BREVE INTRODUCCIÓN N A LA
|
|
|
- Cristóbal Botella Ávila
- hace 9 años
- Vistas:
Transcripción
1 BREVE INTRODUCCIÓN N A LA MECÁNICA CUÁNTICA
2 Desarrollo Histórico
3 Estado de la Física hacia 1900 Fines del siglo XIX y principios del XX, la Física reina absoluta Newton había sentado las bases de la mecánica y la gravitación Adams y Le Verrier predicen la existencia de Neptuno (1846) Maxwell sintetiza las leyes del Electromagnetismo Determinismo clásico
4 La Cuantización De La Energía a resuelve un problema Los cuerpos incandescentes emiten luz cuyo color varía con la temperatura. La física no podía explicar cómo era el mecanismo de emisión. Catástrofe del ultravioleta Max Planck: Logra resolver el problema suponiendo que la energía se emitía sólo como múltiplo de un valor básico: E = n h ν h = 6,6x10-34 J.s Nº entero Premio Nobel de Física 1918 constante frecuencia La constante es muy pequeña Pero había más problemas
5 Efecto fotoeléctrico La Dualidad Onda-Part Partícula los resuelve La radiación electromagnética (por ejemplo la luz) puede arrancar electrones de la superficie de algunos metales La luz de alta frecuencia arranca electrones, aun con baja intensidad La luz de baja frecuencia no, aun con alta intensidad La luz tratada como un fenómeno ondulatorio, no permite explicar este efecto Albert Einstein: Utilizó la idea de Planck para explicar el efecto fotoeléctrico. Cada radiación electromagnética, tiene localizada su energía en fotones individuales. Con energía: Y momento lineal: E = h ν p = h λ Carácter dual (ondapartícula) de la luz Premio Nobel de Física 1921
6 La Dualidad Onda-Part Partícula versión n 2 La luz, que indudablemente se propaga como una onda o vibración del campo electromagnético, a veces, se comporta como una partícula Louis De Broglie: Postula que, simétricamente, las partículas elementales (y toda la materia) podrían tener naturaleza ondulatoria: toda porción de materia sustancial, en movimiento, con velocidad V y masa m está asociada con una radiación de longitud de onda λ y frecuencia ν, que cumple : E = h ν Premio Nobel de Física 1929 La materia, que indudablemente se propaga como una partícula, a veces se comporta como onda
7 Principio de complementariedad Niels Bohr: Modifica el modelo planetario de Rutherford, postulando la existencia de estados electrónicos estacionarios con niveles de energía, también múltiplos de h. Explica, utilizando el valor de h, el espectro del átomo de hidrógeno y, con ello se establecen los principios básicos de la estructura electrónica de la materia. Principio de complementariedad : Onda y partícula son aspectos complementarios, aunque incompatibles, de la misma cosa y de la misma situación real. Según el modo de observación, un ente de la microfísica aparecerá como onda o como partículas. Para describirlo completamente es necesario considerar ambos aspectos. Premio Nobel de Física 1922
8 La Ecuación n de Schrödinger Puede describirse el comportamiento de una partícula (con muchísima precisión) mediante una ecuación diferencial, cuya solución es una función periódica (como la ecuación de una onda), aunque no hay acuerdo sobre cómo interpretar la realidad física. 2 2 h Ψ 2 2 8π m q + [ E V( q) ] Ψ = 0 Función de onda En qué consistiría la naturaleza ondulatoria de la materia? qué es lo que vibra? De la misma manera que explicamos la naturaleza de la luz y otras radiaciones, como oscilaciones de un campo electro-magnético, debemos imaginar la existencia de un campo de materia, que al vibrar, origina a las partículas. Premio Nobel de Física 1933 Una forma de interpretar las ecuaciones de onda sería considerar que la amplitud está relacionada con la probabilidad de encontrar la partícula.
9 Lo esencial de la MC
10 tiempo h = 6,6x10-34 J.s energía energía x tiempo = acción La acción es una magnitud que da cuenta de la capacidad de un sistema o proceso de modificar su entorno e interactuar con otros sistemas. Cuanto mayor es su valor, más modifica a los sistemas con los que interactúa. Lo que encontró Planck lo podríamos describir: En la evolución de ningún sistema físico la acción toma un valor menor que h. Por la teoría del Relatividad de Einstein sabemos que: En ningún sistema físico la materia (o energía) se mueve con velocidad superior a c=3x10 8 m/s (velocidad de la luz)
11 Todos los sistemas y procesos del universo caen dentro del rectángulo mayor. Allí se pueden identificar cuatro zonas con los límites poco definidos. Velocidad (m/s) 3x10 8 Física relativista Física cuántica relativista Física clásica Física cuántica 1,5x /acción (J -1 s -1 )
12 Por ejemplo: Al hablar de la dualidad onda-partícula tenemos que hacer abstracción de nuestras ideas previas. De otra manera es imposible entender el experimento de la doble ranura: por qué ranura pasa el electrón? por ambas? Si lo concebimos como una onda es posible. Pero, cuando impacta en el detector se comporta como una partícula. Y si intentamos ver por dónde pasa, también. Nuestra intuición, formada en el mundo macro, no puede concebir que algo sea, al mismo tiempo, algo tan antagónico como una onda y una partícula. Pero si nos abstraemos de nuestras experiencias sensoriales, podemos entender que, en realidad onda y partícula son conceptos que quizás no describan nada en el mundo cuántico. Otra cosa difícil de aceptar es que las magnitudes no tengan un valor preciso y definido. En la MC muchas de ellas sólo pueden expresarse como una probabilidad
13 Principio de Incertidumbre Es una consecuencia del carácter dual. Al revés que en el mundo macro, a nivel cuántico, magnitudes como velocidad y posición no son independientes o no son las adecuadas para describir los entes cuánticos. Se cumple la relación de Heisenberg: X V h m
14 Principio de Incertidumbre
15 Superposición de estados El estado de un sistema cuántico en un instante dado, está formado por la superposición de un cierto número de estados estacionarios (descritos por las ecuación de Schrödinger) Un sistema clásico, por el contrario, puede tener varios estados, comparables entre sí, pero no superpuestos Por ejemplo: Si estos son los tres estados posibles de un semáforo, sabemos ( sabemos?) que aunque no lo estemos mirando, es alguno de ellos. Con los datos necesarios, podríamos predecir, con total precisión su estado real. Sin embargo, si fuera un sistema cuántico, sólo podríamos calcular la probabilidad en que lo encontraríamos al observarlo. Esto es lo que se describe como superposición de estados. Pero esto no se debe a que nos falten conocer datos. El semáforo tendría un estado determinado, sólo después de ser observado. (Colapso de la función de onda) Por extraño que esto resulte a la razón, hay experiencias concluyentes en este sentido.
16 El Entrelazamiento Todo estado de un sistema cuántico corresponde a una superposición Cuando tenemos un sistema formado por varios entes cuánticos, esta superposición se traduce en entrelazamiento La intuición humana, acostumbrada al mundo clásico, conduce a confusiones en el mundo cuántico, y el entrelazamiento (entanglement, en inglés) es un claro ejemplo de ello. Esta propiedad implica correlaciones entre sistemas cuánticos que no tienen un análogo clásico y que dificultan su comprensión En un sistema entrelazado, los cambios en una partícula, implican instantáneas transformaciones en el resto del sistema, independientemente de la distancia entre ellas Esto es lo que se pretende utilizar en computación cuántica y en tele portación
17 Computación n cuántica Las computadoras cuánticas no existen y no sabemos si alguna vez podrán ser construidas, sin embargo... Se invierten enormes recursos en su desarrollo y constituye uno de los temas más dinámicos de la física actual. Es que se ha logrado desarrollar algunos algoritmos que permitirían resolver algunos problemas en forma muchísimo más eficiente que con las computadoras clásicas, como la búsqueda en bases de datos y el encriptamiento de información. Cómo trabajarían? Aprovechando la superposición de los estados cuánticos y la extraña propiedad del entrelazamiento En un ordenador cuántico la información se guarda y se procesa en qubits (del inglés quantum bits). Un qubit es un bit que se encuentra en una superposición de estados, de forma que "puede valer 1 y 0 a la vez" De esta forma podrían usar un único dispositivo, un único "circuito", para efectuar simultáneamente un número astronómico de operaciones
18 La mecánica cuántica ha tenido enorme éxito en explicar la mayor parte de los hechos de nuestro universo. Se ha constituido así en la herramienta más exacta de que disponemos para intervenir sobre el mundo, permitiendo realizar proezas técnicas impensables unas décadas atrás. Los semiconductores, los superconductores, el laser, la química computacional, las imágenes por resonanacia nuclear magnética, la energía nuclear, son algunos ejemplos de aplicaciones de la mecánica cuántica que muestran la importancia que ha alcanzado en la sociedad actual.
Una Introducción a la Mecánica Cuántica
Una Introducción a la Mecánica Cuántica 1 Estado de la Física hacia 1900 Fines del siglo XIX y principios del XX, la Física reina absoluta Newton había sentado las bases de la mecánica y la gravitación
Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario
ANTECEDENTES DEL MODELO ACTUAL DEL ATOMO Raquel Villafrades Torres Universidad Pontificia Bolivariana Química General Química General Ingeniera Química Raquel Villafrades Torres Abril de 2009 Primer Modelo
FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica.
FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. Física 2º bachillerato Física cuántica 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos que
Unidad 1 Estructura atómica de la materia. Teoría cuántica
Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos
Espacio, tiempo y realidad física. Shahen Hacyan Instituto de Física UNAM AMC (2012)
Física cuántica y filosofía kantiana Espacio, tiempo y realidad física Shahen Hacyan Instituto de Física UNAM AMC (2012) Un poco de historia de la M C Discusiones sobre la naturaleza de la luz: Newton
Capítulo 1.3. Ajedrez cuántico. Dualidad onda-partícula. Difracción n de electrones. Los principios de la mecánica cuántica Enrique Ruiz Trejo
Ajedrez cuántico Capítulo 1.3 Los principios de la mecánica cuántica Enrique Ruiz Trejo p= mv Newton: Apertura Luz = onda Maxwell E = hν h Einstein: Jaque al electromagnetismo de Maxwell E = mc 2 Einstein:
Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato
José Mariano Lucena Cruz [email protected] Física 2 o Bachillerato Radiación térmica Todo cuerpo, no importa a la temperatura que se encuentre, es fuente de radiación térmica. (Emite energía en forma de
ESTRUCTURA DE LA MATERIA
ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 06/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 06/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 06/03/18 FUNDAMENTOS DE LA MECÁNICA
02/06/2014. Química Plan Común
Química Plan Común Limitaciones del Modelo Atómico de Rutherford Según el modelo atómico de Rutherford, los electrones se mueven en órbitas circulares y tienen una aceleración normal. Pero según los principios
1º Fenómeno: La radiación de cuerpo negro. ! Radiación: Radiación térmica en forma de ondas electromagnéticas (OEM)
FÍSICA CUANTICA:! Área de la física que surgió al analizar y explicar los fenómenos mecánicos que ocurren a escala microscópica (átomos y partículas atómicas)! A principios del siglo XX, una serie de fenómenos
FÍSICA CUÁNTICA. Física de 2º de Bachillerato
FÍSICA CUÁNTICA Física de º de Bachillerato Física Cuántica Insuficiencia de la Física Clásica Teoría de la Radiación Térmica Radiación del Cuerpo Negro Efecto fotoeléctrico Teoría de Einstein Los espectros
Estructura de los átomos: Estructura electrónica
Estructura de los átomos: Modelos atómicos Después de los modelos iniciales de Thomson y Rutherford, en los que los electrones podían tener cualquier energía, una serie de hechos experimentales llevaron
La física del siglo XX
Unidad 11 La física del siglo XX [email protected] Max Planck Albert Einstein Louis de Broglie Werner Heisenberg Niels Bohr Max Born Erwin Schrödinger Radiación del cuerpo negro Todo cuerpo, no importa
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0
FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco
FÍSICA MODERNA FÍSICA CUÁNTICA José Luis Rodríguez Blanco CRISIS DE LA FÍSICA CLÁSICA Problemas de la Física Clásica a finales del siglo XIX, principios del XX Espectros discontinuos de gases Efecto fotoeléctrico
Computación cuán.ca. Láminas basadas en la ponencia del Profesor Benjamín Barán EVI 2013
Computación cuán.ca Láminas basadas en la ponencia del Profesor Benjamín Barán EVI 2013 Computador Cuántico Sistema de refrigeración Electroimán Chip cuántico Quantum dots Física detrás del computador
EXTRUCTURA ATOMICA ACTUAL
ATOMOS Y ELEMENTOS TEMA 4 Química ATOMOS EXTRUCTURA ATOMICA ACTUAL PARTICULA UBICACION CARGA MASA PROTON NUCLEO + SI NEUTRON NUCLEO 0 SI ELECTRON ORBITAS - DESPRECIABLE La masa del átomo reside en el núcleo.
Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica
Tema 14 11/0/005 Tema 8 Mecánica Cuántica 8.1 Fundamentos de la mecánica cuántica 8. La ecuación de Schrödinger 8.3 Significado físico de la función de onda 8.4 Soluciones de la ecuación de Schrödinger
TEMA 13. Fundamentos de física cuántica
TEMA 13. Fundamentos de física cuántica 1. Limitaciones de la física clásica Física clásica Mecánica (Newton) + Electrodinámica (Maxwell) + Termodinámica (Clausius-Boltzmann) Estas tres ramas explicaban
Ondas de Materia Ecuación de Schrödinger. Física Facultad de Ingeniería UNMDP
Ondas de Materia Ecuación de Schrödinger Física 3 2011 Facultad de Ingeniería UNMDP Problemas abiertos de la física clásica a fines del siglo XIX Antecedentes de la mecánica cuántica Radiación de cuerpo
Tema 14 Mecánica Cuántica
Tema 14 Mecánica Cuántica 1 14.1 Fundamentos de la mecánica cuántica 14. La ecuación de Schrödinger 14.3 Significado físico de la función de onda 14.4 Soluciones de la ecuación de Schrödinger para el átomo
BREVE INTRODUCCIÓN A LA MECÁNICA CUÁNTICA
BREVE INTRODUCCIÓN A LA MECÁNICA CUÁNTICA Situación de la Mecánica Cuántica dentro de las Teorías Físicas La Física Teórica en 5 minutos: El cubo de las teorías físicas de Bronstein-Zelmanov-Okun TQ Gravitación
Introducción a la física cuántica
11 1 La crisis de la física clásica Las partículas son entes físicos con masa definida que pueden poseer carga eléctrica. Su comportamiento está descrito por las leyes de la mecánica clásica (Newton) Las
Bloque 6: Física S.XX. Física 2º Bachillerato Curso 17/18
Bloque 6: Física S.XX Física 2º Bachillerato Curso 17/18 Introducción https://www.youtube.com/watch?v=renw6v2h2w M (en clase vimos del minuto 2 al minuto 8). Planck Einstein Bohr De Broglie Schrödinger
2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio.
Slide 1 / 32 1 Un Tubo de Crooke (un tubo que contiene gas rarificado a través del cual se hace pasar una corriente entre un cátodo y un ánodo) fue utilizado en el descubrimiento del electrón por: A R.
Tema 12: EL NACIMIENTO DE LA MECÁNICA CUÁNTICA.
º BACHILLERATO FÍSICA Parte V: INTRODUCCIÓN A LA FÍSICA MODERNA. Tema : EL NACIMIENTO DE LA MECÁNICA CUÁNTICA... La radiación del cuerpo negro... Efectos fotoeléctrico y Compton..3. Espectros y modelos
TEORIA MECANO-CUÁNTICO
TEORIA MECANO-CUÁNTICO En los conciertos de música, aunque todos quisiéramos estar lo mas cerca posible del escenario, solo unos pocos pueden hacerlo, pues existe una distribución determinada para quienes
Síntesis de Física 2º de Bach. Borrador Mecánica Cuántica - 1 RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK
Síntesis de Física º de Bach. Borrador Mecánica Cuántica - 1 MECÁNICA CUÁNTICA RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK Todos los cuerpos emiten energía radiante debido a su temperatura. Vamos
ESTRUCTURA DE LA MATERIA
ESTRUCTURA DE LA MATERIA 1. Naturaleza de la materia (el átomo). 2. Modelos atómicos clásicos. 3. Modelo mecánico cuántico. 4. Mecánica ondulatoria de Schrödinger. 5. Números cuánticos. 6. Orbitales atómicos.
FISICA IV. Física Cuántica Marco A. Merma Jara Versión
FISICA IV Física Cuántica Marco A. Merma Jara http://mjfisica.net Versión 8.015 Contenido Inicios de la física moderna Constante de Planck El efecto fotoeléctrico Energía relativista Teoría cuántica de
FÍSICA y QUÍMICA. Número cuántico Secundario (SUBNIVEL) l. Número cuántico Magnético (ORBITAL, como si fuera una caja) m.
TEMA 1: ESTRUCTURA DE LA MATERIA. MODELOS ATÓMICOS 1. Modelo Atómico de RUTHERFORD a. Modelo predecesor de Thomson. b. Modelo atómico de Rutherford. c. Virtudes y defectos del Modelo de Rutherford. 2.
Física 4 to de Media. Proyecto N o 3 Marzo-abril 2016 Prof. Félix R. Solano S.
Física 4 to de Media. Proyecto N o 3 Marzo-abril 2016 Prof. Félix R. Solano S. Unidad N o 1: Ley de Ohm y Circuitos eléctricos La Ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm,
ÍNDICE
ÍNDICE 1 Radiación térmica y el postulado de Planck... 17 1-1 Introducción... 19 1-2 Radiación térmica... 19 1-3 Teoría clásica de la cavidad radiante... 24 1-4 Teoría de Planck de la cavidad radiante...
La ecuación de Schrödinger: una ecuación diferencial que revolucionó la física. M.T.Barriuso Dpto. Física Moderna Universidad de Cantabria
La ecuación de Schrödinger: una ecuación diferencial que revolucionó la física M.T.Barriuso Dpto. Física Moderna Universidad de Cantabria Índice 1.- La Física en 1900.- Los primeros 5 años del siglo XX
Óptica Fenómenos luminosos. Juan Carlos Salas Galaz
Óptica Fenómenos luminosos Juan Carlos Salas Galaz Física La física proviene del griego phisis y que significa realidad o naturaleza y una aproximación sería, la ciencia que estudia las propiedades del
aulaelsa1062.blogspot.com
Desde el siglo XVII se conoce la separación de un rayo de luz blanca en una gama de colores al pasar a través de un prisma. Esa imagen, obtenida por Newton, se denominó espectro. www.profesorenlinea.cl
Motivación de la mecánica Cuántica
Motivación de la mecánica Cuántica Química Física Aplicada, UAM 4 de febrero de 2011 (Química Física Aplicada, UAM) Motivación de la mecánica Cuántica 4 de febrero de 2011 1 / 13 Tema 1: Motivación de
BLOQUE 4.1 ÓPTICA FÍSICA
BLOQUE 4.1 ÓPTICA FÍSICA 1. NATURALEZA DE LA LUZ Hasta ahora hemos considerado a la luz como algo que transporta energía de un lugar a otro. Por otra parte, sabemos que existen dos formas básicas de transportar
Estructura electrónica
ESTRUCTURA ELECTRÓNICA Naturaleza dual del electrón Principio de Incertidumbre Modelo cuántico del átomo Átomos hidrogenoides electrónica Los físicos quedaron fascinados con la teoría de Bohr. Pero Por
FÍSICA CUÁNTICA. máx = 2, mk/ T
FÍSICA CUÁNTICA A finales del siglo XIX, la física clásica, con sus leyes de la mecánica de Newton y la teoría electromagnética de Maxwell, parecía suficiente para explicar todos los fenómenos naturales.
UNIDAD 1: PRINCIPIOS DE LA QUÍMICA
UNIDAD 1: PRINCIPIOS DE LA QUÍMICA MODELO ATOMICO DE DALTON RAYOS CATÓDICOS (Thomsom) EL ELECTRÓN MODELO ATÓMICO DE THOMSOM RAYOS CANALES (Goldstein) EL PROTÓN Rutherford MODELO ATÓMICO DE RUTHERFORD Chadwick:
Tema 4. ESTRUCTURA ATÓMICA Y SISTEMA PERIÓDICO
Tema 4. ESTRUCTURA ATÓMICA Y SISTEMA PERIÓDICO John Dalton (1808). La imagen del átomo expuesta por Dalton en su teoría atómica, es la de minúsculas partículas esféricas, indivisibles e inmutables, iguales
GUÍA DIDACTICA CURSO FÍSICA 2º BACHILLERATO. PROFESOR: Alicia Blanco Pozos
GUÍA DIDACTICA FÍSICA 2º BACHILLERATO CURSO 2016-17 PROFESOR: Alicia Blanco Pozos CONTENIDOS Los contenidos se organizan en 13 unidades didácticas distribuidos en cinco bloques de conocimiento: BLOQUE
El electrón. Naturaleza. Distribución de los electrones en el átomo. Química General I 2012
El electrón. Naturaleza. Distribución de los electrones en el átomo. Química General I 2012 Atención Leer del libro Química de Chang 10ma edición. Capítulo 7, págs 288 a 294. Ojo, la lectura es para ubicarse
Tema 8: Física cuántica
Tema 8: Física cuántica 1. Insuficiencia de la física clásica: Emisión del cuerpo negro Espectros atómicos discontinuos Efecto fotoeléctrico 2. Hipótesis de Planck. Cuantización de la energía. Fotón. 3.
Dualidad onda-partícula: Hipótesis de De Broglie
5/5/5 Dualidad onda-partícula: Hipótesis de De Broglie Dr. Armando Ayala Corona Dualidad Onda-Partícula: El efecto fotoeléctrico y el efecto Compton ofrecen una rigurosa evidencia de que la luz se comporta
Teoría cuántica y la estructura electrónica de los átomos. Capítulo 7
Teoría cuántica y la estructura electrónica de los átomos Capítulo 7 Propiedades de las ondas Longitud de onda (λ) es la distancia que existe entre dos puntos idénticos en una serie de ondas. Amplitud:
Tema 12. ESTRUCTURA DEL ÁTOMO. 1º Bachillerato Física y Química Santa María del Carmen Alicante
Tema 12. ESTRUCTURA DEL ÁTOMO 1º Bachillerato Física y Química Santa María del Carmen Alicante 1. Los modelos atómicos DEMÓCRITO s Va.d.C. DALTON 1808 THOMSON 1904 RUTHERFORD 1911 BORH 1913 SOMMERFELD
Modelo Mecano Cuántico. Taller PSU Química 2018.
Modelo Mecano Cuántico. Taller PSU Química 2018. Contenidos Mínimos Obligatorios Descripción básica de la Cuantización de la energía, organización y comportamiento de los electrones del átomo, utilizando
Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas
Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Objetivos: Recordar y actualizar los conocimientos sobre las características de electrones, protones y neutrones Describir la
CUESTIONES DE FÍSICA CUÁNTICA
CUESTIONES DE FÍSICA CUÁNTICA 2017 1) Se puede asociar una longitud de onda a cualquier partícula, con independencia de los valores de su masa y su velocidad? Justifique su respuesta. 2) Explique el principio
RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.
RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS λ Tipos de radiaciones electromagnéticas según λ. Rayos γ Rayos X Rayos UV Radiación visible. Rayos IR Microondas Ondas de radio Ondas de radar Ondas de
DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA PROGRAMA DE ASIGNATURA
CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA PROGRAMA DE ASIGNATURA NOMBRE DE LA MATERIA FÍSICA MODERNA CLAVE DE MATERIA FS 301 DEPARTAMENTO
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química
Modelos atómicos Los filósofos de la antigüedad especularon sobre cómo estaba formada la materia. Demócrito (460-370 a.c) y otros filósofos anteriores a él, pensaban que el mundo material debería estar
Modelo Atómico. Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga (-)
Modelo Atómico 1 Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga () Electrón Conceptos:» Neutralidad eléctrica» Carga elemental del
El comportamiento ondulatorio de la materia
El comportamiento ondulatorio de la materia Ing. Carmen López Castro El comportamiento ondulatorio de la materia En los años que siguieron i al desarrollo del modelo del átomo de hidrógeno de Bohr, la
Teoría Cuántica y la Estructura Electrónica de los Atomos
Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Propiedades de la ondas Largo de onda (λ)
Examen ud. 1 Estructura atómica de la materia
IES Valle del Ambroz º Bachillerato 05/06 OPCIÓN A Examen ud. Estructura atómica de la materia. Indique los postulados del modelo de Bohr así como las deficiencias de dicho modelo. ( p) El modelo atómico
Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S.
Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S. La Ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una de las leyes fundamentales de la electrodinámica,
DEPARTAMENTO DE FÍSICA Y QUÍMICA curso RECUPERACIÓN DE LA ASIGNATURA "FÍSICA de 2º DE BACHILLERATO. CONVOCATORIA DE SEPTIEMBRE
DEPARTAMENTO DE FÍSICA Y QUÍMICA curso 2017-18 RECUPERACIÓN DE LA ASIGNATURA "FÍSICA de 2º DE BACHILLERATO. CONVOCATORIA DE SEPTIEMBRE Los alumnos que tengan suspensa la asignatura deberán presentarse
Radiación térmica y el postulado de Planck
Contenido Radiación térmica y el postulado de Planck 17 1-1 1-2 1-3 1.4 1.5 1-6 1-7 Introducción 19 Radiación térmica 19 Teoría clásica de la cavidad radiante 24 Teoría de Planck de 1a cavidad radiante
Teoría Cuántica y la Estructura Electrónica de los Atomos
Propiedades de la ondas Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Largo de onda (λ)
Estructura electrónica de los átomos
Estructura electrónica de los átomos Partículas subatómicas Protón (p) 1,673 10-27 Kg + 1,602 10-19 C Goldstein (1886) Electrón (e) 9,109 10-31 Kg - 1,602 10-19 C Thomson (1897) Neutrón (n) 1,673 10-27
Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA
Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA PROBLEMAS MECÁNICA CUÁNTICA.. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 5 nm, el potencial de frenado para los electrones
Unidad II La Materia y sus transformaciones La Luz
Unidad II La Materia y sus transformaciones La Luz Naturaleza de la Luz La mayor parte de lo que conocemos de nuestro entorno es adquirido mediante sentido de la vista, de aquí que resulta de mucha importancia
Solución de la ecuación de Schrödinger para el oscilador armónico
Solución de la ecuación de Schrödinger para el oscilador armónico Erika Armenta Jaime Francisco Barrera Raul Camiña Blando Geraldyne L. Castro Herrera Antecedentes Max Plank (1900) propone que la emisión
Teoría cuántica y la estructura electrónica de los átomos
Teoría cuántica y la estructura electrónica de los átomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PROPIEDADES DE LAS ONDAS Longitud de onda
Epílogo: Fotones El nacimiento de una nueva Física
Epílogo: Fotones El nacimiento de una nueva Física La física hacia 1900: Partículas y Ondas PARTICULAS Localizadas en el espacio Parámetros característicos: Posición y Velocidad bien definidos ONDAS Deslocalizadas
Estructura de la Materia. Quinta Sesión Modelo Atómico de Bohr (2)
Estructura de la Materia Quinta Sesión Modelo Atómico de Bohr () Postulados del Modelo de Bohr Postulado 1 (o de Rutherford): El átomo consta de una parte central llamada núcleo en la que se encuentra
La física hacia 1900: Partículas y Ondas
Epílogo: Fotones El nacimiento de una nueva Física La física hacia 1900: Partículas y Ondas PARTICULAS Localizadas en el espacio Parámetros característicos: Posición y Velocidad bien definidos ONDAS Deslocalizadas
Teoría Cuántica y la Estructura Electrónica de los Atomos
Propiedades de la ondas Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Largo de onda (λ)
El átomo. Rafael Molina Fernández Científico Titular Instituto de Estructura de la Materia Consejo Superior de Investigaciones Científicas
El átomo Rafael Molina Fernández Científico Titular Instituto de Estructura de la Materia Consejo Superior de Investigaciones Científicas Qué es un átomo? Cantidad mínima de un elemento químico que mantiene
Quinta sesión. Tercer postulado de Bohr
Quinta sesión Tercer postulado de Bohr Radios de las órbitas en el H Para el Hidrógeno: Z = 1 Si n=1, r 1 = a0 = 0.59 Ǻ Si n=, r =.116 Ǻ Si n=3, r 3 = 4.761 Ǻ Otros hidrogenoides He + Z = U 91+ Z = 9 r
1.2 Átomos y electrones. Importancia de modelos físicos f de dispositivos Estructura de los átomos Interacción n de átomos con electrones
1. Introducción n a la Física F Electrónica 1.2 Átomos y electrones Importancia de modelos físicos f en el desempeño de dispositivos Estructura de los átomos Interacción n de átomos con electrones Modelos
QUIMICA CUANTICA. Trabajos Prácticos: Resolución de problemas Cálculos computacionales
Contenidos Mínimos: Formalismos Matemáticos de Química Cuántica Métodos computacionales Formalismos mecano cuánticos. Tratamiento atómico y molecular Aplicaciones a moléculas sencillas. Trabajos Prácticos:
UNIVERSIDAD NACIONAL AUTONOMA HONDURAS UNAH PLANIFICACIÓN DIDÁCTICA
Facultad: Ciencias Escuela: Física Departamento: Altas Energías UNIVERSIDAD NACIONAL AUTONOMA HONDURAS PLANIFICACIÓN DIDÁCTICA Datos generales del curso Nombre de la Asignatura o espacio de aprendizaje:
24/02/2008. Aristóteles (384 a 322 A. C.) impone la teoría de los cuatro elementos: la llamó Ατομοσ (átomo)
BREVE HISTORIA DE LA ESTRUCTURA DEL ÁTOMO Aristóteles (384 a 322 A. C.) impone la teoría de los cuatro elementos: Demócrito (Tracia, 460-357 ac.), propuso que, si se dividía la materia en trozos cada vez
CONTENIDOS ASIGNATURA FÍSICA BLOQUE 1. MOVIMIENTO ONDULATORIO.
CONTENIDOS ASIGNATURA FÍSICA BLOQUE 1. MOVIMIENTO ONDULATORIO. - Tema 1. Ondas. o Definición de onda. o Tipos de ondas. Según naturaleza. Mecánicas Electromagnéticas. Según propagación. Longitudinales.
UNIVERSIDAD SIMÓN BOLÍVAR Vicerrectorado Académico
UNIVERSIDAD SIMÓN BOLÍVAR Vicerrectorado Académico 1.Departamento: FÍSICA 2. Asignatura: FISICA MODERNA I 3. Código de la asignatura: FS-3411 No. de unidades-crédito: 4 No. de horas semanales: Teoría 4
J.J Thomson propone el primer modelo de átomo:
MODELOS ATÓMICOS. DALTON En 1808, Dalton publicó sus ideas sobre el modelo atómico de la materia las cuales han servido de base a la química moderna. Los principios fundamentales de esta teoría son: 1.
La Página de los Jueves
171 Breviario para mis nietos Ibrahim González-Urbaneja La Página de los Jueves Copyright TXu 1-703-206 LA FÍSICA CUÁNTICA Edición: Norka Salas LA FÍSICA CUÁNTICA Era pre cuántica. En el Siglo XVIII Boyle
INDICE. XIII Prefacio. XV Al estudiante
INDICE Acerca de los autores XIII Prefacio XV Al estudiante XXV Parte 4 Electricidad y magnetismo 641 Capitulo 23 Campos eléctricos 23.1. Propiedades de las cargas eléctricas 642 23.2. Objetos de carga
