Paynter, Prentice Hall, 7 th Edition,

4 1.2 ACTIVIDAD PREVIA Instrucciones Siga detalladamente las instrucciones para cada uno de los puntos que se presentan en la presente actividad. Conteste y/o resuelva lo que se le pide en los espacios correspondientes para cada pregunta. Hágalo de manera ordenada y clara, un punto muy importante es el respeto a las reglas de ortografía. En el reporte agregue en el espacio asignado gráficas comparativas, análisis de circuitos, simulaciones en computadora, ecuaciones, referencias bibliográficas, ejemplos, aplicaciones, según sea el caso. No olvide colocar una portada con sus datos de identificación así como los datos relacionados con la práctica en cuestión, como número de práctica, titulo, fecha, etc. Desarrollo de la actividad previa Lea detenidamente el capitulo correspondiente de su libro de texto y en los libros de consulta el material relacionado con circuitos recortadores y conteste lo siguiente. I) Menciona tres aplicaciones de los circuitos recortadores. Además para cada aplicación, explica el papel que desempeña el circuito recortador. II) Realice un análisis de los circuitos que se ilustran en la Figura 4 y explique el comportamiento del diodo a medida que se aplica el voltaje de entrada correspondiente. Dibuje la forma de onda en la salida de cada circuito. Se recomienda corroborar los resultados analíticos mediante una simulación por computadora. Considere que los diodos son ideales. 5 V 5 V 0 t 0 t 5 V 5 V (a) 5 V 0 t 5 V 0 t 5 V 5 V (b) Figura 4. (a) Circuito recortador en serie. (b) Circuitos recortador en paralelo. 4

5 III) Analice el circuito que se ilustra en la Figura 5 del procedimiento (se sugiere corroborar los análisis mediante una simulación) y realice lo siguiente: a) Escriba las ecuaciones que relacionan el voltaje de salida ( ) con los voltajes de los diodos. Haga una sumatoria de voltajes en la malla que contenga al diodo correspondiente y el voltaje de salida. Ecuación que relaciona con el voltaje del diodo 1: Ecuación que relaciona con el voltaje del diodo 2: b) Cuál es el voltaje máximo de salida ( ) cuando el voltaje de entrada es positivo (), es decir, a que valor será recortada la señal cuando el voltaje de entrada sea positivo? v 0max = c) Cuál es el rango de voltajes de la señal de entrada para el cuál el diodo 1 se encuentra polarizado directamente? El rango en que el diodo 1 se encuentra polarizado directamente es: d) Cuál es el rango de voltajes de la señal de entrada para el cuál el diodo 1 se encuentra polarizado inversamente? El rango en que el diodo 1 se encuentra polarizado inversamente es: e) Cuál es el voltaje mínimo de salida ( ) cuando el voltaje de entrada es negativo ( ), es decir, a que valor será recortada la señal cuando el voltaje de entrada sea negativo? v 0min = f) Cuál es el rango de voltajes de la señal de entrada para el cuál el diodo 2 se encuentra polarizado directamente? El rango en que el diodo 2 se encuentra polarizado directamente es: g) Cuál es el rango de voltajes de la señal de entrada para el cuál el diodo 2 se encuentra polarizado inversamente? El rango en que el diodo 2 se encuentra polarizado inversamente es: h) Cuál es el rango de voltajes de la señal de entrada para el cuál ambos diodos se encuentran polarizados directamente? El rango en que los diodos 1 y 2 se encuentran polarizados directamente es: i) Cuál es el rango de voltajes de la señal de entrada para el cuál ambos diodos se encuentran polarizados inversamente? Rango en que los diodos 1 y 2 se encuentran polarizados inversamente: 5

6 j) Cuál es el voltaje de pico inverso (VPI) en cada diodo? O bien Cuál es el voltaje inverso máximo que soporta cada diodo en el circuito? VPI D1 = VPI D2 = Resultado Analítico Resultado Analítico k) Dibuje en el siguiente espacio el voltaje de salida del circuito recortador correspondiente a la forma de onda de voltaje de entrada de la Figura 5 (Dibuje aquí la forma de onda de salida del circuito recortador mostrado en la Figura 5) l) Cuál es el valor máximo de la corriente que se establece en cada diodo? i D1max = i D2max = Resultado Analítico Resultado Analítico 6

7 1.3 PROCEDIMIENTO En esta sección se analiza experimentalmente el circuito recortador en paralelo que se ilustra en la Figura 5. Durante el procedimiento se aplicará la forma de onda de voltaje que se muestra en la parte izquierda de dicha figura, para ello se utiliza la interfase grafica del laboratorio Remoto de Electrónica (elab). Una vez que haya medido cada uno de los parámetros que le hayan sido solicitados durante el procedimiento se le pide que los compare con los resultados analíticos obtenidos en la actividad previa. Vin 8 V 8 V t (ms) kω 2 Vin R i R D1 1N4001 D2 1N V1 5.3V V2 3.3V Gnd Figura 5. Circuito recortador en paralelo con dos fuentes de CD. El valor de R es de 1.2 KΩ a) Voltaje de entrada (t). Aplique la forma de onda de entrada que se ilustra en la Figura 5 al circuito recortador bajo experimentación. Y utilizando el osciloscopio disponible en la interfase grafica del Laboratorio Remoto de Electrónica, elab, mida la forma de onda de voltaje de la señal de entrada. Coloque una imagen de esta señal en el siguiente espacio. (Coloque aquí la imagen disponible en el osciloscopio del elab para la señal de entrada) Anote en el siguiente recuadro los voltajes máximos y mínimos aplicados al circuito. Voltaje máximo de entrada (max) = (min) = Voltaje mínimo de entrada b) Voltaje máximo de salida (t). Utilizando el osciloscopio disponible en la interfase grafica del elab mida el voltaje máximo en la salida del circuito cuando el voltaje de entrada ( ) es positivo (), es decir, a que valor será recortada la señal de salida cuando el voltaje de entrada sea positivo? Coloque el resultado en la siguiente casilla. Voltaje máximo de salida v 0max = v 0max = 7

8 En el siguiente espacio anexe la figura observada en el osciloscopio. (Coloque aquí la imagen disponible en el osciloscopio del elab) c) Polarización del diodo D1. Utilizando el osciloscopio mida la forma de onda de voltaje en las terminales del diodo D1 y anexe esta forma de onda en el siguiente espacio. (Coloque aquí la imagen disponible para el voltaje en las terminales del diodo D1) A partir de la imagen anterior y observando el valor de la fuente de CD que se encuentra en serie con el diodo D1, deduzca la forma de obtener los niveles de voltaje en los que se recorta la forma de onda de salida (t). Describa sus análisis en las siguientes líneas. Realizando ahora las mediciones adecuadas en el circuito, determine lo siguiente: Cuál es el rango de voltajes de la señal de entrada para el cuál el diodo 1 se encuentra polarizado directamente? El rango en que el diodo 1 se encuentra polarizado directamente es: d) Realizando las mediciones adecuadas en el circuito, determine lo siguiente: Cuál es el rango de voltajes de la señal de entrada para el cuál el diodo 1 se encuentra polarizado inversamente? El rango en que el diodo 1 se encuentra polarizado inversamente 8

9 es: e) Voltaje mínimo de salida (t). Utilice el osciloscopio disponible en la interfase grafica del elab y mida el voltaje mínimo en la salida del circuito cuando el voltaje de entrada ( ) es negativo (), es decir, a que valor será recortada la señal de salida cuando el voltaje de entrada sea negativo? Coloque el resultado en la siguiente casilla. Voltaje mínimo de salida v = v = o min 0min f) Polarización del diodo D2. Utilizando el osciloscopio mida la forma de onda de voltaje en las terminales del diodo D2 y anexe esta forma de onda en el siguiente espacio. (Coloque aquí la imagen disponible para el voltaje en las terminales del diodo D2) A partir de la imagen anterior y observando el valor de la fuente de CD que se encuentra en serie con el diodo D2, deduzca la forma de obtener los niveles de voltaje en los que se recorta la forma de onda de salida (t). Describa sus análisis en las siguientes líneas. g) Realizando ahora las mediciones adecuadas en el circuito, determine lo siguiente: Cuál es el rango de voltajes de la señal de entrada para el cuál el diodo 2 se encuentra polarizado directamente? Rango en que el diodo 2 se encuentra polarizado directamente: h) Realizando las mediciones adecuadas en el circuito, determine lo siguiente: Cuál es el rango de voltajes de la señal de entrada para el cuál el diodo 2 se encuentra polarizado inversamente? Rango en que el diodo 2 se encuentra polarizado inversamente: 9

10 i) Polarización directa de ambos diodos. Con las mediciones hechas hasta este momento determine: Cuál es el rango de voltajes de la señal de entrada para el cuál ambos diodos se encuentran polarizados directamente? El rango de voltaje de la señal de entrada en el que ambos diodos se encuentran polarizados directamente es: j) Polarización inversa de ambos diodos. Con las mediciones hechas hasta este momento determine: Cuál es el rango de voltajes de la señal de entrada para el cuál ambos diodos se encuentran polarizados inversamente? El rango de voltaje de la señal de entrada en el que ambos diodos se encuentran polarizados inversamente es: k) Voltaje de pico inverso en cada diodo. Realice las mediciones adecuadas y determine: Cuál es el voltaje de pico inverso (VPI) en cada diodo? O bien Cuál es el voltaje inverso máximo que soporta cada diodo en el circuito? Voltaje de pico inverso en el diodo D1 Voltaje de pico inverso en el diodo D2 VPI D1 = VPI D1 = VPI D2 = VPI D2 = l) Voltajes en las terminales del resistor R. Mida ahora la forma de onda en las terminales del resistor R, coloque esta forma de onda en el siguiente espacio. (Coloque aquí la imagen disponible para el voltaje en las terminales del resistor R) Observe la imagen anterior y compárela con las señal presente en la entrada del circuito (Utilice la instrumentación del elab para observar la señal de entrada). Una vez hecha la comparación entre 10

11 ambas formas de onda, explique teóricamente y mediante análisis de mallas en el circuito, de que forma puede usted obtener la señal de salida del circuito a partir de estas dos señales. m) Corriente en el resistor R, i R. A partir de la forma de onda de voltaje en el resistor R, obtenida en el inciso anterior, calcule la corriente pico máxima y mínima que es demandada por el circuito; coloque el resultado de este calculo a continuación. Corriente pico máxima en el resistor R i R(max) = i R(max) = Corriente pico mínima en el resistor R i R(min) = i R(min) = Que relación tienen estas corrientes con las corrientes que circulan por los diodos? Escriba sus comentarios enseguida. n) Corriente máxima en los diodos. Utilizando la instrumentación disponible en el elab calcule la corriente máxima que circula por cada diodo. Explique también el procedimiento que llevo a cabo para obtener cada uno de estos datos de corriente. Corriente máxima en el diodo D1 Corriente máxima en el diodo D2 I D1(max) = I D1(max) = I D2(min) = I D2(min) = Describa aquí Cuál fue el procedimiento que siguió para obtener el valor de la corriente máxima en el diodo D1? Describa aquí Cuál fue el procedimiento que siguió para obtener el valor de la corriente máxima en el diodo D2? 1.4 ACTIVIDADES Y CONCLUSIONES FINALES 1) Explique de forma clara y concisa el papel que desempeñan cada uno de los componentes del circuito estudiado en la presente práctica. Diodos D1 y D2: 11

12 Fuentes de voltaje de CD: Resistencia de entrada R: 2) Explique lo que sucede en la señal de salida se si realizan las siguientes modificaciones en el circuito (considere que se aplica una sola modificación a la vez): a) Se reduce el valor de la resistencia de entrada R. b) Se incrementa el nivel de CD de una de las dos fuentes de voltaje c) Se invierte la polaridad de una de las dos fuentes de voltaje de CD d) Se invierte la dirección de conducción del diodo D1 e) Se intercambia la posición de ambos diodos 3) Explique la operación del circuito en estado estable si se aplica el cambio que se menciona en cada uno de los siguientes incisos (un inciso a la vez). Dibuje la señal de salida que esperaría obtener para cada caso. a) Quitar el diodo D2 y reemplazarlo con un corto circuito. b) Quitar el diodo D1 y reemplazarlo por un circuito abierto. c) Establecer el valor de la fuente V1 a cero volts. d) Establecer el valor de ambas fuentes de CD en cero volts. e) Establecer un valor de la resistencia R de cero ohms f) Reemplazar el diodo D2 y la fuente V2 por un corto circuito. 4) Anote enseguida sus conclusiones generales de la presente práctica: 12

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER elab, Laboratorio Remoto de Electrónica ITEM, Depto. de Ingeniería Eléctrica PRÁCTICA PD4 REGULACIÓN DE OLTAJE CON DIODO ENER OBJETIO Analizar teóricamente y de forma experimental la aplicación de diodos

Más detalles

PRÁCTICA PD5 Fuentes de Poder de CD

PRÁCTICA PD5 Fuentes de Poder de CD elab, Laboratorio Remoto de Electrónica ITESM, Depto. de Ingeniería Eléctrica PRÁCTICA PD5 Fuentes de Poder de CD OBJETIVO Entender el funcionamiento de los circuitos rectificadores de media onda y onda

Más detalles

PRÁCTICA PF2 MODOS DE OPERACIÓN DEL TRANSISTOR DE EFECTO DE CAMPO

PRÁCTICA PF2 MODOS DE OPERACIÓN DEL TRANSISTOR DE EFECTO DE CAMPO elab, Laboratorio Remoto de Electrónica TESM, epto. de ngeniería Eléctrica PRÁCTCA PF2 MOOS E OPERACÓN EL TRANSSTOR E EFECTO E CAMPO OBJETOS Conocer los diferentes modos de operación del transistor de

Más detalles

PRÁCTICA PB4 AMPLIFICACIÓN DE VOLTAJE CON TRANSISTORES BIPOLARES

PRÁCTICA PB4 AMPLIFICACIÓN DE VOLTAJE CON TRANSISTORES BIPOLARES elab, Laboratorio Remoto de Electrónica ITESM, Depto. de Ingeniería Eléctrica PRÁCTICA PB4 AMPLIFICACIÓN DE VOLTAJE CON TRANSISTORES BIPOLARES OBJETIVOS Entender el funcionamiento de los circuitos que

Más detalles

Práctica PB2 MODOS DE OPERACIÓN DEL TRANSISTOR BIPOLAR

Práctica PB2 MODOS DE OPERACIÓN DEL TRANSISTOR BIPOLAR elab, Laboratorio Remoto de Electrónica ITESM, Depto. de Ingeniería Eléctrica Práctica PB2 MODOS DE OPERACIÓN DEL TRANSISTOR BIPOLAR OBJETIVOS Conocer los diferentes modos de operación del transistor bipolar

Más detalles

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADASDEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA FISICA ASIGNATURA: FUNDAMENTOS DE FISICA APLICADA

Más detalles

2. Obtener experimentalmente la curva característica voltaje-corriente de un diodo

2. Obtener experimentalmente la curva característica voltaje-corriente de un diodo OBJETIVOS 1. Comprobar de forma experimental que la intensidad de corriente a través de un diodo semiconductor es una función exponencial del voltaje aplicado entre sus terminales. 2. Obtener experimentalmente

Más detalles

Experimento 4: Circuitos Recortadores y Sujetadores con Diodos

Experimento 4: Circuitos Recortadores y Sujetadores con Diodos Tecnológico de Costa Rica I Semestre 2012 Escuela de Ingeniería Electrónica Laboratorio de Electrónica Analógica Profesor: Ing. Javier Pérez R. I Experimento 4: Circuitos Recortadores y Sujetadores con

Más detalles

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS OBJETIVO Familiarizar al estudiante con los conceptos fundamentales

Más detalles

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ (20112007038) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Observar la amplificación del transistor mediante un análisis y diseño

Más detalles

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Analizar y experimentar con un regulador de tensión a base de diodos Zener. 2. Medir los valores más importantes de los rectificadores monofásicos de media onda, onda completa con tap central

Más detalles

Figura Amplificador inversor

Figura Amplificador inversor UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS CIRCUITOS BÁSICOS DEL AMPLIFICADOR OPERACIONAL

Más detalles

Guía de laboratorio No. 4 DIODO ZENER Y AMPLIFICADOR OPERACIO- NAL

Guía de laboratorio No. 4 DIODO ZENER Y AMPLIFICADOR OPERACIO- NAL Guía de laboratorio No. 4 DIODO ZENER Y AMPLIFICADOR OPERACIO- NAL En esta guía se estudiará el diodo Zener como regulador de tensión, así como la aplicación de circuitos integrados con amplificadores

Más detalles

PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES

PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS I EC1181 PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES OBJETIVO Familiarizar al estudiante con el diseño y

Más detalles

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

Más detalles

LABORATORIO DE ELEMENTOS DE ELECTRONICA

LABORATORIO DE ELEMENTOS DE ELECTRONICA Práctica 7 Diodos y sus aplicaciones 7.2.3 Utilice el programa simulador para probar los circuitos de la Figura 7.2.2. Para cada uno, indique el tipo de circuito de que se trata y obtenga la gráfica de

Más detalles

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo Electrónica II. Guía 3 1 AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21

Más detalles

La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. Electromecánica Laboratorio de Electrónica I. Segundo Semestre 215 OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Obtener la ganancia del circuito a partir del

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 02-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 02 NOMBRE DE LA PRACTICA: Diodo de Unión Bipolar LUGAR DE EJECUCIÓN:

Más detalles

DIODOS Y TRANSISTORES.

DIODOS Y TRANSISTORES. INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 1.0.0. DIODOS Y TRANSISTORES. Caracterización de el diodo. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del 2015 Practica:

Más detalles

PRACTICA Nº 3 EL MULTIVIBRADOR BIESTABLE Y MONOESTABLE PREPARACION TEORICA

PRACTICA Nº 3 EL MULTIVIBRADOR BIESTABLE Y MONOESTABLE PREPARACION TEORICA 15 3.1 Introducción: PRACTICA Nº 3 EL MULTIVIBRADOR BIESTABLE Y MONOESTABLE PREPARACION TEORICA Como lo señala su nombre, el biestable es un tipo de multivibrador que solo posee dos estados operativos

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA CICLO: I/215 GUIA DE LABORATORIO #8 Nombre de la Practica: Circuitos Rectificadores de Onda Lugar de Ejecución: Fundamentos

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 6 LABORATORIO DE NOMBRE DE LA

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 4 LABORATORIO DE NOMBRE DE LA

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo Electrónica II. Guía 3 1 AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OBJETIVOS. Analizar y experimentar con un regulador de tensión a base de diodos Zener.. Medir los valores más importantes de los rectificadores monofásicos de media onda, onda completa con tap central

Más detalles

DIODOS Y TRANSISTORES.

DIODOS Y TRANSISTORES. INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 3.0.0. DIODOS Y TRANSISTORES. Amplificadores con transistor BJT. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del 2015

Más detalles

CAPITULO XIII RECTIFICADORES CON FILTROS

CAPITULO XIII RECTIFICADORES CON FILTROS CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:

Más detalles

PRACTICA Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER

PRACTICA Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER OBJETIVO Familiarizar al estudiante

Más detalles

EL3004-Circutios Electrónicos Analógicos

EL3004-Circutios Electrónicos Analógicos EL3004-Circutios Electrónicos Analógicos Clase No. 7: Operación del diodo Marcos Diaz Departamento de Ingeniería Eléctrica (DIE) Universidad de Chile Septiembre, 2011 Marcos Diaz (DIE, U. Chile) EL3004-Circuitos

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9 Electrónica I. Guía 3 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES

Más detalles

4. El diodo semiconductor

4. El diodo semiconductor 4. El diodo semiconductor Objetivos: Comprobar el efecto de un circuito rectificador de media onda con una onda senoidal de entrada. Observar cómo afecta la frecuencia en el funcionamiento de un diodo

Más detalles

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN.

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN. JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS Práctica 6 Aplicaciones de los diodos: REGULACIÓN. Objetivo: En esta práctica el estudiante conocerá una de las aplicaciones más importantes del diodo

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar

Más detalles

CARACTERISTICAS DEL JFET.

CARACTERISTICAS DEL JFET. Electrónica I. Guía 4 1 / 1 CARACTERISTICAS DEL JFET. Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21).

Más detalles

MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL

MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS EC1113 PRACTICA Nº 1 MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL

Más detalles

La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Analizar un transistor bipolar, respecto de la medición de sus terminales. 3. Verificar la polarización y Zonas

Más detalles

Amplificadores operacionales con diodos

Amplificadores operacionales con diodos 5 Amplificadores operacionales con diodos 5.1 Introducción En este capítulo se estudian los circuitos amplificadores operacionales que incorporan diodos. Estos componentes no lineales hacen que la característica

Más detalles

CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.

CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 5 Objetivos CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL * Realizar montajes de circuitos electrónicos

Más detalles

RECTIFICACIÓN. Objetivos específicos. Materiales y equipo. Procedimiento

RECTIFICACIÓN. Objetivos específicos. Materiales y equipo. Procedimiento Electrónica I. Guía 3 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). RECTIFICACIÓN Objetivos específicos Observar

Más detalles

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Electrónica Analógica

Más detalles

DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107)

DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107) CÓDIGO: PAG.: 1 I Redes s I. (2107) PROPÓSITOS Esta asignatura es la continuación de los estudios en electrónica que deben cursar los estudiantes del ciclo común en el plan de estudio de y es requisito

Más detalles

PRACTICA Nº 2 CIRCUITOS NO LINEALES CON AMPLIFICADORES OPERACIONALES PREPARACIÓN TEÓRICA

PRACTICA Nº 2 CIRCUITOS NO LINEALES CON AMPLIFICADORES OPERACIONALES PREPARACIÓN TEÓRICA 9 PRACTICA Nº CIRCUITOS NO LINEALES CON AMPLIFICADORES OPERACIONALES PREPARACIÓN TEÓRICA.- INTRODUCCION En diversas situaciones se requiere el empleo de circuitos que modifican en forma no-lineal las señales

Más detalles

Práctica 1: Características de Diodos Semiconductores

Práctica 1: Características de Diodos Semiconductores Práctica 1: Características de Diodos Semiconductores Objetivo: Identificar y medir características de diodos rectificadores, emisores de luz (leds) y zener. Referencias: 1. Boylestad, Electronic Devices

Más detalles

GUIA DE EXPERIMENTOS

GUIA DE EXPERIMENTOS GUIA DE EXPERIMENTOS LABORATORIO N. 03 CURSO: Tema: Dispositivos Electrónicos Curvas Características del Diodo Zener Alumnos Integrantes:...... Nota PAGINA 1 CARACTERISTICA DEL DIODO DE RUPTURA ZENER *

Más detalles

Laboratorio #3 VERIFICACIÓN EXPERIMENTAL DE MÉTODOS Y TEOREMAS DE CIRCUITOS

Laboratorio #3 VERIFICACIÓN EXPERIMENTAL DE MÉTODOS Y TEOREMAS DE CIRCUITOS Miguel illalobos O. Laboratorio #3 ERIFICACIÓN EXPERIMENTAL DE MÉTODOS Y TEOREMAS DE CIRCUITOS OBJETIOS: Aplicación y comprobación experimental del método de Mallas, de los teoremas de Superposición, Thevenin

Más detalles

CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR

CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR Un diodo es un dispositivo semiconductor. Los dispositivos semiconductores varían sus propiedades al variar la temperatura (son sensibles a la temperatura).

Más detalles

Práctica No 1: Características Estáticas de los Instrumentos de Medición

Práctica No 1: Características Estáticas de los Instrumentos de Medición Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Bioinstrumentación I Revisada por: Prof. Rafael Volcanes Tec. Carlos Alba, Tec.

Más detalles

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores JFET. 2. Familiarizar al estudiante con el uso de los manuales de los fabricantes de transistores FET para entender y manejar

Más detalles

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS. Entender el comportamiento y las características del amplificador operacional.. Medir ganancia, impedancia de entrada y salida de las configuraciones básicas del amplificador operacional: amplificador

Más detalles

MEDICIONES EN CORRIENTE ALTERNA (AC)

MEDICIONES EN CORRIENTE ALTERNA (AC) UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 5 MEDICIONES EN CORRIENTE ALTERNA (AC) Objetivos Usar adecuadamente los diversos

Más detalles

CIRCUITOS RECTIFICADORES

CIRCUITOS RECTIFICADORES Electrónica I. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES Objetivos generales

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR SOURCE COMUN Objetivo:

Más detalles

UNIVERSIDAD AUTONOMA DE QUERETARO Facultad de Informática

UNIVERSIDAD AUTONOMA DE QUERETARO Facultad de Informática ELECTRÓNICA ANALÓGICA(1302). ÁREA DE CONOCIMIENTO: ARQUITECTURA DE LAS COMPUTADORAS CRÉDITOS: 7 HORAS TEÓRICAS ASIGNADAS A LA SEMANA: 2 HORAS PRÁCTICAS ASIGNADAS A LA SEMANA: 2 PROGRAMAS EDUCATIVOS EN

Más detalles

Práctica 4 Detector de ventana

Práctica 4 Detector de ventana Práctica 4 Detector de ventana Objetivo de la práctica Analizar el comportamiento de un detector de ventana Al terminar esta práctica, el discente será capaz de: Comprender el funcionamiento de un circuito

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION. Electrónica I. Guía 2 1

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION. Electrónica I. Guía 2 1 Electrónica I. Guía 2 1 DIODO DE UNION Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). Objetivos generales

Más detalles

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales descritas en los instrumentos de medición para AC.

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales descritas en los instrumentos de medición para AC. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 7 INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Objetivos Interpretar las

Más detalles

Amplificador inversor y no inversor

Amplificador inversor y no inversor Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Amplificador inversor y no inversor Objetivo General Implementar los circuitos amplificadores

Más detalles

Universidad Nacional de Quilmes Electrónica Analógica I. Diodo: Circuitos rectificadores

Universidad Nacional de Quilmes Electrónica Analógica I. Diodo: Circuitos rectificadores 1 Diodo: Circuitos rectificadores Una aplicación típica de los diodos es en circuitos rectificadores los cuales permiten convertir una tensión alterna en una tensión continua. Los circuitos rectificadores

Más detalles

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA Laboratorio de Circuitos/ Electrotecnia PRÁCTICA 2 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Analizar el funcionamiento de circuitos resistivos conectados

Más detalles

Resistores en circuitos eléctricos

Resistores en circuitos eléctricos Resistores en circuitos eléctricos Experimento : Resistencias en circuitos eléctricos Estudiar la resistencia equivalente de resistores conectados tanto en serie como en paralelo. Fundamento Teórico. Cuando

Más detalles

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales de los instrumentos de medición AC.

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales de los instrumentos de medición AC. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 7 Objetivos INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Usar adecuadamente

Más detalles

Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien.

Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien. Electrónica II. Guía 6 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). OSCILADOR DE PUENTE DE WIEN

Más detalles

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado.

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado. ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 1 Instrumentación y Objetivos Particulares Conocer las características, principio de funcionamiento

Más detalles

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS.

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS. Tema: Circuito cicloconvertidor. Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. I. OBJETIVOS. Implementar diferentes circuitos de inversores utilizando SCR S de potencia.

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR

AMPLIFICADOR INVERSOR Y NO INVERSOR 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Determinar

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Obtener la ganancia del circuito a partir del modelo en pequeña señal del transistor BJT. 3. Observar como varían

Más detalles

Guía de la Práctica de Rectificación de la CA LABORATOIO DE ELECTROMAGNETISMO RECTIFICACIÓN DE LA CORRIENTE ALTERNA CA

Guía de la Práctica de Rectificación de la CA LABORATOIO DE ELECTROMAGNETISMO RECTIFICACIÓN DE LA CORRIENTE ALTERNA CA Página 1 de 3 LABORATOIO DE ELECTROMAGNETISMO RECTIFICIÓN DE LA CORRIENTE ALTERNA HERIBERTO PEÑA PEDRAZA df.g@unipamplona.edu.co FCB DEPARTAMENTO DE FÍSI Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA- COLOMBIA 2016-2

Más detalles

FDE - Fundamentos de Electrónica

FDE - Fundamentos de Electrónica Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 230 - ETSETB - Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona 710 - EEL - Departamento de Ingeniería

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADOR DIFERENCIAL DISCRETO

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADOR DIFERENCIAL DISCRETO AMPLIFICADOR DIFERENCIAL DISCRETO LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Se implementarán los circuitos planteados en la guía entregada del laboratorio

Más detalles

EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA Y EN DELTA.

EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA Y EN DELTA. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 8 Objetivos EL VATIMETRO ANALOGICO. CIRCUITOS TRIFASICOS: CONEXION EN ESTRELLA

Más detalles

FORMATO DE CONTENIDO DE CURSO

FORMATO DE CONTENIDO DE CURSO PÁGINA: 1 de 6 FACULTAD DE: CIENCIAS BÁSICAS PROGRAMA DE: FÍSICA PLANEACIÓN DEL CONTENIDO DE CU 1. IDENTIFICACIÓN DEL CURSO NOMBRE : ELECTRÓNICA I CÓDIGO : 210120 SEMESTRE : VI NUMERO DE CRÉDITOS : 4 REQUISITOS

Más detalles

COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica

COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica Electrónica II. Guía 4 1/1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). COMPARADORES. Objetivos

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO LABORATORIO 2: USO DE INSTRUMENTOS DE MEDICIÓN ELÉCTRICA (PARTE II) I. OBJETIVOS OBJETIVO

Más detalles

El amplificador diferencial (AD) es un circuito utilizado para amplificar la diferencia de dos señales v1 y v2 como se indica en la figura.

El amplificador diferencial (AD) es un circuito utilizado para amplificar la diferencia de dos señales v1 y v2 como se indica en la figura. CURSO: ELECTRÓNICA ANALÓGICA UNIDAD I: EL AMPLIFICADOR DIFERENCIAL PROFESOR: JORGE ANTONIO POLANÍA El amplificador diferencial es un circuito que constituye parte fundamental de muchos amplificadores y

Más detalles

PROPÓSITO: Al finalizar la unidad el alumno será capaz de armar circuitos con semiconductores e identificar sus terminales y aplicaciones.

PROPÓSITO: Al finalizar la unidad el alumno será capaz de armar circuitos con semiconductores e identificar sus terminales y aplicaciones. PRACTICA No.1 NOMBRE: Semiconductores UNIDAD DE APRENDIZAJE: 1 PROPÓSITO: Al finalizar la unidad el alumno será capaz de armar circuitos con semiconductores e identificar sus terminales y aplicaciones.

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 4: Circuitos limitadores Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 11 de Agosto de 2009 1 / Contenidos Circuitos

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 4: Circuitos limitadores Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 11 de Agosto de 2009 1 / Contenidos Circuitos

Más detalles

RECTIFICACIÓN DE MEDIA ONDA

RECTIFICACIÓN DE MEDIA ONDA RECTIFICACIÓN DE MEDIA ONDA I. OBJETIVOS Definir lo que es una fuente de baja tensión. Analizar los componentes a utilizar. Montaje del circuito. Análisis de tensión (AC-DC). Determinar las gráficas a

Más detalles

Guía de laboratorio No. 6 EL TRANSISTOR MOSFET: CARACTERIZACIÓN Y APLICACIONES BÁSICAS

Guía de laboratorio No. 6 EL TRANSISTOR MOSFET: CARACTERIZACIÓN Y APLICACIONES BÁSICAS Guía de laboratorio No. 6 EL TRANSISTOR MOSFET: CARACTERIZACIÓN Y APLICACIONES BÁSICAS En esta guía se realiza una primera aproximación a las características y polarización de transistores MOSFET, además

Más detalles

USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES

USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 5 Objetivos USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE-

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica

Más detalles

Electrónica 1. Práctico 3 Diodos 1

Electrónica 1. Práctico 3 Diodos 1 Electrónica 1 Práctico 3 Diodos 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

USO DE INSTRUMENTOS DE LABORATORIO

USO DE INSTRUMENTOS DE LABORATORIO 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). USO DE INSTRUMENTOS DE LABORATORIO Objetivo General Obtener

Más detalles

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS.

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. OBJETIVO DE LA PRÁCTICA. PRÁCTICA #2 EL AMPLIFICADOR OPERACIONAL Hacer la comprobación experimental de la función

Más detalles

EL AMPLIFICADOR CON BJT

EL AMPLIFICADOR CON BJT 1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia

Más detalles

INTEGRADOR Y DERIVADOR

INTEGRADOR Y DERIVADOR 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). INTEGRADOR Y DERIVADOR Objetivo general Verificar el funcionamiento

Más detalles

ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO

ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO PORTADA Nombre de la universidad Facultad de Ingeniería Ensenada Carrera Materia Alumno Nombre y número de Práctica Nombre del maestro Lugar y fecha CONTENIDO

Más detalles

PRACTICA Nº 7 CARACTERISTICAS DEL BJT, AMPLIFICADOR EMISOR COMUN

PRACTICA Nº 7 CARACTERISTICAS DEL BJT, AMPLIFICADOR EMISOR COMUN UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 7 CARACTERISTICAS DEL BJT, AMPLIFICADOR EMISOR COMUN OBJETIVO * Familiarizar al estudiante con el

Más detalles

PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.

PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL OBJETIVOS * Realizar montajes de circuitos

Más detalles

Circuitos rectificadores con diodos

Circuitos rectificadores con diodos Circuitos rectificadores con diodos Práctica 3 Índice General 3.1. Objetivos................................ 29 3.2. Introducción teórica.......................... 29 3.3. Ejercicios Propuestos..........................

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Dispositivos y Circuitos

Más detalles

Laboratorio de Electrónica Industrial. Controladores de Voltaje de Corriente Alterna

Laboratorio de Electrónica Industrial. Controladores de Voltaje de Corriente Alterna ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 6 Controladores de Voltaje de Corriente Alterna Objetivos Particulares Conocer el principio de funcionamiento

Más detalles

CONFIGURACIONES BÁSICAS

CONFIGURACIONES BÁSICAS PRACTICA N 1 AMPLIFICACIÓN Y COMPARACIÓN DE SEÑALES CON AMPLIFICADOR OPERACIONAL El objetivo de esta práctica es el de familiarizarse con algunas de las configuraciones básicas del amplificador operacional,

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRÓNICA ANALÓGICA

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRÓNICA ANALÓGICA TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRÓNICA ANALÓGICA 1. Competencias Gestionar las actividades de mantenimiento mediante la

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

INTRODUCCIÓN A LOS AMPLIFICADORES OPERACIONALES. Objetivo general. Objetivos específicos. Materiales y equipo. Introducción Teórica

INTRODUCCIÓN A LOS AMPLIFICADORES OPERACIONALES. Objetivo general. Objetivos específicos. Materiales y equipo. Introducción Teórica Electrónica II. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). INTRODUCCIÓN A LOS AMPLIFICADORES

Más detalles