PRÁCTICA NÚMERO 9 CAMPO ELÉCTRICO
|
|
|
- Gabriel Ortega Revuelta
- hace 9 años
- Vistas:
Transcripción
1 PRÁCTICA NÚMERO 9 CAMPO ELÉCTRICO I. Objetivos. 1. Investigar cómo son las líneas de fuerza para las siguientes configuraciones de carga: a) Una carga puntual b) Dos cargas puntuales de igual signo c) Dos cargas puntuales de signo contrario d) Un anillo cargado e) Una barra cargada 2. Investigar dónde se deposita la carga eléctrica en exceso que se coloca en un conductor cerrado y aislado, en condiciones electrostáticas, e investigar bajo las mismas condiciones, cómo es el campo eléctrico en el interior y exterior del hueco de un conductor cerrado. II. Material. 1. Generador de carga. 2. Cuba electrostática. 3. Crema de trigo. 4. Alambre para conexión (puede ser de teléfono). 5. Un anillo metálico. 6. Dos barras metálicas. 7. Una barra metálica pequeña. 8. Alambre de cobre para hacer diferentes figuras. 9. Aceite rojo para muebles. 10. Jaula de Faraday pequeña y grande. 11. Electroscopio. 12. Un vaso de precipitados de 250 mililitros. 13. Cinta adhesiva. 14. Esferita pequeña forrada de papel aluminio. III. Procedimiento. Nota: Todas las observaciones mediciones que realice sobre los fenómenos estudiados, anótelas en las hojas que se anexan en la sección llamada Bitácora. Primer objetivo. Forma de las líneas de campo. 1. Carga puntual. a) Vierta aceite en la cuba electrostática, hasta que éste alcance 1 milímetro de altura aproximadamente. 41
2 b) Para representar este tipo de carga, emplee una barra conductora con mango aislante. Esta barra conéctela a la esfera del generador de carga mediante un alambre, tal como se indica en la figura 1. Procure no encender aún el generador. c) A continuación coloque de forma vertical la barra conductora en la cuba electrostática, de tal modo que el extremo metálico quede sumergido en el interior del aceite y sujetándolo por la parte aislante, tal como se muestra en la siguiente figura 1. d) Enseguida, esparza crema de trigo en la cuba con aceite, alrededor de la barra, procurando que quede distribuida lo más uniforme posible. e) Accione el generador durante aproximadamente 15 segundos, teniendo cuidado de no hacer contacto eléctrico con el mismo, para evitar una descarga eléctrica. f) Observe la configuración que adopta la crema de trigo. cable eléctrico aislante crema Generador cuba electrostática Figura 1 2. Dos cargas puntuales de igual signo. a) Para representar dos cargas puntuales, seleccione dos barras metálicas con mango aislante similares a las usadas en el caso anterior. b) Conecte las dos barras, mediante alambres, al mismo polo del generador, ya sea positivo o negativo. No encienda aún el generador. c) Simultáneamente, vacíe el aceite y la crema de trigo contenida en la cuba y que fue usada en el caso anterior, en el vaso de precipitados. No tire el aceite al desagüe. d) Con papel secante limpie la cuba electrostática. e) Al igual que en la primera configuración de carga estudiada, vacíe aceite en la cuba hasta que éste alcance una altura de 1 milímetro aproximadamente. f) A continuación coloque de forma vertical las dos barras conductoras en la cuba electrostática, de tal modo que uno de sus extremos quede sumergido en el interior del aceite, de manera semejante a cómo se indica en la figura previa. g) Enseguida, esparza crema de trigo en la cuba con aceite, alrededor de las barras, procurando que quede distribuida lo más uniforme posible. 42
3 h) Accione el generador durante aproximadamente 15 segundos, teniendo el cuidado de no hacer contacto eléctrico con el mismo, para evitar una descarga eléctrica. i) Observe la configuración que adopta la crema de trigo. 3. Dos cargas puntuales de signo contrario. a) Para dos cargas puntuales de signo opuesto, seleccione dos barras metálicas con mango aislante similares a las usadas en el caso anterior. b) Conecte las dos barras, mediante alambres, cada una a un polo distinto del generador, sin importar cuál de ellas es la cargada positivamente y cuál es la cargada negativamente. c) Repita el procedimiento indicado en el punto 2, desde el inciso c al i. 4. Anillo cargado. a) Seleccione un anillo metálico que tenga de 3 a 4 centímetros de diámetro, procurando que no presente irregularidades. b) Conecte el anillo a la esfera del generador de carga mediante un alambre. Procure no encender aún el generador. c) Repita el procedimiento indicado en el punto 2, desde el inciso c al i a excepción del paso f, en vez del cual debe seguirse el siguiente procedimiento: Coloque el anillo de forma horizontal en el centro de la cuba electrostática, sumergido en el aceite. 5. Una barra cargada. a) Seleccione una barra que quepa de forma horizontal en la cuba electrostática con facilidad. Procure que la barra no presente irregularidades. b) Conecte la barra a la esfera del generador de carga mediante un alambre. Procure no encender aún el generador. c) Repita el procedimiento indicado en el punto 2, desde el inciso c al i a excepción del paso f, en vez del cual debe seguirse el siguiente procedimiento: Coloque la barra de forma horizontal en el centro de la cuba electrostática, sumergida en el aceite. Sugerencias: 1. Si se dificulta el movimiento de la crema de trigo se deberá proceder a usar otra cuba, cerciorándose de que esté bien seca y limpia. 2. Es recomendable colocar algún objeto aislante de color negro debajo de la cuba para que produzca un contraste y sea notoria la forma que adopta la crema de trigo. 3. En lugar de crema de trigo puede usar otros objetos como semillas de pasto. Segundo objetivo: Un conductor cargado, cerrado y aislado en condiciones electrostáticas. 1. Seleccione la jaula de Faraday pequeña y cubra sus bases con papel aluminio. Ese será el conductor cerrado. 2. Colóquela sobre una base aislante. 3. De una de las tapas suspenda, mediante un hilo, la esferita forrada de papel aluminio muy próxima a la superficie interna de la jaula. En la superficie externa del conductor, suspenda mediante un hilo una esferita del mismo tipo. Estas dos esferas serán nuestros detectores para indagar sobre el campo eléctrico en el interior y fuera de la jaula. 43
4 4. A continuación conecte la jaula al generador de carga mediante un alambre y enciéndalo. Observe lo qué sucede con las esferitas Se nota alguna fuerza sobre la esfera del interior y la del exterior? Existe campo eléctrico dentro y fuera de la jaula cargada? 5. Para verificar dónde reside la carga en exceso que se proporciona a la jaula, coloque el electroscopio dentro de la jaula, de tal forma que la esferita de este dispositivo toque la superficie interna de la jaula, tal como se indica en la figura 2. Cargue la jaula tal como se indica en el paso anterior y observe qué sucede con las láminas del electroscopio. 6. Enseguida, saque el electroscopio de la jaula y colóquelo muy cerca de la superficie externa de la misma. Encienda el generador de carga y observe si las láminas se abren Se nota alguna diferencia en el comportamiento del electroscopio dentro y fuera del conductor? alambre Jaula electroscopio aislante generador Figura 2 7. Repita los pasos 5 y 6 pero ahora usando la jaula grande. En este caso un miembro del equipo debe introducirse a la jaula con el electroscopio en la mano para hacer todas las pruebas posibles y obtener alguna conclusión con relación a dónde reside la carga eléctrica en un conductor y cómo es el campo eléctrico en el interior del mismo. La persona que se introduzca al conductor cerrado puede tocar con su mano la superficie interna de éste para verificar si existen o no efectos eléctricos dentro del mismo. De igual modo, otra persona puede tocar la superficie externa de la jaula para comprobar si en dicha región existen tales efectos. 44
5 IV. Resultados. Primer objetivo: Líneas de campo eléctrico. 1. Dibuje los patrones que formó la crema de trigo para una carga puntual. 2. Dibuje los patrones que formó la crema de trigo para dos cargas puntuales del mismo signo. 3. Dibuje los patrones que formó la crema de trigo para dos cargas puntuales de signo contrario. 45
6 4. Dibuje los patrones que formó la crema de trigo para un anillo cargado. 5. Dibuje los patrones que formó la crema de trigo para una barra cargada. Segundo objetivo. Un conductor cargado, cerrado y aislado en condiciones electrostáticas. 1. Cómo se comportó la esferita cuando fue colocada dentro de la jaula cargada? Entonces, Existe campo eléctrico dentro de la Jaula? 46
7 2. Con base a los resultados obtenidos con el electroscopio cuando se colocó dentro y fuera de la jaula Detectó la existencia de carga en el interior y exterior de la misma? Cómo se puede afirmar si existe o no carga en tales regiones del conductor? V. Conclusiones y Preguntas. Primer objetivo: 1. Describa las características más importantes de las líneas de campo eléctrico encontradas en el experimento para cada uno de las configuraciones. Si la líneas de campo presentan variaciones en alguna de las configuraciones, descríbala por regiones. a) Una carga puntual. b) Dos cargas puntuales del mismo signo. c) Dos cargas puntuales de signo contrario. 47
8 d) Anillo cargado. e) Barra cargada. 2. Observó que en cierta región del espacio que rodea a alguno de los cuerpos cargados estudiados no existían líneas de campo? Si es así, mencione en cuáles. 3. Qué significa en cuanto al valor del campo eléctrico, que en una cierta región no existan líneas de campo? 48
9 Segundo objetivo: 1. Elabore una conclusión general sobre el comportamiento de un conductor cargado, cerrado y aislado en condiciones electrostáticas con relación a dónde se deposita finalmente la carga y como es el campo eléctrico en el interior y exterior del mismo. 2. El fuselaje metálico de un automóvil se puede considerar como un conductor cerrado y aislado por los neumáticos. Por lo tanto se comportará éste como una jaula de Faraday? Si están cayendo rayos será más seguro que el conductor se quede dentro del automóvil que bajarse del mismo? Será el mismo caso del avión? 49
10 50
PRÁCTICA NÚMERO 2 CAMPO ELÉCTRICO
PRÁCTICA NÚMERO 2 CAMPO ELÉCTRICO I. Objetivos. 1.-Investigar cómo son las líneas de fuerza para las siguientes configuraciones de carga: a).-una carga puntual b).-dos cargas puntuales de igual signo c).-dos
PRÁCTICA NÚMERO 10 SUPERFICIES EQUIPOTENCIALES
PRÁCTICA NÚMERO 10 SUPERFICIES EQUIPOTENCIALES I. Objetivo. 1. Investigar cómo son las líneas equipotenciales para las siguientes configuraciones: a) Dos discos con cargas de distinto signo (dipolo). b)
PRÁCTICA NÚMERO 10 LEY DE INDUCCIÓN DE FARADAY
PRÁCTICA NÚMERO 10 LEY DE INDUCCIÓN DE FARADAY I. Objetivo. Estudiar la ley de inducción de Faraday. II. Material. 1. Una bobina de 400 vueltas y otra de 800 vueltas. 2. Un transformador de 6.3 Volts y
PRÁCTICA NÚMERO 1 CARGAS ELÉCTRICAS
PRÁCTICA NÚMERO 1 CARGAS ELÉCTRICAS I. Objetivos. 1. Investigar cuántos tipos de cargas existen y la forma de interactuar entre sí. 2. Determinar el tipo de carga que posee un cuerpo cargado. II. Material.
PRÁCTICA NÚMERO 1 ESTUDIO DE LOS IMANES
PRÁCTICA NÚMERO 1 ESTUDIO DE LOS IMANES I. Objetivos. 1. Identificar los polos de un imán. 2. Estudiar la interacción que existe entre los polos de los imanes. 3. Medir la fuerza que se ejercen dos imanes
PRÁCTICA NÚMERO 7 ESTUDIO DE LOS IMANES
PRÁCTICA NÚMERO 7 ESTUDIO DE LOS IMANES I. Objetivos. 1. Identificar los polos de un imán. 2. Estudiar la forma como interactuan los polos de los imanes. 3. Medir la fuerza que se ejercen dos imanes entre
PRÁCTICA NÚMERO 4 LEY DE INDUCCIÓN DE FARADAY
PRÁCTICA NÚMERO 4 LEY DE INDUCCIÓN DE FARADAY I. Objetivo. Estudiar la ley de inducción de Faraday. II. Material. 1. Una bobina de 400 vueltas y otra de 800 vueltas. 2. Un transformador de 6.3 Volts y
PRÁCTICA NÚMERO 4 CAPACITANCIA
PRÁCTICA NÚMERO 4 CAPACITANCIA I.Objetivos. 1.-Comprender la función básica del condensador como almacenador de carga. 2.-Observar el efecto que tiene un material dieléctrico sobre la capacitancia de un
PRÁCTICA NÚMERO 7 CARGAS ELÉCTRICAS
PRÁCTICA NÚMERO 7 CARGAS ELÉCTRICAS I. Objetivos. 1. Investigar cuántos tipos de cargas existen y la forma de interactuar entre sí. 2. Determinar el tipo de carga que posee un cuerpo cargado. II. Material.
PRÁCTICA NÚMERO 3 SUPERFICIES EQUIPOTENCIALES
PRÁCTICA NÚMERO 3 SUPERFICIES EQUIPOTENCIALES I. Objetivo. 1. Investigar cómo son las líneas equipotenciales para las siguientes configuraciones: a). Dos discos con cargas de distinto signo (dipolo). b).
GENERADOR DE VAN DE GRAAFF
Manual de Instrucciones y Guía de Experimentos GENERADOR DE VAN DE GRAAFF OBSERVACIÓN SOBRE LOS DERECHOS AUTORALES Este manual está protegido por las leyes de derechos autorales y todos los derechos están
PRÁCTICA NÚMERO 5 LEY DE OHM
PRÁCTICA NÚMERO 5 LEY DE OHM I. Objetivos. 1. Investigar si los siguientes elementos eléctricos son óhmicos o no: - Una resistencia comercial. - Un diodo rectificador. II. Material. 1. Dos multímetros.
EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS
EXPERIMENTO 1: Electrostática EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS Objetivos Obtener cargas de distinto signo mediante varios métodos y sus características Uso del electroscopio como detector
ELABORAS UN ELECTROSCOPIO
ELABORAS UN ELECTROSCOPIO Nombre del alumno: Profesor: Fecha: 2. Espacio sugerido: Laboratorio polifuncional. 3. Desempeños y habilidades Obtiene, registra y sistematiza la información para responder a
PRÁCTICA NÚMERO 6 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA
PRÁCTICA NÚMERO 6 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA I. Objetivos. 1. Estudiar la asoaciación de resisitencias en serie y en paralelo. 2. Estudiar la potencia que consumen dos elementos colocados
PRÁCTICA NÚMERO 9 CAPACITANCIA
PRÁCTICA NÚMERO 9 CAPACITANCIA I.Objetivos. 1. Comprender la función básica del condensador como almacenador de carga. 2. Observar el efecto que tiene un material dieléctrico sobre la capacitancia de un
- ELECTROSTÁTICA - Objetivos: A).- Construcción y/o manejo de los detectores de efectos (péndulo, electroscopio, y bombilla piloto de neón ).
- ELECTROSTÁTICA - Objetivos: A).- Construcción y/o manejo de los detectores de efectos (péndulo, electroscopio, y bombilla piloto de neón ). B).- Asimilar y entender los aspectos más elementales de la
PRÁCTICA NÚMERO 13 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA
PRÁCTICA NÚMERO 13 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA I. Objetivos. 1. Estudiar la asociación de resistencias en serie y en paralelo. 2. Estudiar la potencia que consumen dos elementos colocados
LABORATORIO DE ELECTROMAGNETISMO JAULA DE FARADAY
No 2 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Determinar la relación entre la carga inducida en la jaula de Faraday
FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad.
FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad. 1- Las siguientes cuestiones ayudan a comprender el proceso de descarga a tierra. a) Por qué un cuerpo metálico esférico
Algunas experiencias simples de Electricidad y Magnetismo (Para 2º de la ESO ).
Algunas experiencias simples de Electricidad y Magnetismo (Para 2º de la ESO ). Experiencias Efectos emergentes: (sobre pequeños papeles o péndulos). Tipos de sustancias: conductores y aislantes Manifestación
PRÁCTICA NUMERO 3 CAMPO MAGNÉTICO TERRESTRE
PRÁCTICA NUMERO 3 CAMPO MAGNÉTICO TERRESTRE I. Objetivos. Determinar la magnitud de la componente horizontal del campo magnético terrestre, a partir del campo magnético que produce una bobina circular.
Principio de conservación de la carga. Cuantización de la carga. Medición de la carga eléctrica
Principio de conservación de la carga En concordancia con los resultados experimentales, el principio de conservación de la carga establece que no hay destrucción ni creación neta de carga eléctrica, y
PRÁCTICA 13 Campo magnético
PRÁCTICA 13 Campo magnético Objetivos Generales 1. Investigar cómo son las líneas de inducción del campo magnético B debido a las siguientes configuraciones: a) Un alambre conductor recto. b) Una espira.
4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero.
Unidad Nº 4 Electrostática Ley de Coulomb Campo eléctrico 4.1 - En las esquinas de un triángulo equilátero existen tres cargas puntuales, fijas, como se ve en la figura, cuyos valores son: q1=2µc, q2=-4µc
INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física III
INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física III Alumno Grupo Equipo Profesor de teoría Profesor de laboratorio Fecha / / Calificación
PRÁCTICA NÚMERO 5 EL SIFÓN. I. Objetivo Estudiar la velocidad de salida y la presión de un líquido en la manguera de un sifón.
PRÁCTICA NÚMERO 5 EL SIFÓN I. Objetivo Estudiar la velocidad de salida y la presión de un líquido en la manguera de un sifón. II. Material 1. Un balde o recipiente con capacidad de al menos 2 litros. 2.
PRÁCTICA NÚMERO 12 DILATACIÓN VOLUMÉTRICA DE UN LÍQUIDO
PRÁCTICA NÚMERO 12 DILATACIÓN VOLUMÉTRICA DE UN LÍQUIDO I. Objetivo. Observar el fenómeno de la dilatación térmica de un líquido y medir su coeficiente de dilatación volumétrica. II. Material. 1. 50 ml
Universidad El Bosque Facultad de Ingeniería Ingeniería Ambiental Física II
Universidad El Bosque Facultad de Ingeniería Ingeniería Ambiental Física II Sofia Quiroga Hernández Alejandro Guzmán Pérez Natalia Sabogal Romero Natalia Jiménez Santafe Mariana Ramírez Gómez Laboratorio
MÉTODOS DE ELECTRIZACIÓN
MÉTODOS DE ELECTRIZACIÓN Existen tres métodos fundamentales para electrizar la materia: por frotamiento, por contacto y por inducción. ELECTRIZACIÓN POR FROTAMIENTO 1. Una forma sería usando una regla
Viscosidad de un líquido
Viscosidad de un líquido Laboratorio de Mecánica y fluidos Objetivos Determinar el coeficiente de viscosidad de un aceite utilizando el viscosímetro de tubo y aplicando la ecuación de Poiseuille. Equipo
CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.
CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue
PRÁCTICA DE LABORATORIO II-02 CAMPOS ELÉCTRICOS. Verificar la uniformidad del campo eléctrico entre electrodos de placas paralelas.
PRÁCTICA DE LABORATORIO II-02 CAMPOS ELÉCTRICOS OBJETIVOS Verificar la uniformidad del campo eléctrico entre electrodos de placas paralelas. Determinar epresiones matemáticas empíricas que relacionan el
Gasto a través de un tubo
Gasto a través de un tubo Laboratorio de Mecánica y fluidos Objetivos Medir el gasto de un líquido que fluye a través de un tubo. Observar y medir las presiones a lo largo de un tubo por el cual se mueve
Práctica 2 Distribución de carga eléctrica y campo eléctrico
Página 11/105 Práctica 2 Distribución de carga eléctrica y campo eléctrico 11 Página 12/105 1. Seguridad en la ejecución Peligro o fuente de energía Riesgo asociado 1 Diferencia de potencial alterna. Descarga
PRÁCTICA NÚMERO 7 ESTUDIO DE LAS LENTES
PRÁCTICA NÚMERO 7 ESTUDIO DE LAS LENTES I. Objetivos: 1. Estudiar el tipo de imagen que produce una lente convergente y una divergente. 2. Medir la distancia focal de una lente convergente: a) Usando rayos
PRÁCTICA NÚMERO 12 TRANSMISIÓN DE POTENCIA
PRÁCTICA NÚMERO 12 TRANSMISIÓN DE POTENCIA I. Objetivos. 1. Investigar la relación de la corriente de entrada y la de salida con el número de vueltas del primario y secundario de un trasformador. 2. Calcular
MINI ENSAYO DE FÍSICA Nº 5
MINI ENSAYO DE FÍSICA Nº 5 TEMA: ELECTRICIDAD. 1. La siguiente figura muestra tres bolitas metálicas iguales, A, B y C, de las cuáles la esfera A tiene una carga q, mientras que las bolitas B y C se encuentran
Carga eléctrica y construcción de un electroscopio
6 Carga eléctrica y construcción de un electroscopio Objetivo Cargar eléctricamente un cuerpo, mediante experimentos que involucren los dos tipos de carga (positiva y negativa), para observar los efectos
2.- A continuación se presentan 5 afirmaciones referentes a atracciones y repulsiones eléctricas entre cuerpos. Indica la única verdadera:
1.- Un campo eléctrico ejerce sobre un protón una fuerza F. El mismo campo eléctrico ejercerá sobre una partícula alfa (constituida por dos protones y dos neutrones) una fuerza igual a: A) F/4 B) F/ C)
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación
Experiencia P29: Carga Electrostática Sensor de Carga
Sensor de Carga Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Electrostática P29 Charge.ds Ver Apéndice Ver Apéndice Equipo necesario Cant. Equipo necesario Cant. Sensor de Carga (CI-6555)
INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA II. CUESTIONARIO GENERAL DE RECUEPERACION OPTICA-ELECTROSTATICA
INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA II. CUESTIONARIO GENERAL DE RECUEPERACION OPTICA-ELECTROSTATICA. Enero 08 de 2015. NOTA: Es importante que cada una de
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la
Diseño y Construcción de un Electroscopio
ASIGNATURA: Física Electromagnética TEMA DEL PROYECTO: Electrostática Diseño y Construcción de un Electroscopio OBJETIVOS Con ayuda de un electroscopio observar la existencia de dos clases distintas de
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica
Instituto Nacional Física Prof.: Aldo Scapini
Nombre: Curso: ELECTROESTÁTICA En este capitulo se dará inicio al estudio de la Electricidad, es decir, vamos a tratar de entender una gran variedad de efectos, muy ligados a nuestra vida diaria, denominados
LABORATORIO DE FÍSICA
Laboratorio de UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA LABORATORIO DE FÍSICA átomo protones y neutrones nube de neutrones Pràctica Nº 01 FÍSICA III ESCUELA ACADÉMICO PROFESIONAL EDUCACIÓN
PRODUCCIÓN DE CARGAS ELÉCTRICAS
PRODUCCIÓN DE CARGAS ELÉCTRICAS Objetivo: Determinar el tipo de carga eléctrica que se produce por fricción y por inducción en una jaula de Faraday. Material: NOTA: Para ésta práctica se tiene contemplado
CAMPO ELECTRICO CONTINUACION
CAMPO ELECTRICO CONTINUACION DISTRIBUCIONES CONTINUAS DE CARGA ELECTRICA DISTRIBUCION SUPERFICIAL DE CARGA ELECTRICA La segunda Distribución de Carga por estudiar es la Distribución Superficial de Cargas,
LABORATORIO DE ELECTROMAGNETISMO FENÓMENOS ELECTROSTÁTICOS
No 1 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar la naturaleza de la fuerza eléctrica 2. Estudiar los diferentes
Instructivo instalación Canon Pixma ix 6510 Instructivo para instalación de impresora Canon Pixma ix 6510
Instructivo para instalación de impresora Canon Pixma ix 6510 www.sistemacontinuo.com.ar [email protected] 1 LLENADO DEL SISTEMA CONTINUO Para impresoras nuevas: No coloque los cartuchos originales.
TEMA 4: LA ELECTRICIDAD
TEMA 4: LA ELECTRICIDAD La electricidad nos rodea: estamos acostumbrados a convivir con fenómenos eléctricos tanto naturales (el rayo, la electrización del pelo al peinarse ) como artificiales (la iluminación
Guía del docente. - 4º medio:
Guía del docente 1. Descripción curricular: - Nivel: 4º medio. - Subsector: Ciencias Físicas. - Unidad temática: Circuito de corriente variable. - Palabras claves: corriente eléctrica, bobinas, brújulas,
Qué es la electricidad? Circuitos eléctricos. La electricidad en el hogar
ENERGÍA ELÉCTRICA Circuitos eléctricos La electricidad en el hogar Fernández Monroy, Mª Ernestina; Gutiérrez Múzquiz, Félix A. y Marco Viñes, José Manuel Física y Química: guía interactiva para la resolución
Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico
NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están
PRÁCTICA NÚMERO 10 LEY DE OHM
PRÁCTICA NÚMERO 10 LEY DE OHM I. Objetivos. Investigar si los siguientes elementos eléctricos son óhmicos: a) Una resistencia comercial. b) Un diodo rectificador. II. Material. 1. Dos multímetros. 2. Dos
PRÁCTICA NÚMERO 5 REFLEXIÓN Y REFRACCIÓN
PRÁCTICA NÚMERO 5 REFLEXIÓN Y REFRACCIÓN I. Objetivos. 1. Determinar la ley que rige la reflexión de la luz. 2. Estudiar la ley de la refracción de la luz. II. Material. 1. Riel óptico. 2. Fuente de luz.
EJERCICIOS CONCEPTUALES
ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: CAMPOS ELÉCTRICOS GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: 2 EJERCICIOS CONCEPTUALES 1. Suponiendo que el valor de la carga del protón fuera un poco diferente de la
INTEGRACIÓN - AUTOEVALUACIÓN AUTOEVALUACIÓN 1
INTEGRACIÓN - AUTOEVALUACIÓN AUTOEVALUACIÓN 1 1- Una esfera aislante de radio r a = 1.20 cm está sostenida sobre un soporte aislante en el centro de una coraza metálica esférica hueca de radio r b = 9,60
INSTITUCION EDUCATIVA NUESTRA SEÑORA DEL CARMEN SINCELEJO SUCRE AREA DE CIENCIAS NATURALES ASIGNATURA FISICA I JULIO/30/2015
INSTITUCION EDUCATIVA NUESTRA SEÑORA DEL CARMEN SINCELEJO SUCRE AREA DE CIENCIAS NATURALES ASIGNATURA FISICA I JULIO/30/2015 LOGRO: MOVIMIENTO CIRCULAR UNIFORME LABORATORIO DE FISICA OBJETIVO GENERAL:
CENTRO ESCOLAR APARICIO A.C. EXPERIMENTO 13: CIRCUITOS ELECTRICOS Y LA LUZ SE HIZO
CENTRO ESCOLAR APARICIO A.C. Por la excelencia académica y la formación integral PREPARATORIA INCORPORADA A LA BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA ASIGNATURA: FÍSICA EXPERIMENTO 13: CIRCUITOS ELECTRICOS
Olimpíada Argentina de Física
Pruebas Preparatorias Tercera Prueba: Electricidad y Magnetismo Parte Teórica Nombre:... D.N.I.:... Escuela:... - Antes de comenzar a resolver la prueba lea cuidadosamente TODO el enunciado de la misma.
FÍSICA. Resolución 1. Parte 1- Múltiple opción.
Resolución 1. Parte 1- Múltiple opción. 1- Las cargas eléctricas A y B se atraen entre sí. Las cargas eléctricas B y C se repelen una a otra. Si se mantienen juntas A y C, a- se atraerán. b- se repelerán.
LEY DE COULOMB. Demostrar experimentalmente la Ley de Coulomb.
LEY DE COULOMB Objetivo: Demostrar experimentalmente la Ley de Coulomb. Material: 1.- Balanza de Coulomb..- Fuente de voltaje (0-6 KV). 3.- Jaula de Faraday. 4.- Electrómetro. Introducción: La balanza
FENÓMENOS ELECTROSTÁTICOS Y REPRESENTACIÓN DEL CAMPO ELÉCTRICO
FENÓMENOS ELECTROSTÁTICOS Y REPRESENTACIÓN DEL CAMPO 1. INTRODUCCIÓN ELÉCTRICO Desde la antigüedad, Tales de Mileto, 600 a. C., se conocían fenómenos electrostáticos, sin embargo sólo hasta comienzos del
El Campo Eléctrico. Distribuciones discretas de carga
El Campo Eléctrico. Distribuciones discretas de carga 1. A qué distancia deben encontrarse dos cargas de 1 nc para que la fuerza de repulsión entre ellas sea de 0 1 N? DATO: K = 9 10 9 N m 2 /C 2 2. Dos
FÍSICA GENERAL II Programación. Contenidos
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA 1 er Semestre 2011 FÍSICA GENERAL II Programación 1. Control 1: fecha 01 de abril, contenido: Módulos 1, 2 y 3(parcial: determinar diferencias de potencial a partir
1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la )
1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la ) Ley de Coulomb La fuerza entre cargas eléctricas es directamente proporcional al producto de dichas cargas e inversamente
PRÁCTICA 15 El espectrómetro de difracción
PRÁCTICA 15 El espectrómetro de difracción Laboratorio de Física General Objetivos Generales 1. Medir el rango de longitudes que detecta el ojo humano. 2. Analizar el espectro de emisión de un gas. Equipo
LINEAS EQUIPOTENCIALES
LINEAS EQUIPOTENCIALES Construcción de líneas equipotenciales. Visualización del campo eléctrico y del potencial eléctrico. Análisis del movimiento de cargas eléctricas en presencia de campos eléctricos.
PRÁCTICA 14. Reflexión y refracción
PRÁCTICA 14 Reflexión y refracción Laboratorio de Física General Objetivos Generales 1. Determinar la ley que rige la reflexión de la luz. 2. Estudiar la ley de la refracción de la luz. Equipo y materiales
INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA. Nombre: Grupo Calif
INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA Práctica N º 11 Nombre: Grupo Calif OBJETIVO El alumno realizara experimentos sencillos para
MANUAL MONTAJE MR400 REMOTA
CONSEJOS PARA LA INSTALACION MR 400 REMOTA PASO 1: UBICACIÓN DE LA MAQUINA DE HIELO Y DEL CONDENSADOR REMOTO COMPROBACION DE ACOMETIDAS CORRECTAS: CONDENSADOR REMOTO: Necesita acometida eléctrica (comprobar
MATERIA: ELECTRICIDAD Y MAGNETISMO.
MATERIA: ELECTRICIDAD Y MAGNETISMO. ÁREA: INGENIERÍA. CUATRIMESTRE: CUARTO NOMBRE DEL ALUMNO: FECHA DE REALIZACIÓN: Página 1 de 8 PRÁCTICA No. 1 Electrostática OBJETIVO: Observará el proceso de carga y
Actividad experimental No. 5. Carga eléctrica y construcción de un electroscopio
SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/1 MAESTRO MOISÉS SAÉNZ GARZA Área de Ciencia Naturales LABORATORIO DE FÍSICA Física II
Universidad de Pamplona Facultad de Ciencias Básicas Departamento de Física Laboratorio de Electromagnetismo LEY DE COULOMB
LEY DE COULOMB INTRODUCCIÓN La Balanza de Coulomb (Figura 1) es una balanza de torsión delicada que puede utilizarse para investigar la fuerza entre objetos cargados eléctricamente. Una esfera conductora
a) La trayectoria 4 b) La trayectoria 3 c) La trayectoria 2 d) La trayectoria 1
ESCUELA SUPERIOR POLITECNICA DEL LITORAL Instituto de Ciencias Físicas SEGUNDA EVALUACIÓN CURSO NIVEL CERO B VERSIÓN 1 Nombre: Curso:.. 29 de Agosto de 2012 CADA PROBLEMA TIENE UN VALOR DE 2.8 PUNTOS.
POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.
POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y
Presión en un fluido en reposo (Líquidos Inmiscibles y Densidad)
Presión en un fluido en reposo (Líquidos Inmiscibles y Densidad) Laboratorio de Mecánica y fluidos Objetivos Determinar la densidad relativa de un líquido empleando el tubo en U. Determinar la presión
Semana 11. Fenómenos electrostáticos. Semana Caída libre 12 (parte 2) Empecemos! Qué sabes de...? El reto es...
Semana Caída libre 12 (parte 2) Semana 11 Empecemos! Es muy probable que hayas observado al peinarte cómo tu cabello se eriza o posiblemente después de arrastrar tus pies sobre una alfombra y tocar una
Guía de Repaso 7: Concepto de campo eléctrico
Guía de Repaso 7: Concepto de campo eléctrico 1- Una carga positiva Q está fija en el centro de una mesa horizontal, como muestra la figura de este ejercicio. Una persona que desea averiguar si existe
PRÁCTICA NÚMERO 1 ELECTRIZACIÓN Y LEY DE COULOMB
INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR CENTRO DE ESTUDIOS CIENTÍFICOS Y TECNOLÓGICOS No. 8 NARCISO BASSOLS ACADEMIA DE FÍSICA LABORATORIO DE FÍSICA III
Física para ingeniería y ciencias Volumen 2
Física para ingeniería y ciencias Volumen 2 Material tomado del texto de Hans C. Ohanian John T. Markett Capítulo 25 Potencial electrostático y energía 2009 by the McGraw-Hill Companies, Inc 1 El potencial
MANUAL DE LABORATORIO DE FÍSICA II 9ª Edición EXPERIENCIA N 07
DILATACIÓN TÉRMICA DE SÓLIDOS Y LÍQUIDOS EXPERIENCIA N 07 I. OBJETIVO Determinar los coeficientes de expansión lineal de diferentes varillas metálicas usando un dilatómetro. Observar el comportamiento
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga
El Separador de Condensados PURO GRAND Instrucciones de instalación:
El Separador de Condensados PURO GRAND Instrucciones de instalación: El separador de condensados PURO GRAND ha sido especialmente diseñado para separar aceite del condensado extraído de los sistemas de
Función de Green, método de imágenes y separación de variables.
Física Teórica 1 Guia 2 - Green, imágenes y separación 1 cuat. 2014 Función de Green, método de imágenes y separación de variables. Método de imágenes y función de Green. 1. Una esfera conductora de radio
PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA
PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA I. Objetivos. 1. Estudiar el efecto que tienen ciertas sustancias sobre la luz polarizada. 2. Encontrar la gráfica y ecuación de la concentración
Problemas adicionales (Electrostática, Magnetostática y Circuitos) (con y sin respuestas).
Física 1 (Paleontólogos) Problemas adicionales (Electrostática, Magnetostática y Circuitos) (con y sin respuestas). 1. Se localizan tres cargas ubicadas en las esquinas de un triángulo equilátero. Calcúlese
Instrucciones para la Instalación de la Toma(s) Trasera
Instrucciones para la Instalación de la Toma(s) Trasera * Lea TODAS las instrucciones ANTES de intentar instalar este producto * No seguir estas instrucciones podría resultar en lesiones graves o daños
Campo Eléctrico en el vacío
Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción
Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por
CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos
3. FUNCIONAMIENTO ELECTROSCOPIO Al frotar el perfil "E" de plástico con un trapo seco queda electrizado por perder o ganar electrones. El grado de ele
1. OBJETIVOS - Comprobar que al frotar un cuerpo, queda cargado eléctricamente y construir un electroscopio para visualizarlo. - Comprobar el fenómeno de carga por inducción y construir un electróforo
FÍSICA II. PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico
FÍSICA II PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico 1. Dos esferas conductoras sin carga con sus superficies en contacto están apoyadas sobre una tabla de madera bien aislada. Una barra cargada
Practica No. 3. Capacitor de Placas Planas Paralelas
Objetivos: Experimento 1 Practica No. 3. Capacitor de Placas Planas Paralelas 1.1 Encontrar la diferencia entre las distancias de las placas del capacitor de placas planas. 1.2 Determinar el campo eléctrico
CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB
1 CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB 1.1 OBJETIVO GENERAL - Verificación experimental de la ley de Coulomb 1.2 Específicos:
MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES
LIBRO: PARTE: TÍTULO: CAPÍTULO: MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES 4. MATERIALES PARA PAVIMENTOS 04. Materiales Pétreos para Mezclas Asfálticas 014. Azul de Metileno de Materiales Pétreos
