Reconocimiento de Componentes
|
|
|
- Sebastián Chávez Bustos
- hace 8 años
- Vistas:
Transcripción
1 Electrotecnia 1 Práctica de Laboratorio Nº 1 Reconocimiento de Componentes Objetivo: Que el alumno se familiarice con distintos tipos de componentes usuales en electrotecnia, sus características reales, magnitudes y conexionado apropiado. Introducción Los elementos más usuales en electrotecnia son las resistencias, los condensadores y las fuentes de tensión. Cada uno de ellos posee características que los apartan del comportamiento ideal y este hecho debe ser tenido muy en cuenta al momento de trabajar físicamente con estos elementos. Una diferencia importante y fundamental a tomar en cuenta: en el papel, los circuitos no se queman, no elevan su temperatura ni ponen en riesgo la seguridad de quienes lo conectan dibujando un cable ideal. En el laboratorio estos hechos pueden pasar si no se adoptan medidas de seguridad, por lo que debemos tomar en cuenta lo siguiente: Los circuitos no deben conectarse hasta haber verificado todas las conexiones Cualquier modificación que deba hacerse en el circuito se hará SIN TENSIÓN Si bien se trabajará en el presente laboratorio con una tensión continua de bajo valor, los elementos conectados no deben tocarse mientras están tensionados A continuación, describiremos cada componente y sus características: Las Resistencias Las resistencias son unos elementos eléctricos cuya misión es limitar el paso de la corriente eléctrica a través de ellas. Su característica principal es su resistencia óhmica, aunque no puede dejar de tomarse en cuenta la potencia máxima que pueden disipar, pues ésta determina si puede o no usarse según el caso. Ésta última depende principalmente de la construcción física del elemento: el calor se genera en forma volumétrica de acuerdo a la ley de Joule, pero se disipa en forma superficial, de allí que se intente para casos especiales aumentar la superficie incluyendo ondas superficiales que ayudan a disipar o aumentando la superficie con disipadores de metal. La resistencia pura de una resistencia se mide en ohms u ohmios. Se suele utilizar esa misma unidad, así como dos de sus múltiplos: el Kilo-Ohmio (1KΩ) y el Mega-Ohmio (1MΩ=10 6 Ω). El valor resistivo puede ser fijo o variable. En el primer caso hablamos de resistencias comunes o fijas y en el segundo de resistencias variables, ajustables, potenciómetros y reóstatos. Nos centraremos en el primer tipo, las fijas. Las resistencias fijas pueden clasificarse en dos grupos, de acuerdo con el material con el que están constituidas: "resistencias de hilo", solamente para disipaciones superiores a 2 W, y "resistencias químicas" para, en general, potencias inferiores a 2 W. Resistencias de hilo o bobinadas Generalmente están constituidas por un soporte de material aislante y resistente a la temperatura (cerámica, esteatita, mica, etc.) alrededor del cual hay la resistencia propiamente dicha, constituida por un hilo cuya sección y resistividad depende de la potencia y de la resistencia deseadas. En los extremos del soporte hay fijados dos anillos metálicos sujetos con un tornillo o remache cuya misión, además de fijar en él el hilo de resistencia, consiste en permitir la conexión de la resistencia mediante soldadura. Por lo general, una vez construidas, se recubren de un barniz especial que se somete a un proceso de vitrificación a alta temperatura con el objeto de proteger el hilo y evitar que las diversas espiras hagan contacto entre sí. Sobre este barniz suelen marcarse con serigrafía los Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 1
2 valores en ohmios y en vatios, tal como se observa en esta figura. En ella vemos una resistencia de 250 Ω, que puede disipar una potencia máxima de 10 vatios. Aquí vemos el aspecto exterior y estructura constructiva de las resistencias de alta disipación (gran potencia). Pueden soportar corrientes relativamente elevadas y están protegidas con una capa de esmalte. A. hilo de conexión B. soporte cerámico C. arrollamiento D. recubrimiento de esmalte. Aquí vemos otros tipos de resistencias bobinadas, de diferentes tamaños y potencias, con su valor impreso en el cuerpo. La de la izquierda es de 24 Ω, 5% (inscripción: 24R 5%) La más pequeña es de 10 Ω, aunque no se aprecia su inscripción en la foto. Resistencias químicas Las resistencias de hilo de valor óhmico elevado necesitarían una cantidad de hilo tan grande que en la práctica resultarían muy voluminosas. Las resistencias de este tipo se realizan de forma más sencilla y económica empleado, en lugar de hilo, carbón pulverizado mezclado con sustancias aglomerantes. La relación entre la cantidad de carbón y la sustancia aglomerante determina la resistividad por centímetro, por lo que es posible fabricar resistencias de diversos valores. Existen tipos de carbón aglomerado, de película de carbón y de película metálica. Normalmente están constituidas por un soporte cilíndrico aislante (de porcelana u otro material análogo) sobre el cual se deposita una capa de material resistivo. Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 2
3 En las resistencias, además del valor óhmico que se expresa mediante un código de colores, hay una contraseña que determina la precisión de su valor (aproximación), o sea la tolerancia anunciada por el fabricante. Esta contraseña está constituida por un anillo pintado situado en uno de los extremos del cuerpo. De izquierda a derecha, las potencias son de 1/8, ¼, ½, 1 y 2 W, respectivamente. En ellas se observan las diferentes bandas de color que representan su valor óhmico. Aquí abajo vemos unos ejemplos de resistencias de película de carbón y de película metálica, donde se muestra su aspecto constructivo y su aspecto exterior: Interpretación del código de colores en las resistencias Las resistencias llevan grabadas sobre su cuerpo unas bandas de color que nos permiten identificar el valor óhmico que éstas poseen. Esto es cierto para resistencias de potencia pequeña (menor de 2 W.), ya que las de potencia mayor generalmente llevan su valor impreso con números sobre su cuerpo, tal como hemos visto antes. En la resistencia de la izquierda vemos el método de codificación más difundido. En el cuerpo de la resistencia hay 4 anillos de color que, considerándolos a partir de un extremo y en dirección al centro, indican el valor óhmico de este componente El número que corresponde al primer color indica la primera cifra, el segundo color la segunda cifra y el tercer color indica el número de ceros que siguen a la cifra obtenida, con lo que se tiene el valor efectivo de la resistencia. El cuarto anillo, o su ausencia, indica la tolerancia. Podemos ver que la resistencia de la izquierda tiene los colores amarillo-violeta-naranja-oro (hemos intentado que los colores queden representados lo mejor posible en el dibujo), de forma que según la tabla de abajo podríamos decir que tiene un valor de: 4-7-3ceros, con una tolerancia del 5%, o sea, Ω ó 47 KΩ. La tolerancia indica que el valor real estará entre Ω y Ω (47 KΩ±5%). La resistencia de la derecha, por su parte, tiene una banda más de color y es que se trata de una resistencia de precisión. Esto además es corroborado por el color de la banda de tolerancia, que al ser de color rojo indica que es una resistencia del 2%. Éstas tienen tres cifras significativas (al contrario que las anteriores, que tenían 2) y los colores son marrón-verde-amarillo-naranja, de forma que Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 3
4 según la tabla de abajo podríamos decir que tiene un valor de: ceros, con una tolerancia del 2%, o sea, Ω ó 1540 KΩ ó 1.54 MΩ. La tolerancia indica que el valor real estará entre KΩ y KΩ (1.54 MΩ±2%). Por último, una precisión del 2% se considera como muy buena, aunque en la mayoría de los circuitos usaremos resistencias del 5%, que son las más corrientes. Código de colores en las resistencias COLORES Banda 1 Banda 2 Banda 3 Multiplicador Tolerancia Plata x % Oro x 0.1 5% Negro x 1 Marrón x 10 1% Rojo x 100 2% Naranja x 1000 Amarillo x Verde x % Azul x Violeta Gris Blanco Ninguno % Valores normalizados de resistencias Vamos a mostrar ahora una tabla con los valores normalizados de resistencias, que ayudará a encajarlas según valores establecidos internacionalmente. Tolerancia 10 % Tolerancia 5 % Tolerancia 2 % , , 1.05, 1.1, , , 1.27, 1.33, 1.40, , , 1.62, 1.69, , , 196, 2.00, 2.05, , , 2.37, 2.49, , , 2.87, 3.01, , , 3.48, 3.65, , , 4.22, 4.42, , , 5.11, , , 5.90, 6.19, , , 7.15, 7.50, , , 8.66, 9.09, 9.53 Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 4
5 RESISTENCIAS VARIABLES Estas resistencias pueden variar su valor dentro de unos límites. Para ello se les ha añadido un tercer terminal unido a un contacto móvil que puede desplazarse sobre el elemento resistivo proporcionando variaciones en el valor de la resistencia. Este tercer terminal puede tener un desplazamiento angular (giratorio) o longitudinal (deslizante). Según su función en el circuito estas resistencias se denominan: Potenciómetros: Se utilizan donde la variación de resistencia la efectúa el usuario desde el exterior (controles de audio, video, etc.). Presets: Estos componentes van montados en la plaqueta y normalmente el usuario no tiene acceso a ellos. Se utilizan en los casos donde rara vez sea necesario modificar el valor de la resistencia (controles de ganancia, polarización, parámetros preajustados, etc.). Los principales parámetros de las resistencias son: Resistencia nominal (Rn): valor esperado de resistencia variable entre los límites del recorrido. Resistencia total (Rt): resistencia entre los extremos, sin tener en cuenta la conexión del cursor e incluyendo la tolerancia. En la práctica se considera igual al valor nominal (Rt=Rn). Temperatura nominal de funcionamiento (Tn): es la temperatura ambiente a la cual se define la disipación nominal. Temperatura máxima de funcionamiento (Tmax): máxima temperatura ambiente en la que puede ser utilizada la resistencia. Potencia nominal (Pn): máxima potencia que puede disipar el dispositivo en servicio continuo y a la temperatura nominal de funcionamiento. Tensión máxima de funcionamiento (Vmax): máxima tensión continua (o alterna eficaz) que se puede aplicar a la resistencia entre los terminales extremos en servicio continuo, a la temperatura nominal de funcionamiento. Resolución: cantidad mínima de resistencia que se puede obtener entre el cursor y un extremo al desplazar (o girar) el cursor. Suele expresarse en % en tensión, en resistencia, o resolución angular. Leyes de variación: es la característica que particulariza la variación de la resistencia respecto al desplazamiento del cursor. Las más comunes son la ley de variación lineal, y la logarítmica (positiva y negativa): Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 5
6 Los Condensadores Básicamente un condensador es un dispositivo capaz de almacenar energía en forma de campo eléctrico. Está formado por dos armaduras metálicas paralelas (generalmente de aluminio) separadas por un material dieléctrico. Va a tener una serie de características tales como capacidad, tensión de trabajo, tolerancia y polaridad, que deberemos aprender a distinguir Aquí a la izquierda vemos esquematizado un condensador, con las dos láminas = placas = armaduras, y el dieléctrico entre ellas. En la versión más sencilla del condensador, no se pone nada entre las armaduras y se las deja con una cierta separación, en cuyo caso se dice que el dieléctrico es el aire. Capacidad: Se mide en Faradios (F), aunque esta unidad resulta tan grande que se suelen utilizar varios de los submúltiplos, tales como microfaradios (µf=10-6 F ), nanofaradios (nf=10-9 F) y picofaradios (pf=10-12 F). Tensión de trabajo: Es la máxima tensión que puede aguantar un condensador, que depende del tipo y grososr del dieléctrico con que esté fabricado. Si se supera dicha tensión, el condensador puede perforarse (quedar cortocircuitado) y/o explotar. En este sentido hay que tener cuidado al elegir un condensador, de forma que nunca trabaje a una tensión superior a la máxima. Tolerancia: Igual que en las resistencias, se refiere al error máximo que puede existir entre la capacidad real del condensador y la capacidad indicada sobre su cuerpo. Polaridad: Los condensadores electrolíticos y en general los de capacidad superior a 1 µf tienen polaridad, eso es, que se les debe aplicar la tensión prestando atención a sus terminales positivo y negativo. Al contrario que los inferiores a 1µF, a los que se puede aplicar tensión en cualquier sentido, los que tienen polaridad pueden explotar en caso de ser ésta la incorrecta. Tipos de condensadores Vamos a mostrar a continuación una serie de condensadores de los más típicos que se pueden encontrar. Todos ellos están comparados en tamaño a una moneda. 1. Electrolíticos. Tienen el dieléctrico formado por papel impregnado en electrólito. Siempre tienen polaridad, y una capacidad superior a 1 µf. Arriba observamos claramente que el condensador nº 1 es de 2200 µf, con una tensión máxima de trabajo de 25v. (Inscripción: 2200 µ / 25 V). Abajo a la izquierda vemos un esquema de este tipo de condensadores y a la derecha vemos Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 6
7 unos ejemplos de condensadores electrolíticos de cierto tamaño, de los que se suelen emplear en aplicaciones eléctricas (fuentes de alimentación, etc...). 2. Electrolíticos de tántalo o de gota. Emplean como dieléctrico una finísima película de óxido de tantalio amorfo, que con un menor espesor tiene un poder aislante mucho mayor. Tienen polaridad y una capacidad superior a 1 µf. Su forma de gota les da muchas veces ese nombre. 3. De poliéster metalizado MKT. Suelen tener capacidades inferiores a 1 µf y tensiones de trabajo a partir de 63v. Más abajo vemos su estructura: dos láminas de policarbonato recubierto por un depósito metálico que se bobinan juntas. Aquí al lado vemos un detalle de un condensador plano de este tipo, donde se observa que es de µf y 250v. (Inscripción: K/ 250 MKT). 4. De poliéster. Son similares a los anteriores, aunque con un proceso de fabricación algo diferente. En ocasiones este tipo de condensadores se presentan en forma plana y llevan sus datos impresos en forma de bandas de color, recibiendo comúnmente el nombre de condensadores "de bandera". Su capacidad suele ser como máximo de 470 nf. Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 7
8 5. De poliéster tubular. Similares a los anteriores, pero enrollados de forma normal, sin aplastar. 6. Cerámico "de lenteja" o "de disco". Son los cerámicos más corrientes. Sus valores de capacidad están comprendidos entre 0.5 pf y 47 nf. En ocasiones llevan sus datos impresos en forma de bandas de color. Aquí vemos unos ejemplos de condensadores de este tipo. 7. Cerámico "de tubo". Sus valores de capacidad son del orden de los picofaradios y generalmente ya no se usan, debido a la gran deriva térmica que tienen (variación de la capacidad con las variaciones de temperatura). Identificación del valor de los condensadores. Codificación por bandas de color Hemos visto que algunos tipos de condensadores llevan sus datos impresos codificados con unas bandas de color. Esta forma de codificación es muy similar a la empleada en las resistencias, en este caso sabiendo que el valor queda expresado en picofaradios (pf). Las bandas de color son como se observa en esta figura: En el condensador de la izquierda vemos los siguientes datos: verde-azul-naranja = pf = 56 nf (recordemos que el "56000" está expresado en pf). El color negro indica una tolerancia del 20%, tal como veremos en la tabla de abajo y el color rojo indica una tensión máxima de trabajo de 250v. En el de la derecha vemos: amarillo-violeta-rojo = 4700 pf = 4.7 nf. En los de este tipo no suele aparecer información acerca de la tensión ni la tolerancia. Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 8
9 Código de colores en los condensadores COLORES Banda 1 Banda 2 Multiplicador Tensión Negro -- 0 x 1 Marrón 1 1 x V. Rojo 2 2 x V. Naranja 3 3 x 1000 Amarillo 4 4 x V. Verde 5 5 x 10 5 Azul 6 6 x V. Violeta 7 7 Gris 8 8 Blanco 9 9 COLORES Tolerancia (C > 10 pf) Tolerancia (C < 10 pf) Negro +/- 20% +/- 1 pf Blanco +/- 10% +/- 1 pf Verde +/- 5% +/- 0.5 pf Rojo +/- 2% +/ pf Marrón +/- 1% +/- 0.1 pf Codificación mediante letras Este es otro sistema de inscripción del valor de los condensadores sobre su cuerpo. En lugar de pintar unas bandas de color se recurre también a la escritura de diferentes códigos mediante letras impresas. A veces aparece impresa en los condensadores la letra "K" a continuación de las letras; en este caso no se traduce por "kilo", o sea, 1000 sino que significa cerámico si se halla en un condensador de tubo o disco. Si el componente es un condensador de dieléctrico plástico (en forma de paralelepípedo), "K" significa tolerancia del 10% sobre el valor de la capacidad, en tanto que "M" corresponde a tolerancia del 20% y "J", tolerancia del 5%. LETRA Tolerancia "M" +/- 20% "K" +/- 10% "J" +/- 5% Detrás de estas letras figura la tensión de trabajo y delante de las mismas el valor de la capacidad indicado con cifras. Para expresar este valor se puede recurrir a la colocación de un punto entre las cifras (con valor cero), refiriéndose en este caso a la unidad microfaradio (µf) o bien al empleo del prefijo "n" (nanofaradio = 1000 pf). Ejemplo: un condensador marcado con 0,047 J 630 Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 9
10 tiene un valor de pf = 47 nf, tolerancia del 5% sobre dicho valor y tensión máxima de trabajo de 630 v. También se podría haber marcado de las siguientes maneras: 4,7n J 630, o 4n7 J 630. Código "101" de los condensadores Por último, vamos a mencionar el código 101 utilizado en los condensadores cerámicos como alternativa al código de colores. De acuerdo con este sistema se imprimen 3 cifras, dos de ellas son las significativas y la última de ellas indica el número de ceros que se deben añadir a las precedentes. El resultado debe expresarse siempre en picofaradios pf. Así, 561 significa 560 pf, 564 significa pf = 560 nf, y en el ejemplo de la figura de la derecha, 403 significa pf = 40 nf. Ejemplos prácticos Vamos a presentar una serie de condensadores elegidos al azar e identificamos sus valores: 0,047 J 630 C=47 nf 5% V=630 V. 403 C=40 nf 0,068 J 250 C=68 nf 5% V=250 V. 47p C=47 pf 22J C=22 pf 5% 2200 C=2.2 nf 10K +/-10% 400 V C=10 nf 10% V=400 V 3300/ V C=3.3 nf 10% V=400 V. amarillo-violeta-naranja-negro C=47 nf 20% 330K 250V C=0.33 µf V=250 V. Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 10
11 n47 J C=470 pf 5% 0,1 J 250 C=0.1 µf 5% V=250 V. verde-azul-naranja-negro-rojo C=56 nf 20% V=250 V. µ1 250 C=0.1 µf V=250 V. 22K 250 V C=22 nf V=250 V. n15 K C=150 pf 10% azul-gris-rojo y marron-negronaranja C1=8.2 nf C2=10 nf amarillo-violetarojo C=4.7 nf Uso del protoboard El protoboard es una tabla de conexiones que posee 550 puntos de conexión posible en forma de agujeros, pero sólo 96 nodos. Las líneas superior e inferior de la placa, marcadas con x e y, son sólo nodos de conexión que pueden usarse para la alimentación de positivo y negativo. Como variante, algunas placas traen dos líneas de alimentación + y -, una arriba y otra abajo. Los puntos indicados con A, B, C, D y E de la parte superior y sus homólogos de abajo están unidos entre sí, formando un nodo capaz de conectar entre sí 5 elementos. Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 11
12 Multímetro digital (Téster) El instrumento de campo más frecuente en las mediciones eléctricas es el multímetro o téster. Este instrumento, si bien versátil en cuanto a su funcionalidad, no posee gran precisión en su medida, aunque en la mayor parte de los casos en los que se utiliza, suficiente para la calidad de medida necesaria (una medida aproximada de la tensión existente entre dos puntos de un circuito eléctrico, la prueba de continuidad de un cable o un fusible, etc.). Todos los multímetros tienen capacidad de medir, sin puntas especiales, tensiones alternas y continuas, en general no mucho mayores que 750 V, corrientes alternas y continuas de algunos mili Amperes de magnitud, y resistencias de unos pocos ohms hasta algunos mega Ohms. En los modelos más modernos, existe la posibilidad de medir frecuencias, temperaturas (con sondas apropiadas), capacidades y características especiales, como por ejemplo la ganancia y forma de conexión de transistores y diodos. Además, muchos cuentan con una función memoria (Hold), e incluso con salida de datos en formato apropiado para ser levantados por una computadora. 10A Hold com VmA V La sensibilidad de estos instrumentos como voltímetros, definida en Ohms por Volt (/V) ha mejorado mucho con la tecnología y se han logrado valores muy elevados, pudiendo algunos modelos presentar sensibilidades del orden de los o más. Su desempeño como amperímetros no es el mejor, y la mayoría puede, con dificultad, medir corrientes del orden de hasta 100 mili Amperes. Usado como óhmetro, algunos modelos tienen capacidad de medir hasta 2 Mega Ohms o más. La forma de utilización es simple: se usan dos puntas de prueba con una aislación de hasta 1000 Volts, las que se conectan en los espacios reservados: uno con la indicación com (negro, negativo como referencia para medir tensiones) y la otra al terminal VmA (rojo, positivo para medir tensiones). Debe seleccionarse el rango que se va a medir con propiedad (en algunos modelos, llamados auto rangeables, esto no es necesario), porque de otro modo se obtendrá como indicación un guión medio (-) o una serie de guiones (---) que indica que se está midiendo fuera de rango. Si se Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 12
13 fusibles en placa de multímetro comercial usa la función inapropiada para medir (por ejemplo, poner la llave selectora en ohms y conectar el aparato para medir tensiones) los daños que se pueden provocar en el instrumento pueden ir desde el quemado del fusible hasta la destrucción de la plaqueta de conexiones. En caso de conectar inapropiadamente el selector de medición (por ejemplo, para medir tensión alterna cuando debería haberse usado continua), puede no haber daños y simplemente producirse una indicación errónea del valor que se trata de medir, aunque correcta por la forma en que se realizó la medición (por ejemplo, al conectar el multímetro para medir tensión alterna en una fuente de tensión no estabilizada, puede medirse un valor en mili volts que indica el ripple que la fuente tiene). Por ello, debe prestarse especial atención en colocar apropiadamente la llave selectora en la posición correcta si se desea trabajar con seguridad, pues la mayor parte de los accidentes o roturas instrumentales se produce por descuido del operador en esta operación. Por otro lado, debe tenerse especial cuidado en realizar un buen contacto con las puntas de prueba, y en el caso de los multímetros digitales, en esperar a que la medida se estabilice en un valor antes de medir, pues esto puede demorar algo más que lo que se podría suponer (fracciones de segundo). Al depender únicamente de la aislación de las puntas, éstas deben manejarse con especial precaución, y verificarse al menos visualmente en busca de probables fallos de aislación o contacto antes de intervenir sobre un circuito tensionado. Una buena práctica para medir consiste en fijar la punta de referencia (usualmente negra) en una posición fija en el circuito a medir (por ejemplo, conectada a una bornera o tornillo) y medir usando únicamente la mano que maneja la punta roja, de forma tal de evitar que Accidente con multímetro accidentalmente se produzca pasaje de corriente de mano a mano del operador, circuito que puede producir lesiones severas en el corazón y pulmones, y eventualmente la muerte si el accidente es de gran magnitud. Desarrollo de la práctica A lo largo de la práctica se entregarán a los grupos elementos que deberán anotar y describir en cuanto a sus características. Este trabajo debe llevarse a cabo en la última hoja del presente informe, el que será entregado al finalizar la misma para su corrección. Una vez finalizadas las anotaciones, cada grupo armará un circuito sobre las protoboards que se le entregarán, determinando a través del cálculo el equivalente de Thevenin entre A y B, y verificando los valores calculados a través del uso de un multímetro, explicando las diferencias eventuales que se produzcan entre lo calculado y lo medido. Bibliografía: Circuitos eléctricos. Dorf. Ed. Alfaomega Circuitos en ingeniería eléctrica. H. H. Skilling Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 13
14 INFORME DE LABORATORIO NRO. 1 RECONOCIMIENTO DE COMPONENTES ELECTRÓNICOS ALUMNO: MAT. Nº: 1) Indique el valor de los resistores que fueron asignados a su grupo, así como los colores de las bandas (utilice abreviaturas para los colores: AM para amarillo, NE para negro, etc.) Resistor 1: Valor: Ohm, Tolerancia: %, Bandas: Resistor 2: Valor: Ohm, Tolerancia: %, Bandas: Resistor 3: Valor: Ohm, Tolerancia: %, Bandas: 2) Indique el valor, máxima tensión admisible y tipo de capacitor, especificando el sub múltiplo que corresponda: Capacitor 1: Valor: Farad, Tensión: V; Capacitor 2: Valor: Farad, Tensión: V; Tipo Tipo 3) Arme el siguiente circuito en la protoboard, calculando en papel y verificando su circuito equivalente de Thevenin entre A y B con un téster. Dibuje el circuito conectado sobre el esquema de protoboard. 1 K 1 K 1 K R th calculada = 1 K 1 K 5 V 1 K 1 K X A V th calculada = R th medida = X B V th medida = Bgo. Práctica de Laboratorio Nro. 1 - Electrotecnia 1 Pág. Nº 14
valor (ohm) 0.47 ohm 0R47 1.13 ohm 1R13 100 ohm 100R 1000 ohm 1k 4700 ohm 4k7 5360 ohm 5k36 1,270,000 1M27
Página 1 de 14 Resistencias Definiciones Tolerancia Tabla de valores normalizados. Series E Código de colores de 4 y 5 bandas. Valores típicos para Tolerancias del 5% y 10% Valores típicos para Tolerancias
M A Y O A C T U A L I Z A D A
U N I V E R S I D A D N A C I O N A L E X P E R I M E N T A L F R A N C I S C O D E M I R A N D A C O M P L E J O A C A D É M I C O E L S A B I N O Á R E A D E T E C N O L O G Í A D E P A R T A M E N T
P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A
P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A Nombres y apellidos: Curso:. Fecha:.. Firma: PRÁCTICA 1: RESISTENCIAS OBJETIVO: Conocer los tipos y características de las resistencias, así
Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA
PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA I - Finalidades 1.- Estudiar el código de color de las resistencias. 2.- Utilización del multímetro
Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra
Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad
COMPONENTES ELECTRÓNICOS
UD 5.- COMPONENTES ELECTRÓNICOS 1. RESISTENCIA FIJA O RESISTOR 2. RESISTENCIAS VARIABLES 3. EL RELÉ 4. EL CONDENSADOR 5. EL DIODO 6. EL TRANSISTOR 7. MEDICIÓN CON POLÍMETRO 1. RESISTENCIA FIJA O RESISTOR
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO #4
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO #4 CIRCUITOS CAPACITIVOS MATERIA: ELECTRICIDAD Y MAGNETISMO 1. 2. 3. ALUMNOS CARNET
Condensadores. Tipos de Condensadores
Condensadores Básicamente un condensador es un dispositivo capaz de almacenar energía en forma de campo eléctrico. Está formado por dos armaduras metálicas paralelas (generalmente de aluminio) separadas
CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE
eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA
LAS RESISTENCIAS: BOBINADAS:
LAS RESISTENCIAS: Las resistencias son unos componentes eléctricos cuya misión es dificultar el paso de la corriente eléctrica a través de ellas. Su característica principal es su resistencia óhmica aunque
Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO
FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de
Profesor: José Angel Garcia. PRACTICA No. 1 INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES
Profesor: José Angel Garcia PRACTICA No. 1 INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES 1.- OBJETIVO. Familiarizar al alumno con los Instrumentos para Medición de Variables eléctricas, que usara frecuentemente
Tema 2 Componentes Electrónicos
ELECTRÓNICA ANALÓGICA IES PRADO DE SANTO DOMINGO CURSO 2010-2011 Tema 2 Componentes Electrónicos Profesor: Ramón Rodríguez Luque Web: http://platea.pntic.mec.es/rrodrigu/cms/ Índice 1.- RESISTENCIAS. Tipos:
Condensadores plásticos (Plastic film capacitors)
Condensadores plásticos (Plastic film capacitors) CURIOSIDAD: Condensador "MULTICAPA" fabricación casera con vasos de Polietileno Condensadores plásticos (Plastic film capacitors) Poliéster metalizado
Esquemas. CIRCUITO DE REGULACIÓN DE INTENSIDAD. Toda buena fuente debe tener una
Una fuente de alimentación es uno de los instrumentos más necesarios para un laboratorio o taller de electrónica, siempre que tenga unas características de regulación de tensión y corriente adecuadas para
Analógicos. Digitales. Tratan señales digitales, que son aquellas que solo pueden tener dos valores, uno máximo y otro mínimo.
Electrónica Los circuitos electrónicos se clasifican en: Analógicos: La electrónica estudia el diseño de circuitos que permiten generar, modificar o tratar una señal eléctrica. Analógicos Digitales Tratan
Electrónica REPASO DE CONTENIDOS
Tema 1 Electrónica Conocerás las principales componentes de los circuitos eléctricos. Resistencias, condensadores, diodos y transistores. Sabrás cómo montar circuitos eléctricos simples. REPASO DE CONTENIDOS
TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA
E.T. Nº 17 - D.E. X Reg. PRÁCTCAS UNFCADAS 1 ntroducción Teórica TRABAJO PRÁCTCO Nº 2 ANÁLSS DE CRCUTOS DE CORRENTE CONTNUA a Multímetro digital: El multímetro digital es un instrumento electrónico de
RESISTORES Tipos de Resistores:
RESISTORES 2016 Tipos de Resistores: Teoría de Circuitos Por su composición o fabricación: De hilo bobinado (wirewound) Carbón prensado (carbon composition) Película de carbón (carbon film) Película óxido
CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA
CUSO TALLE ACTIIDAD 3 POTOBOAD MULTÍMETO MEDICIÓN DE OLTAJES Y COIENTES DE COIENTE DIECTA FUENTE DE OLTAJE DE COIENTE DIECTA Como su nombre lo dice, una fuente de voltaje de corriente directa (C.D) es
PRÁCTICAS DE ELECTRÓNICA 4º E.S.O.
PRÁCTICAS DE ELECTRÓNICA 4º E.S.O. DEPARTAMENTO DE TECNOLOGÍA I.E.S. SEFARAD www.tecnosefarad.com ALUMNO/A: GRUPO: 1. INTRODUCCIÓN Las prácticas se realizarán de la siguiente manera: En este cuaderno se
Resistencias Variables
Resistencias Variables Estos tipos de resistencias se denominan potenciómetros, siendo posible modificar el valor óhmico mediante un dispositivo móvil llamado cursor. Estos valores varían entre cero y
MEDICIONES ELECTRICAS I
Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 2 Tema: MEDICION DE RESISTENCIA. METODO DIRECTO METODO INDIRECTO Método Directo Vamos a centrar nuestro análisis en los sistemas
Desarrollo y Construcción de Prototipos Electrónicos
Desarrollo y Construcción de Prototipos Electrónicos U.D. 0.2.- Identificación normalizada de resistencias y condensadores Tema 0.2.1.- Código de colores y valores normales de resistencias Código de colores
Resistencias comerciales (parte 2)
Resistencias comerciales (parte 2) Las resistencias comerciales pueden ser divididas en dos grandes grupos: Fijas y Variables 1. Las fijas denominadas de composición utilizan polvo de carbón como material
CENTRO INDUSTRIAL Y DEL DESARROLLO TECNÓLOGICO. Ingeniero Electrónico. Julio César Bedoya Pino
Clasificación de las resistencias.??? RESISTORES Lineales No lineales Variables Termistores Varistores (VDR) Fotoresistencias (LDR) Fijos NTC PTC Una Resistencia es.??? La oposición que ofrece un cuerpo
Departamento de Tecnología I.E.S. Mendiño. Electricidad 3º E.S.O. Alumna/o :...
Departamento de Tecnología I.E.S. Mendiño Electricidad 3º E.S.O. Alumna/o :... Electricidad.- Magnitudes fundamentales. Tensión o Voltaje: Indica la diferencia de potencial entre 2 puntos de un circuito.
TEMA : LA ELECTRÓNICA
Electrónica 3º E.S.O. 1 TEMA : LA ELECTRÓNICA 1. ELEMENTOS COMPONENTES DE LOS CIRCUITOS ELECTRÓNICOS. 1.1. Resistencias. Una resistencia es un operador o componente eléctrico que se opone al paso de la
UNIVERSIDAD DON BOSCO
CICLO 02-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 01 NOMBRE DE LA PRÁCTICA: Generalidades y Fundamentos de Electrónica.
Resistencias. Tema 1 TEST DE AUTOEVALUACIÓN
TEST DE AUTOEVALUACIÓN El nombre real del componente tratado en este primer tema es resistor, pero en el argot técnico suele cambiarse por el de su característica principal, denominándose popularmente
CAPITULO IV FAMILIAS LÓGICAS
FAMILIAS LÓGICAS CAPITULO IV FAMILIAS LÓGICAS FAMILIAS LÓGICAS Una familia lógica es un grupo de dispositivos digitales que comparten una tecnología común de fabricación y tienen estandarizadas sus características
Ejercicios de ELECTRÓNICA ANALÓGICA
1. Calcula el valor de las siguientes resistencias y su tolerancia: Código de colores Valor en Ω Tolerancia Rojo, rojo, rojo, plata Verde, amarillo, verde, oro Violeta, naranja, gris, plata Marrón, azul,
Unidad 3. Análisis de circuitos en corriente continua
Unidad 3. Análisis de circuitos en corriente continua Actividades 1. Explica cómo conectarías un polímetro, en el esquema de la Figura 3.6, para medir la tensión en R 2 y cómo medirías la intensidad que
INTRODUCCIÓN. Desarrollo y Construcción de Prototipos Electrónicos. Tema Introducción y normas básicas de diseño
Desarrollo y Construcción de Prototipos Electrónicos 2.1.- Fabricación de Circuitos Impresos Tema 2.1.1.- Introducción y normas básicas de diseño INTRODUCCIÓN Los equipos electrónicos apoyan su realización,
Módulo 1. Sesión 1: Circuitos Eléctricos
Módulo 1 Sesión 1: Circuitos Eléctricos Electricidad Qué es electricidad? Para qué sirve la electricidad? Términos relacionados: Voltaje Corriente Resistencia Capacitor, etc. Tipos de materiales Conductores
elab 3D Práctica 2 Diodos
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TECNICA SUPERIOR DE INGENIERIA Y SISTEMAS DE TELECOMUNICACIÓN elab 3D Práctica 2 Diodos Curso 2013/2014 Departamento de Sistemas Electrónicos y de Control 1. Introducción
COMPONENTES ELECTRÓNICOS
UD 2.- COMPONENTES ELECTRÓNICOS 2.1. RESISTENCIA FIJA O RESISTOR 2.2. RESISTENCIAS VARIABLES 2.3. EL RELÉ 2.4. EL CONDENSADOR 2.5. EL DIODO 2.6. EL TRANSISTOR 2.7. MONTAJES BÁSICOS CON COMPONENTES ELECTRÓNICOS
TEMA: ELECTRÓNICA ANALÓGICA.
TEMA: ELECTRÓNICA ANALÓGICA. INTRODUCCIÓN: La electrónica es una de las herramientas más importantes de nuestro entorno. Se encuentra en muchos aparatos y sistemas como por ejemplo: radio, televisión,
Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo:
Montaje en placa protoboard de un circuito detector de oscuridad. Miembros del grupo: 1) 2) 3) 4) 5) 1 PRÁCTICAS DE ELECTRÓNICA ANALÓGICA. PRÁCTICA 1. Montajes en placa protoboard. Medida de magnitudes
Amplificador de 10W con TDA2003
Amplificador de 10W con TDA2003 Un amplificador es un dispositivo que sirve para aumentar la potencia entregada a una carga (en este caso una bocina) y por lo tanto tener un sonido mas potente. Tabla de
CIRCUITOS ELECTRICOS DE CORRIENTE CONTINUA (C.C.)
.E.S. ZOCO (Córdoba) º Bachillerato. eoría. Dpto. de ecnología CCUOS ELECCOS DE COENE CONNU (C.C.) CCUO ELÉCCO: Es el conjunto de receptores y de fuentes de energía eléctrica conectados mediante conductores
ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO
ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala
CAPITULO XII PUENTES DE CORRIENTE ALTERNA
CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este
En el siguiente informe trataremos la ley de ohms desde una perspectiva practica.
GUIA DE LABORATORIO NUMERO 1 USO DEL MULTITESTER LEY DE OHM (c) año 2001 INTRODUCCIÓN En el siguiente informe trataremos la ley de ohms desde una perspectiva practica. Con la ayuda de experiencias practicas
TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos
TEMA 6 ELECTROACÚSTICA Sonorización industrial y de espectáculos Ley de Ohm La intensidad de corriente que circula en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional
RESISTENCIA EN FUNCIÓN DE LA TENSIÓN
Laboratorio de Física General Primer Curso (Electromagnetismo RESISTENCIA EN FUNCIÓN DE LA TENSIÓN Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la variación de la resistencia eléctrica con la
LA RESISTENCIA. Resistencias de valor fijo
Resistencias de valor fijo La figura muestra la constitución interna de una resistencia de película de carbón. Durante su fabricación, una fina capa de carbón es depositada sobre una pequeña barra cerámica.
470 pf 1N4007 TIP42 D1 Q5 0.7V R13 1N4007 1N4007 R14 33 TIP42 R12 0.7V. 470 pf
1 El diagrama eléctrico +50V DC R3 4.7K R8 R9 C7 2N3055 2N3055 0.1 uf 33K R2 24V 24V uf C3 D1 Q5 TIP42 Q6 TIP41 D4 0.7V 0.47 uf C1 C2 R1 pf Q1 56K 0.7V A733 Q2 R6 uf 1K C4 68K R7 10K R10 D2 D3 R13 R14
Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM
Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental
Teoría de Circuitos (1º de ITI) Práctica 1
Práctica 1: Aparatos de medida y medidas eléctricas básicas. Las leyes de Ohm y de Kirchoff en corriente continua. Asociación de resistencias en serie y en paralelo. Teorema de Thevenin y de máxima transferencia
SIMULACIÓN CON PROTEUS
UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO 2: PROTEUS 1. OBJETIVOS SIMULACIÓN CON PROTEUS Introducir al estudiante en
ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS.
ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS. Nombre y apellidos: Curso y grupo: 1. INTRODUCCIÓN. La mayoría de aparatos que empleamos cotidianamente funcionan gracias a la electricidad. Sin embargo.
Tutorial básico de LED s
Ante un tema que aparece cada cierto tiempo, me he permitido hacer este pequeño Tutorial, muy básico, Y CON PERMISO DE TODOS AQUELLOS QUE YA HAN TENIDO LA AMABILIDAD DE CONTESTAR ALGUNA PREGUNTA DE ALGÚN
Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos
Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes
Cálculo de disipadores de calor.
Cálculo de disipadores de calor. Los disipadores de calor son unos elementos complementarios que se usan para aumentar la evacuación de calor del componente al que se le coloque hacia el aire que lo rodea.
CAPITULO X EL POTENCIOMETRO
CAPITULO X EL POTENCIOMETRO 10.1 INTRODUCCION. La determinación experimental del valor de un voltaje DC se hace generalmente utilizando un voltímetro o un osciloscopio. Ahora bien, los dos instrumentos
Corriente y Circuitos Eléctricos
Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando
ELECTRODINAMICA. Nombre: Curso:
1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia
ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad
ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura
Efecto del dieléctrico en un capacitor
Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor
Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico
Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico 1. Objetivos Comprobación experimental de la ley de Ohm a través de la determinación del valor de una resistencia comercial.
1ª Edición Copyright por ProKit s Industries Co., Ltd.
1ª Edición 2011 2011 Copyright por ProKit s Industries Co., Ltd. INTRODUCCIÓN Este multímetro es un instrumento preciso y seguro, portátil, fácil de utilizar. Funciona con baterías e incorpora una robusta
Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO
Laboratorio de lectricidad PCIC - 3 LY D OHM. POPIDDS D LOS CICUIOS D SISNCIS SI Y PLLO I - Finalidades 1.- Comprobar experimentalmente la ley de Ohm. 2.- Comprobar experimentalmente que en un circuito
Experimento 3: Circuitos rectificadores con y sin filtro
Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Johan Carvajal, Ing. Adolfo Chaves, Ing. Eduardo Interiano, Ing. Francisco Navarro Laboratorio de Elementos Activos
1. CONEXIÓN DE CABLES ELECTRICOS
1. CONEXIÓN DE CABLES ELECTRICOS El empalme eléctrico se define como la unión de dos secciones de cable enrollando las puntas de ambas y luego recubriéndolas con cinta aislante. Se trata de una técnica
ASOCIACIÓN DE RESISTORES
ASOCIACIÓN DE RESISTORES Santiago Ramírez de la Piscina Millán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. INTRODUCCIÓN. Con esta práctica el alumno aprenderá a identificar los elementos
(El examen consta de 6 preguntas, todas ellas con la misma puntuación) CÓDIGO DE COLORES DE RESISTENCIAS
Nombre: Clase: (El examen consta de 6 preguntas, todas ellas con la misma puntuación) CÓDIGO DE COLORES DE RESISTENCIAS Color 1 er, 2º o 3 er color 4ºcolor Negro 0 Marrón 1 +1% Rojo 2 +2% Naranja 3 Amarillo
MEDICIONES ELECTRICAS II
Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS II Trabajo Práctico N 2 Tema: RESISTENCIA DE PUESTA A TIERRA. Conceptos Fundamentales: Finalidad de la Puesta a tierra Las tomas a tierra son necesarias
Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin
Circuitos de Corriente Continua Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin 1. OBJETIVOS - Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas
RESISTORES FIJO VARIABLE
RESISTORES La función de estos componentes en un circuito eléctrico es limitar la cantidad de corriente o dividir el voltaje. La unidad de medida es el ohm (Ω) y su símbolo es como a continuación se muestra:
SOLO PARA INFORMACION
DOCENTE: TEMA: TURNO: ALUMNOS: UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRICA LABORATORIO Nº 2 FISICA III CICLO: 2009-A JUAN
TEMA 4: LA ELECTRICIDAD
TEMA 4: LA ELECTRICIDAD La electricidad nos rodea: estamos acostumbrados a convivir con fenómenos eléctricos tanto naturales (el rayo, la electrización del pelo al peinarse ) como artificiales (la iluminación
CIRCUITOS ELECTRÓNICOS, DIODO LED
Laboratorio electrónico Nº 3 CIRCUITOS ELECTRÓNICOS, DIODO LED Objetivo Aplicar los conocimientos de circuitos electrónicos Familiarizarse con los dispositivos y componentes electrónicos Objetivo específico
LABORATORIO Nº 3 SEMICONDUCTORES
1.- Objetivo LABORATORIO Nº 3 SEMICONDUCTORES a) Aprender a reconocer componentes electrónicos. b) Usar código de colores para determinar su valor dependiendo del componente electrónico. 2.- Fundamento
Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón
Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, [email protected] Mariana Ceraolo
Amplificador cuasicomplementario de 50W por canal
1 Amplificador cuasicomplementario de 50W por canal Este amplificador de potencia aceptable se recomienda para las personas que quieren aprender y entender el funcionamiento del transistor. Esta configuración
[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA]
2013 [PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 3º E.S.O. PRACTICA Nº 1. RESISTENCIAS VARIABLES POTENCIÓMETRO Monta los circuitos de la figura y observa que ocurre cuando el potenciómetro es de 100Ω, de 1kΩ
DVM 890 Multímetro Digital con pantalla LCD estándar
DVM 890 Multímetro Digital con pantalla LCD estándar 1. Descripción El DVM890 es un multímetro digital profesional con una pantalla LCD de 3 ½ dígitos. Es apto para el uso doméstico, al aire libre, en
Medición de resistencia por el método de amperímetro-voltímetro
Medición de resistencia por el método de amperímetro-voltímetro Objetivos Determinar el valor de una resistencia por el método de amperímetro voltímetro. Discutir las incertezas propias del método y las
Unidad 4. Circuitos eléctricos
Unidad 4 Circuitos eléctricos ELEMENTOS DE FíSICA 115 4.1. Corriente eléctrica y unidades El movimiento de cargas eléctricas produce un fenómeno denominado corriente eléctrica. Si se considera una superficie
CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.
eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA
8. POTENCIA Y ENERGÍA. CÁLCULO DEL CONSUMO ENERGÉTICO Y DE SU COSTE.
8. POTENCIA Y ENERGÍA. CÁLCULO DEL CONSUMO ENERGÉTICO Y DE SU COSTE. Cuando compramos un electrodoméstico o una simple bombilla, siempre vemos que nos da la potencia de consumo. Habrás visto bombillas
TEMA 3: ELECTRICIDAD Y ELECTRÓNICA
TEMA 3: ELECTRICIDAD Y ELECTRÓNICA Francisco Raposo Tecnología 3ºESO 1. INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son carga eléctrica
LABORATORIO DE FÍSICA II/21 PRACTICA Nº 1 SIMBOLOGIA, USO DEL MULTIMETRO Y OTROS APARATOS DE MEDIDA DE TENSIÓN Y CORRIENTE
Página 1 de 16 LABORATORIO DE FÍSICA II/21 PRACTICA Nº 1 SIMBOLOGIA, USO DEL MULTIMETRO Y OTROS APARATOS DE MEDIDA DE TENSIÓN Y CORRIENTE OBJETIVOS 1.- Conocer los símbolos de los circuitos eléctricos.
Ejercicios autoevaluación Tema 16. Manuel Moreno
Ejercicios autoevaluación Tema 16 16.1) El sistema de medida de bobina móvil: a) Sirve para medir directamente grandes corrientes b) En combinación con un rectificador sirve para medir C.C. y C.A. c) Sirve
Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm.
Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm. Objetivos: 1.- Conocer y utilizar el protoboard para implementar circuitos sencillos.
Radio galena (Energía estática) (Como hacer una radio sin baterías, sin energía eléctrica, sin energía solar)
Radio galena (Energía estática) (Como hacer una radio sin baterías, sin energía eléctrica, sin energía solar) Cómo construir una radio sin baterías? Seguidamente explicaremos como podemos construir ó simular
Reticulado 3.5 mm 1 contacto 12 A Montaje en circuito impreso o en zócalo serie 95
Serie 41 - Mini-relé para circuito impreso 8-12 - 16 A Características 41.31 41.52 41.61 1 o 2 contactos conmutados Bajo perfil (altura 15.7 mm) 41.31-1 contacto 12 A (reticulado 3.5 mm) 41.52-2 contactos
PUERTAS LOGICAS. Objetivo específico Conectar los circuitos integrados CI TTL Comprobar el funcionamiento lógico del AND, OR, NOT, NAND y NOR
Cód. 25243 Laboratorio electrónico Nº 5 PUERTAS LOGICAS Objetivo Aplicar los conocimientos de puertas lógicas Familiarizarse con los circuitos integrados Objetivo específico Conectar los circuitos integrados
Practica 1 BJT y FET Amplificador de 2 Etapas: Respuesta en Baja y Alta Frecuencia
Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 2 Primer Semestre 2015 Auxiliar: Edvin Baeza Practica 1 BJT y FET Amplificador
Clasificación de los Convertidores DAC
Clasificación de los Convertidores DAC Sistemas de Adquisición de datos () Según las características de la señal de entrada digital Codificación: Código: Binario Natural BCD Formato: Serie Paralelo Almacenamiento
CENTRO EDUCACIONAL EVANGÉLICO DE HUALPÉN DEPARTAMENTO TECNICO PROFESIONAL AREA TELECOMUNICACIONES
FUENTES DE PODER CENTRO EDUCACIONAL EVANGÉLICO DE HUALPÉN El circuito integrado LM317 es un regulador serie ajustable, capaz de trabajar con hasta 40 Volts de corriente continua de entrada y capaz de entregarnos
Práctica Nº 4 DIODOS Y APLICACIONES
Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente
ÉQUIPOS DE PRÁCTICAS DE LABORATORIO
Universidad de Oviedo UNIVERSIDAD DE OVIEDO ÁREA DE TECNOLOGÍA ELECTRÓNICA ÉQUIPOS DE PRÁCTICAS DE LABORATORIO Osciloscopio digital YOKOGAWA DL1520 Generador de funciones PROMAX GF-232 Multímetro digital
CIRCUITOS ELECTRÓNICOS COMPONENTES ELECTRÓNICOS
CIRCUITOS ELECTRÓNICOS En la primera evaluación hemos estudiado los circuitos eléctricos, su principal misión es convertir la energía eléctrica en otra energía más útil, luz en una bombilla, movimiento
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con
FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO
FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3. ELECTRODINÁMIC FORMULRIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3.1) Para la calefacción de una habitación se utiliza
CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO
CAPITULO VI AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO 6.1 INTRODUCCION. En el Capítulo V estudiamos uno de los dispositivos más útiles para detectar el paso de una corriente por un circuito: El galvanómetro
DIFERENCIA, VENTAJAS Y DESVENTAJAS DE INSTRUMENTOS ANALÓGICOS Y DIGITALES
DIFERENCIA, VENTAJAS Y DESVENTAJAS DE INSTRUMENTOS ANALÓGICOS Y DIGITALES En general los parámetros que caracterizan un fenómeno pueden clasificarse en Analógicos y Digitales, se dice que un parámetro
