PRÁCTICA NÚMERO 10 LEY DE OHM
|
|
|
- Elvira Díaz Montes
- hace 9 años
- Vistas:
Transcripción
1 PRÁCTICA NÚMERO 10 LEY DE OHM I. Objetivos. Investigar si los siguientes elementos eléctricos son óhmicos: a) Una resistencia comercial. b) Un diodo rectificador. II. Material. 1. Dos multímetros. 2. Dos cables para cada multímetro. 3. Dos cables con caimanes. 4. Una resistencia comercial cuyo valor esté comprendido entre 50 y 100 Ω. 5. Diodo rectificador (1N5404). de 400 volts y 3 amperes. 6. Fuente de DC ajustable de 0-20 volts y 2 amperes. 7. Base para armar circuitos. 8. Resistencia limitadora de 500 Ω. III. Procedimiento. Primer objetivo. Resistencia comercial. 1. En la base para armar circuitos conecte la resitencia comercial y la fuente eléctrica, tal como se muestra en la figura 1, cerciorándose de que se encuentre apagada y con la perilla reguladora en cero volts. V ε + - R A Figura 1 2. Ponga uno de los multímetros en el modo de medición de corriente directa (amperímetro), seleccionando la escala de corriente mayor para no exceder su capacidad. 3. Bajo las condiciones indicadas, conecte el amperímetro en serie como se muestra en la figura Enseguida, coloque el segundo multímetro en el modo de medición de voltaje (voltímetro) y seleccione la escala de 0-20 volts. Observe que este medidor debe conectarse en paralelo con la resistencia, tal como se muestra en la figura número 1. 63
2 5. Una vez revisadas todas las conexiones del experimento encienda los medidores primero y, posteriormente, la fuente de voltaje. 6. A continuación, mediante la perilla de la fuente, aumente el voltaje hasta un volt y mida la corriente que pasa por la resistencia, usando el amperímetro, en tanto que el voltaje mídalo con el voltímetro. No tome en cuenta la lectura que marca la carátula de la fuente ya que no son exactos los valores que indica. Si la corriente que pasa por la resistencia es tan pequeña que el medidor prácticamente no la registra, use la siguiente escala menor hasta que ésta pueda medirse sin dificultad. 7. Incremente el voltaje a 2 volts y lleve a cabo las mediciones descritas en el paso Incremente el voltaje a 3, 4, 5,..., 10 volts, midiendo para cada valor las cantidades indicadas en el paso Terminadas las mediciones, apague la fuente, desconecte los medidores y apáguelos. Nota importante: Sí se utiliza un solo multímetro debe de tenerse presente que antes de hacer la medición del parámetro que corresponda, tiene que revisar que el medidor esté en el modo de la función que corresponda (amperímetro o voltímetro), ya que de lo contrario pueden cometerse errores que posiblemente dañen el aparato. Diodo rectificador. 1. Para el diodo rectificador, arme el circuito que se muestra en la figura número 2, el cual contiene una fuente, un diodo y la resistencia limitadora (R L ), que servirá de protección para los dispositivos. Tenga el cuidado de que inicialmente la fuente se encuentre apagada y que la perilla reguladora del voltaje de la misma se encuentre en cero. V ε + - A Diodo R L Figura 2 2. Seleccione la escala de 0-20 volts para el voltímetro y conéctelo en paralelo al diodo tal como se indica en la figura Ponga el amperímetro en la escala mayor y colóquelo en el circuito en serie con los elementos del mismo. Es indistinto el lugar donde lo coloque. 4. Una vez revisadas todas las conexiones del experimento, encienda los medidores primero, y posteriormente, la fuente de voltaje. 5. Mueva el botón de ajuste de la fuente hasta que el voltímetro (conectado al diodo) marque 0.1 volt aproximadamente. No tome el cuenta el voltaje que indica la carátula de la fuente. Bajo esas condiciones, mida la corriente en el amperímetro. 6. Enseguida, suba el voltaje a 0.2 volts y mida la corriente correspondiente, tal como se indicó en el paso 5. 64
3 7. A continuación suba el voltaje a 0.3, 0.4, 0.5 volts, etc., y mida las corrientes correspondientes a cada voltaje. El máximo valor de voltaje aplicado deberá ser un poco más allá del voltaje de codo, que es cuando la intensidad de la corriente se dispara. Para que quede claro este aspecto, consulte a su profesor. 8. Terminadas las mediciones, apague la fuente, desconecte los medidores y apáguelos. Nota importante: Sí se utiliza un solo medidor, debe de tenerse presente que antes de hacer la medición del parámetro que corresponda, debe revisar, previamente, que el medidor esté en el modo de función que corresponda para la medición del mismo, de lo contrario pueden cometerse errores que dañen al medidor, a la fuente de voltaje. IV. Resultados y conclusiones. Resistencia comercial. 1. Con cada pareja de valores de voltaje y corriente, obtenga el valor de la resistencia comercial. 2. Obtendrá tantos valores de resistencia como parejas de corriente y voltaje haya medido. 3. Con todos los valores de resistencia, calcule: - la resistencia promedio. - la desviación promedio. - el error porcentual. Resistencia comercial V i R R = δ R ε= = 65
4 4. Grafique el voltaje en función de la corriente y ajuste los datos a una recta. Gráfica de voltaje contra corriente para la resistencia comercial V Gráfica de voltaje contra corriente para la resistencia comercial i Ecuación obtenida por ajuste de los datos: Ecuación de la recta: Pendiente: 66
5 Diodo. 1. Con las parejas de valores de voltaje y corriente para el diodo, obtenga la resistencia del material. 2. Obtendrá tantos valores de resistencia como parejas de corriente y voltaje haya medido. 3. Con todos los valores de resistencia, calcule: - la resistencia promedio. - la desviación promedio. - el error porcentual. Diodo V i R R = δ R ε= = 4. Grafique el voltaje en función de la corriente y ajuste los datos a una recta. 67
6 V Gráfica del voltaje en función de la corriente para el diodo i Ecuación obtenida por ajuste de los datos: Ecuación de la recta: Pendiente: 68
7 V. Conclusiones y Preguntas. 1. En base al análisis de los resultados obtenidos para la resistencia comercial y el diodo Se puede considerar constante el valor de su resistencia eléctrica a pesar de que varían el voltaje y la corriente y que por lo tanto son ambos materiales óhmicos? Vea el cuadro de datos en la sección de Resultados. 2. Cómo se puede saber, por el tipo de gráfica, si una determinada resistencia es óhmica o no? 3. Qué tipo de gráfica obtuvo para la resistencia comercial y para el diodo? Cuál de ellas, según el tipo de gráfica, es óhmica o no? 69
8 4. Qué representa la pendiente de la gráfica del voltaje en función de la corriente? 70
PRÁCTICA NÚMERO 5 LEY DE OHM
PRÁCTICA NÚMERO 5 LEY DE OHM I. Objetivos. 1. Investigar si los siguientes elementos eléctricos son óhmicos o no: - Una resistencia comercial. - Un diodo rectificador. II. Material. 1. Dos multímetros.
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito
La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo.
FIS-1525 Ley de Ohm Objetivo Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que circula. Probar el cumplimiento de la ley de Ohm para dos
LA RELACIÓN VOLTAJE- CORRIENTE EN RESISTENCIAS Y DIODOS
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL ORIENTE PONENCIA: LA RELACIÓN VOLTAJE- CORRIENTE EN RESISTENCIAS Y DIODOS YURI POSADAS VELÁZQUEZ JUNIO DE 2008 LA RELACIÓN
Guía 01. La ley de Ohm
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física Laboratorio de Física II FI-5 A Guía 0 La ley de Ohm Objetivos Conocer la Ley de Ohm y las Leyes de Kirchoff - Estudiar
PRÁCTICA NÚMERO 4 LEY DE INDUCCIÓN DE FARADAY
PRÁCTICA NÚMERO 4 LEY DE INDUCCIÓN DE FARADAY I. Objetivo. Estudiar la ley de inducción de Faraday. II. Material. 1. Una bobina de 400 vueltas y otra de 800 vueltas. 2. Un transformador de 6.3 Volts y
FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Leyes de Kirchoff Objetivos 1. Establecer la relación matemática que existe entre diferencia de potencial, resistencia y
Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO
FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de
CIRCUITOS EN SERIE Y PARALELO
CIRCUITOS EN SERIE Y PARALELO Objetivos: - Evaluar experimentalmente las reglas de Kirchhoff. - Formular el algoritmo mediante el cual se obtiene la resistencia equivalente de dos o más resistores en serie
PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM.
PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y las leyes de la asociación de resistencias
PRÁCTICA NÚMERO 11 TRANSFORMADORES
PRÁCTICA NÚMERO 11 TRANSFORMADORES I.Objetivos. 1. Estudiar el funcionamiento del tranformador. 2. Investigar la relación entre el voltaje de entrada y el de salida con el número de vueltas en el primario
PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.
PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias
Resistores en circuitos eléctricos
Resistores en circuitos eléctricos Experimento : Resistencias en circuitos eléctricos Estudiar la resistencia equivalente de resistores conectados tanto en serie como en paralelo. Fundamento Teórico. Cuando
PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO
Ing. Gerardo Sarmiento Díaz de León CETis 63 PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO TRABAJO DE LABORATORIO Ley de Ohm Asociación de Resistencias OBJETO DE LA EXPERIENCIA: Comprobar la
PRACTICA 4: CAPACITORES
1 PRACTICA 4: CAPACITORES 1.1 OBJETIVO GENERAL Determinar qué factores influyen en la capacitancia de un condensador y las formas de hallar dicha capacitancia 1.2 Específicos: Determinar la influencia
ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS
ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS Monta los siguientes circuitos, calcula y mide las magnitudes que se piden: 1) Con el Voltímetro, mide la tensión de una pila y la de la fuente de tensión
PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM
PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM UNIDAD 1: LEY DE OHM - TEORÍA En esta unidad usted aprenderá a aplicar la Ley de Ohm, a conocer las unidades eléctricas en la medición de las resistencias,
PRÁCTICA NÚMERO 3 SUPERFICIES EQUIPOTENCIALES
PRÁCTICA NÚMERO 3 SUPERFICIES EQUIPOTENCIALES I. Objetivo. 1. Investigar cómo son las líneas equipotenciales para las siguientes configuraciones: a). Dos discos con cargas de distinto signo (dipolo). b).
Determinación de la característica voltaje - corriente de un conductor metálico - Ley de Ohm
Determinación de la característica voltaje - corriente de un conductor metálico - Ley de Ohm Autores Frigerio, Paz La Bruna,Gimena Larreguy, María Romani, Julieta [email protected] [email protected] [email protected]
Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION
Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar
EXP204 REGULADOR DE VOLTAJE SERIE
EXP204 REGULADOR DE VOLTAJE SERIE I.- OBJETIVOS. Diseñar un regulador de voltaje serie ajustable Comprobar el funcionamiento del regulador. Medir la resistencia de salida del regulador Medir el por ciento
APLICACIÓN DE LA LEY DE OHM (II)
APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE RESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA RESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad
Corriente y Circuitos Eléctricos
Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando
APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos.
APLICACIÓN DE LA LEY DE OHM (I) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad
Laboratorio de Fundamentos de Física II - Ley de Ohm, Simetria y Resistencias Equivalentes
Laboratorio de Fundamentos de Física II - Ley de Ohm, Simetria y Resistencias Equivalentes Pablo Javier Salazar Valencia. Ingeniero Físico 22 de junio de 2011 Resumen En esta práctica exploraremos los
Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.
38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión
PRÁCTICA NUMERO 9 CAMPO MAGNÉTICO TERRESTRE
PRÁCTICA NUMERO 9 CAMPO MAGNÉTICO TERRESTRE I. Objetivos. Determinar la magnitud de la componente horizontal del campo magnético terrestre, a partir del campo magnético que produce una bobina circular.
GUÍA DEL PROCESO Y PROCEDIMIENTO DE CALIBRACIÓN EN EL ALMACÉN
1 GUÍA DEL PROCESO Y PROCEDIMIENTO DE CALIBRACIÓN EN EL ALMACÉN TABLA DE CONTENIDO Dispositivos que requieren calibración.... 4 Dispositivos autorizados de calibración.... 4 Prueba de Amperios del Probador
EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS
EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS CONCEPTOS BASICOS El aparato de medida más utilizado en electricidad y electrónica es el denominado POLÍMETRO, también denominado a veces multímetro o texter. El
En el siguiente informe trataremos la ley de ohms desde una perspectiva practica.
GUIA DE LABORATORIO NUMERO 1 USO DEL MULTITESTER LEY DE OHM (c) año 2001 INTRODUCCIÓN En el siguiente informe trataremos la ley de ohms desde una perspectiva practica. Con la ayuda de experiencias practicas
PRÁCTICA 14. Reflexión y refracción
PRÁCTICA 14 Reflexión y refracción Laboratorio de Física General Objetivos Generales 1. Determinar la ley que rige la reflexión de la luz. 2. Estudiar la ley de la refracción de la luz. Equipo y materiales
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la
Instrumentación y Ley de OHM
Instrumentación y Ley de OHM A) INSTRUMENTACIÓN 1. OBJETIVOS. 1. Conocer el manejo de instrumentos y materiales de uso corriente en los experimentos de electricidad y magnetismo. 2. Conocer el área de
TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA
E.T. Nº 17 - D.E. X Reg. PRÁCTCAS UNFCADAS 1 ntroducción Teórica TRABAJO PRÁCTCO Nº 2 ANÁLSS DE CRCUTOS DE CORRENTE CONTNUA a Multímetro digital: El multímetro digital es un instrumento electrónico de
Experimento 5. Ampliación de escala de un voltímetro y de un amperímetro
INSTITUTO TECNOLÓGICO DE COSTA RICA I SEMESTRE 2009 ESCUELA DE INGENIERÍA ELECTRÓNICA EL2107 LABORATORIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA Profesores: Ing. Gabriela Ortiz L., Ing Leonardo Rivas,
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación
Condensadores. Parte I.
Condensadores. Parte I. Introducción La experiencia, que consta de varias partes, tiene como finalidad familiarizar a los alumnos con los condensadores, sobre la base de realizar unos experimentos, éstos,
Utilizar adecuadamente el multímetro para mediciones de voltaje, corriente y resistencia eléctrica.
GUIA PAA USO DEL MULTIMETO OBJETIVOS : Utilizar adecuadamente el multímetro para mediciones de voltaje, corriente y resistencia eléctrica. INTODUCCIÓN : El multímetro es un instrumento de medición que
PRÁCTICA NÚMERO 12 DILATACIÓN VOLUMÉTRICA DE UN LÍQUIDO
PRÁCTICA NÚMERO 12 DILATACIÓN VOLUMÉTRICA DE UN LÍQUIDO I. Objetivo. Observar el fenómeno de la dilatación térmica de un líquido y medir su coeficiente de dilatación volumétrica. II. Material. 1. 50 ml
PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE
PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE UNIDAD 1: CIRCUITO SERIE TEORÍA El circuito serie es el circuito que más se encuentra en el análisis de circuitos eléctricos y electrónicos,
La fuente de corriente continua variable nos permite cambiar las magnitudes anteriores.
CIRCUITO ELÉCTRICO 1 (R constante) Fundamento Un circuito eléctrico sencillo consta de una fuente de corriente continua variable (F), un interruptor (I), un amperímetro (A) una resistencia (R) y un voltímetro
CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA
CUSO TALLE ACTIIDAD 3 POTOBOAD MULTÍMETO MEDICIÓN DE OLTAJES Y COIENTES DE COIENTE DIECTA FUENTE DE OLTAJE DE COIENTE DIECTA Como su nombre lo dice, una fuente de voltaje de corriente directa (C.D) es
MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN
MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN Este es un compacto y preciso multímetro digital de 4 ½ dígitos, opera con batería y sirve para realizar mediciones de voltaje y corriente de C.A.
LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD
No 4 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprender que la resistencia eléctrica de un elemento conductor
III. Aparatos de medición
III. Aparatos de medición Voltímetro - Amperímetro - Ohmímetro Objetivos Conocer y manejar el multímetro digital para hacer mediciones de voltaje, corriente y resistencia en un circuito eléctrico que contiene
Laboratorio de Análisis de Circuitos. Práctica 2. Caracterización de elementos resistivos de un circuito
Laboratorio de Análisis de Circuitos Práctica Caracterización de elementos resistivos de un circuito 1 Objetivos 1 Determinar experimentalmente el valor de la resistencia equivalente de un arreglo de resistores.
LABORATORIO DE ELEMENTOS DE ELECTRONICA
Práctica 7 Diodos y sus aplicaciones 7.2.3 Utilice el programa simulador para probar los circuitos de la Figura 7.2.2. Para cada uno, indique el tipo de circuito de que se trata y obtenga la gráfica de
RESISTENCIA EN FUNCIÓN DE LA TENSIÓN
Laboratorio de Física General Primer Curso (Electromagnetismo RESISTENCIA EN FUNCIÓN DE LA TENSIÓN Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la variación de la resistencia eléctrica con la
W 1 Z 2 W 2 FIGURA 9.1
OBJETIVOS: 1.- Medir la potencia a una carga trifásica balanceada utilizando el método de los dos wáttmetros. 2.- Determinar las potencias activa y reactiva, así como el factor de potencia de un sistema
MEDICIONES ELECTRICAS I
Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 2 Tema: MEDICION DE RESISTENCIA. METODO DIRECTO METODO INDIRECTO Método Directo Vamos a centrar nuestro análisis en los sistemas
PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER
elab, Laboratorio Remoto de Electrónica ITEM, Depto. de Ingeniería Eléctrica PRÁCTICA PD4 REGULACIÓN DE OLTAJE CON DIODO ENER OBJETIO Analizar teóricamente y de forma experimental la aplicación de diodos
INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II LEY DE OHM. Nombre: Grupo Calif.
INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II Práctica N º 12 LEY DE OHM Nombre: Grupo Calif. OBJETIVO El alumno comprobara la relación que existe entre
elab 3D Práctica 2 Diodos
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TECNICA SUPERIOR DE INGENIERIA Y SISTEMAS DE TELECOMUNICACIÓN elab 3D Práctica 2 Diodos Curso 2013/2014 Departamento de Sistemas Electrónicos y de Control 1. Introducción
Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla
Experimento 3 BATERÍAS, BOMBILLAS Y CORRIENTE ELÉCTRICA Objetivos 1. Construir circuitos sencillos con baterías, bombillas, y cables conductores, 2. Interpretar los esquemáticos de circuitos eléctricos,
CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE
eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA
Profesor: José Angel Garcia. PRACTICA No. 1 INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES
Profesor: José Angel Garcia PRACTICA No. 1 INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES 1.- OBJETIVO. Familiarizar al alumno con los Instrumentos para Medición de Variables eléctricas, que usara frecuentemente
Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C.
Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C. Experiencia N 6 1.- OBJETIVOS 1. Mostrar la potencia eléctrica como función del voltaje y de la corriente, calculando y midiendo la potencia
-Simulador de circuito. eléctrico-
-Simulador de circuito Ley de Ohm eléctrico- Leyes de Kirchhoff Simulador de circuito eléctrico Para acceder a la página en la que se encuentra el simulador, debes hacer clic en el título. Puedes bajarlo
ESPECIFICACIÓN DE LOS ÍTEMES DE PRUEBA
Instalaciones Eléctricas Electricidad Física ESPECIFICACIÓN DE LOS ÍTEMES DE PRUEBA Aprendizaje Esperado Incorporan el concepto de error en la medición de magnitudes físicas (por ejemplo, a través de la
Mida intervalos de tiempo con alta precisión y exactitud
Mida intervalos de tiempo con alta precisión y exactitud Diego Luis Aristizábal R., M. Sc. en Física Profesor Asociado Universidad Nacional de Colombia Roberto Fabián Restrepo A., M. Sc. en Física Profesor
Electricidad y Medidas Eléctricas I Departamento de Física Fac. de Cs. Fco. Mát. y Nat. - UNSL
Práctico de Laboratorio 4 Para realizar este Práctico deberá entregar antes de rendir el cuestionario, los siguientes ítem resueltos: En hoja aparte el Ítem 2.3. Los puntos de las Tablas 1, 2, 3, 4 y 5.
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA INSTRUMENTOS DE MEDICION INFORME DE LABORATORIO Presentado por: Andrés González - 0329032 Andrea Herrera - 0327121 Hans Haeusler - 0332903 Rafael Triviño -
Ley de Ohm y Resistencia Equivalente
UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FISICA Guía de Laboratorio # 1 Ley de Ohm y Resistencia Equivalente Diseñó: Addi Elvir OBJETIVOS Establecer la relación matemática
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA LABORATORIO DE: TRANSFORMADORES Y MOTORES DE INDUCCIÓN. GRUPO: PROFESOR ALUMNO
Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica
Nombre y apellidos: Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica En determinados materiales, como los metales y las sustancias iónicas fundidas o disueltas
PRÁCTICA 3 LEYES DE KIRCHHOFF E DC. DIVISORES DE VOLTAJE Y CORRIE TE E DC
PRÁCTICA 3 LEYES DE KIRCHHOFF E DC. DIVISORES DE VOLTAJE Y CORRIE TE E DC OBJETIVOS: 1. Conocer el uso y manejo del Vatímetro. 2. Deducir las expresiones matemáticas para el divisor de voltaje y el divisor
Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos
Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes
Leyes de Kirchoff El puente de Wheatstone
Leyes de Kirchoff El puente de Wheatstone 30 de marzo de 2007 Objetivos Aprender el manejo de un multímetro para medir resistencias, voltajes, y corrientes. Comprobar las leyes de Kirchoff. Medir el valor
COMPORTAMIENTO DE LOS CIRCUITOS EN CORRIENTE CONTINUA Como Corriente Continua se define una corriente que no varía en el tiempo ni de magnitud ni de sentido. Siempre que la carga insertada en el circuito
Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos
Prácticas Laboratorio Práctica 2: Diodos Ernesto Ávila Navarro Práctica 2: Diodos (Montaje y medida en laboratorio) Índice: 1. Material de prácticas 2. Medida de las características del diodo 2.2. Diodo
CARACTERISTICAS DEL JFET.
Electrónica I. Guía 4 1 / 1 CARACTERISTICAS DEL JFET. Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21).
Ley de Ohm. segundo secundaria 91
Ley de Ohm secundaria Gerog Ohm Una de las leyes más importante de la electrónica es la ley de Ohm. El conocimiento de esta ley es imprescindible y su aplicación no debe presentar ningún tipo de duda.
LABORATORIO 6: FUERZA ELECTROMOTRIZ, RESISTENCIA INTERNA Y POTENCIA
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 6: FUERZA ELECTROMOTRIZ, RESISTENCIA INTERNA Y POTENCIA Determine
7 6 EL PUENTE WHEATSTONE
EL PUENTE WHEATSTONE 253 7 6 EL PUENTE WHEATSTONE El circuito puente Wheatstone se utiliza para medir con precisión la resistencia. Sin embargo, más comúnmente se opera junto con transductores para medir
Medición de resistencia por el método de amperímetro-voltímetro
Medición de resistencia por el método de amperímetro-voltímetro Objetivos Determinar el valor de una resistencia por el método de amperímetro voltímetro. Discutir las incertezas propias del método y las
ELECTRODINAMICA. Nombre: Curso:
1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia
Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.
Electrónica Tema 2 Diodos Contenido Ideas básicas Aproximaciones Resistencia interna y Resistencia en continua Rectas de carga Diodo zener Dispositivos optoelectrónicos Diodo Schottky 2 Diodo Es un dispositivo
PRÁCTICA NÚMERO 2 CAMPO ELÉCTRICO
PRÁCTICA NÚMERO 2 CAMPO ELÉCTRICO I. Objetivos. 1.-Investigar cómo son las líneas de fuerza para las siguientes configuraciones de carga: a).-una carga puntual b).-dos cargas puntuales de igual signo c).-dos
TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos
TEMA 6 ELECTROACÚSTICA Sonorización industrial y de espectáculos Ley de Ohm La intensidad de corriente que circula en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional
XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física
XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y
LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN
LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN Objetivos. Estudiar y familiarizarse con el tablero de conexiones (Protoboard ) y la circuitería experimental. Aprender a construir circuitos
LEY DE OHM Y PUENTE DE WHEATSTONE
uned de Consorci Centre Associat la UNED de Terrassa Laboratori d Electricitat i Magnetisme (UPC) LEY DE OHM Y PUENTE DE WHEATSTONE Objetivo Comprobar experimentalmente la ley de Ohm. Determinar el valor
Parte A: Circuito RC
Circuitos RC, RL Y RLC Parte A: Circuito RC EQUIPAMIENTO - Osciloscopio Digital Tektronic - Circuito RLC, PASCO CI-6512 - Fuente de Poder 30V,5 A - Conectores banana - 2 cables BNC - 1 resistencia de 10
Pregunta: Por qué necesita que el bombillo esté conectado a ambos terminales de la batería?
José hizo este dibujo de una batería y un bombillo para la clase de ciencias. Si él hubiera armado ese experimento en la realidad, el bombillo no funcionaría. El problema es el cable suelto de la izquierda,
Actividad III.22 Medición de resistencias a cuatro puntas o método de Kelvin.
ctividad III.22 Medición de resistencias a cuatro puntas o método de Kelvin. Determinación de resistencias de bajo valor Objetivos Estudio de la técnica de cuatro puntas o método de Kelvin para medir resistencias
5. ELECTRICIDAD Y MAGNETISMO
Departamento Tecnología I.E.S. Drago Cádiz PÁG. 1 # ACTIVIDADES POTENCIA ELÉCTRICA 1.- Calcula la potencia eléctrica consumida por una plancha conectada a una tensión eléctrica de 220 v y con una intensidad
Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA
PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA I - Finalidades 1.- Estudiar el código de color de las resistencias. 2.- Utilización del multímetro
Laboratorio de Electricidad PRACTICA - 4 PROPIEDADES DE LOS CIRCUITOS SERIE-PARALELO LEYES DE KIRCHHOFF (PARA UN GENERADOR)
PRACTICA - 4 PROPIDADS D LOS CIRCUITOS SRI-PARALLO LYS D KIRCHHOFF (PARA UN GNRADOR) I - Finalidades 1.- Comprobar experimentalmente que la resistencia total R T de una combinación de resistencias en conexión
Experimento 3: Circuitos rectificadores con y sin filtro
Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Johan Carvajal, Ing. Adolfo Chaves, Ing. Eduardo Interiano, Ing. Francisco Navarro Laboratorio de Elementos Activos
ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO
FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO PORTADA Nombre de la universidad Facultad de Ingeniería Ensenada Carrera Materia Alumno Nombre y número de Práctica Nombre del maestro Lugar y fecha CONTENIDO
EL AMPLIFICADOR CON BJT
1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia
GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio:
GUIA DE FÍSICA LEY DE OHM Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor Corriente eléctrica Una corriente eléctrica es un movimiento ordenado de cargas eléctricas (electrones libres) en un conductor.
UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA
FUERZA CENRÍPEA OBJEIVO Estudiar los efectos de la fuerza centrípeta en un objeto que describe una trayectoria circular, al variar la masa del objeto, y el radio del círculo que describe en su movimiento.
INDUCCIÓN ELECTROMAGNÉTICA
PRÁCTICA DE LABORATORIO II-14 INDUCCIÓN ELECTROMAGNÉTICA OBJETIVOS Estudiar el fenómeno de inducción electromagnética. Medir campos magnéticos mediante una bobina de exploración. Estudiar la variación
Movimiento de proyectiles
Movimiento de proyectiles Objetivo General El alumno estudiará el movimiento de un proyectil Objetivos particulares 1. Determinar las componentes horizontal y vertical de la velocidad de un proyectil en
Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM
Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental
Momento de Torsión Magnética
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento
Aplicar la ley de ohm, en el desarrollo de ejercicios..
Corriente eléctrica Aplicar la ley de ohm, en el desarrollo de ejercicios.. En términos simples, la electricidad corresponde al movimiento de cargas eléctricas. Las cargas que pueden moverse son los electrones
MANUAL DE LAB ELECTRICIDAD Y MAGNETISMO
POTENCIA ELECTRICA EXPERIENCIA N 5 1. OBJETIVOS. 1. Mostrar la potencia eléctrica como función del voltaje y de la corriente, calculando y midiendo la potencia disipada en una resistencia conforme aumenta
Verificación de la Ley de Ohm. Asociación de resistencias. Ajustes a rectas y regresión lineal.
Verificación de la Ley de Ohm. Asociación de resistencias. Ajustes a rectas y regresión lineal. Objetivos En esta práctica se verificará la Ley de Ohm, esto es, la dependencia lineal entre la intensidad
