Aux 7. Introducción a la Minería de Datos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aux 7. Introducción a la Minería de Datos"

Transcripción

1 Aux 7. Introducción a la Minería de Datos Gastón L Huillier 1,2, Richard Weber 2 glhuilli@dcc.uchile.cl 1 Departamento de Ciencias de la Computación Universidad de Chile 2 Departamento de Ingeniería Industrial Universidad de Chile 2010

2 Auxiliar 7 Redes Neuronales (pt.2) Back-propagation Estimando los parámetros de la red Uso en Rapidminer v5.0 Evaluación de Modelos Holdout Cross Validation Evaluación de modelos de clasificación Verificación de hipótesis Use en Rapidminer v5.0

3 Red Neuronal - Perceptrón Multicapa [1] Artificial Neural Net MultiLayer Perceptron La arquitectura de la red neuronal se caracteriza porque tiene sus neuronas agrupadas en capas de diferentes niveles. Cada una de las capas esta formada por un conjunto de neuronas y se distinguen entre ellas en 3 niveles de capas distintas: la capa de entrada: se encargan de recibir las señales o patrones que proceden del exterior y propagar las señales a todas las otras neuronas de la siguiente capa las capas ocultas: son las que tienen la misión de realizar el procesamiento no lineal de los patrones recibidos. la capa de salida: actúa como salida de la red, proporcionando al exterior la respuesta de la red, para cada uno de los patrones de entrada.

4 Red Neuronal - Perceptrón Multicapa [2] Figura: Ejemplo Red Neuronal.

5 Red Neuronal - Perceptrón Multicapa [2] Figura: Diagrama Red Neuronal.

6 Red Neuronal - Perceptrón Multicapa [3] mín W 1,W 2 E = 1 N M y (x i ) k = f 2 j=1 N i=1 ( 1 2 ) K ( yi,k y ) 2 (x i ) k k=1 ( A ) w j,k 2 f 1 w a,j 1 x i,a + w a,0 1 a=1 + w 0,k 2 Principal problema: Estimar W 2 = {w j,k 2 }M,K j=1,k=0 y W 1 = {w a,j 1 }A,M a=1,j=0 minimizando el error de aprendizaje. Utilizando funciones de transferencia f 2 : M K y f 1 : A M, donde N es la cantidad de objetos en la base de datos de entrenamiento M es la cantidad de neuronas en la capa escondida.

7 Red Neuronal - Perceptrón Multicapa [4] mín W 1,W 2 E = 1 N M y (x i ) k = f 2 j=1 N i=1 ( 1 2 ) K ( yi,k y ) 2 (x i ) k k=1 ( A ) w j,k 2 f 1 w a,j 1 x i,a + w a,0 1 a=1 + w 0,k 2 K es la cantidad de clases en el problema de clasificación (en regressión L = 1). A es la cantidad de atributos para caracterizar a los objetos. El método más conocido para estimar el óptimo de esta función objetivo es el algoritmo Back-propagation. (La convergencia al mínimo global no está asegurada)

8 Red Neuronal - Perceptrón Multicapa [5] Finalmente se puede ver que la red neuronal es una función F : R A R K continua no lineal. Es decir Y = F(X, W) Figura: Artificial Neural Network Multi-Layer Perceptron.

9 Algoritmo Back-propagation Algoritmo que permite encontrar de manera heurística la solución al problema de minimización del error de la red neuronal. Descrito originalmente el año 1974 [Werbos, 1994], pero no fue reconocido hasta el año 1986 [PDP Research Group, 1986]. Compuesto de manera general por los siguientes pasos: 1 Se presentan las observaciones a la red y utilizando los pesos actuales se calculan los valores de salida. 2 Se calculan los errores tomando las diferencias entre los resultados obtenidos y los resultados esperados. 3 El error se retro-alimenta a través de la red y los pesos son ajustados para minimizar el error.

10 Algoritmo Back-propagation Una de las principales problemáticas del algoritmo backpropagation es que se presenta la situación de encontrar como solución mínimos locales. Se puede evitar este problema modificando los valores de la tasa de aprendizaje. Figura: Problemas con los mínimos locales y la tasa de aprendizaje.

11 Algoritmo Back-propagation

12 Algoritmo Back-propagation

13 Algoritmo Back-propagation

14 Algoritmo Back-propagation

15 Algoritmo Back-propagation

16 Algoritmo Back-propagation

17 Algoritmo Back-propagation

18 Algoritmo Back-propagation

19 Algoritmo Back-propagation

20 Ajuste de Parámetros [1] Cantidad de Capas Ocultas 1 Cualquier función booleana puede ser representada por una red neuronal con solo una capa intermedia. Lamentablemente puede necesitar un numero exponencial (en numero de entradas) de nodos en la capa media. [Fausett, 1994] 2 Cualquier función continua acotada puede ser aproximada con bajo porcentaje de error, por una red neuronal con una sola capa intermedia. [Cybenko, 1989, Hornik et al., 1990] 3 Cualquier función puede ser aproximada, con cierto nivel de precisión, con una red neuronal con dos capas [Cybenko, 1989]

21 Ajuste de Parámetros [2] Cantidad de Neuronas [1] 1 La cantidad de neuronas de entrada y salida están definidas por el problema. 2 La cantidad de neuronas en las capas ocultas determina los grados de libertad del modelo: Número muy pequeño de neuronas pueden que no sean suficientes para problemas muy complejos. Número muy grande de neuronas pueden sobre-entrenar el modelo y tener una perdida de generalidad ante nuevas observaciones. 3 Se suele usar (por defecto, y para comenzar el análisis de sensibilidad) la regla M = (A+K) (M cantidad de neuronas en la capa 2 media, A cantidad de neuronas en la capa de entrada, K cantidad de neuronas en la capa de salida.

22 Ajuste de Parámetros [3] Cantidad de Neuronas [2] 1 La cantidad de neuronas en las capas ocultas depende de una serie de factores, entre ellos la cantidad de observaciones en el conjunto de entrenamiento, la cantidad de ruido, complejidad del problema de clasificación, cantidad de atributos (neuronas de entrada) y clases (neuronas de salida), funciones de activación entre las capas, algoritmo de entrenamiento. 2 Una opción es ir evaluando varias redes neuronales para ir determinando el número apropiado de neuronas 3 Otra opción es comenzar con un número grande de neuronas y conexiones, y a medida que se va construyendo la red neuronal, se van podando aquellas conexiones que son innecesarias.

23 Ajuste de Parámetros [4] Decaimiento de los pesos 1 Para prevenir que los pesos vayan creciendo sin control alguno a valores muy grandes (señal de sobre entrenamiento), es conveniente agregar un decaimiento a los pesos de la forma: w t+1 = (1 ɛ)w t 2 Pesos que no son necesarios y no se van actualizando en cada iteración del algoritmo, van a decaer hasta anularse, mientras que aquellos que si son necesarios y se van actualizando de manera continua con backpropagation y ajustando con el decaimiento.

24 Ajuste de Parámetros [5] Número de épocas 1 Para evitar el sobre entrenamiento y el tiempo computacional necesario para entrenar la red, se puede fijar un cierto numero de épocas de entrenamiento de acuerdo al comportamiento observado del error de entrenamiento y de prueba. Entrenamiento con ruido 1 Se puede dar el caso que sea necesario agregar ruido a las observaciones de entrenamiento de manera de entregar una mayor generalidad al modelo. Función de activación 1 Una red neuronal MLP entrenada con el algoritmo backpropagation entrena generalmente más rápido si se utiliza una función de activación anti-simétrica ( f ( x) = f (x) )

25 Ajuste de Parámetros [6] Sobre-entrenamiento en redes neuronales Figura: [Mitchell, 1997].

26 Ajuste de Parámetros [6] Sobre-entrenamiento en redes neuronales Figura: [Mitchell, 1997].

27 Ajuste de Parámetros [7] Preprocesamiento de datos de entrada 1 Los datos de entrada deben estar pre-procesados de manera que su media sea cero, o un valor muy bajo con respecto a la varianza. 2 Los datos de entrada no deben estar correlacionados. Intentar de utilizar variables que no expliquen las mismas características de las observaciones de una base de datos. Una alternativa es utilizar PCA u otros métodos que aseguren variables independientes. 3 Las variables de entrada deben tener una varianza similar Pesos iniciales 1 Pesos iníciales deben ser valores pequeños para evitar la saturación de las neuronas: Valores de los pesos de entrada-capa-media son mayores que aquellos pesos capa-media-salida dado que actualizan sus valores con los errores de back-propagation

28 Ajuste de Parámetros [8] Actualización de los pesos 1 Existen dos aproximaciones básicas para actualizar los pesos durante el entrenamiento de la red: Entrenamiento On-line : Pesos son actualizados con backpropagation luego que cada observación es presentada a la red neuronal. Entrenamiento Batch : Pesos son actualizados una vez que todas las observaciones son presentadas a la red neuronal. 2 Se recomienda el entrenamiento Batch dado que se utiliza la dirección de máximo descenso, la más adecuada para el problema de optimización no lineal que se desea resolver. 3 Entrenamiento On-line solo entrega una menor complejidad computacional del entrenamiento en un orden. 4 Entrenamiento On-line es sensible al orden que se presentan las observaciones a la red neuronal.

29 Ajuste de Parámetros [9] Tasa de aprendizaje 1 Se recomienda utilizar una combinación de tasas de aprendizaje (η) sobre distintas redes. Este parámetro, a grandes rasgos, permite definir la velocidad por sobre la cual se va acercando al óptimo del problema de optimización definido sobre una red neuronal artificial. Momentum 1 Se puede incluir un parámetro llamado momentum (valor α) utilizado para la actualización de los pesos en el algoritmo de backpropagation. Permite considerar la cantidad de movimiento que cada peso tiene al irse actualizando, f (e) w t+1 = (1 ɛ)w t + (1 α)η e x + α(wt w t 1) 2 No existe una regla general para los valores de ambos parámetros, pero para el momentum se recomiendan valores cercanos a 0.2.

30 Auxiliar 7 Redes Neuronales (pt.2) Back-propagation Estimando los parámetros de la red Uso en Rapidminer v5.0 Evaluación de Modelos Holdout Cross Validation Evaluación de modelos de clasificación Verificación de hipótesis

31 Validación de Modelos Conceptos básicos Datos de Entrenamiento: Datos utilizados para entrenar el modelo Datos de Prueba: Datos utilizados para probar el modelo Datos Objetivo: Datos sobre los cuales se ejecuta posteriormente el modelo Error de predicción: Observaciones mal clasificadas sobre observaciones totales. Tasa de éxito = 1 error de predicción

32 Holdout [1] 1 Generalmente se tiene una base de datos, por lo que se debe dividir en una base de datos de prueba y otra de entrenamiento. Ambos conjuntos deben ser representativos con respecto a los datos objetivos. Problemas: 1 Si una clase no está representada en los datos de entrenamiento, el modelo no tendrá un buen desempeño para la clase y no se medirá bien el error asociado. 2 Existe un trade-off entre la cantidad de datos considerados para el conjunto de entrenamiento y de prueba. 1 Es necesario un conjunto de entrenamiento mayor para estimar un buen modelo. 2 Es necesario un conjunto de prueba mayor para tener una buena estimación del error.

33 Holdout [2] 1 Se puede considerar un Holdout estratificado, considerando la misma frecuencia de clases en cada partición Entrenamiento / Prueba. 2 Se puede considerar una selección con reemplazo de la base de datos original, probando una cierta cantidad de veces. El error estimado se puede considerar como el promedio de errores para la iteración. 3 Se considera generalmente la regla 2/3 entrenamiento y 1/3 prueba para la división de la base de datos.

34 Cross Validation [1] Validación Cruzada de n-folds 1 Se subdividen los datos en n subconjuntos disjuntos. 2 Se considera la evaluación de n 1 subconjuntos para el entrenamiento del modelo y 1 subconjunto para la prueba. Este proceso se repite hasta que los n subconjuntos fueron evaluados como prueba. 3 Una estimación del error, es el promedio de los errores considerados para las n evaluaciones de la prueba. 4 El caso más usado es una validación cruzada de 10-fold

35 Cross Validation [2] Figura: Ejemplo Cross-Validation 10-folds.

36 Cross Validation [3] Validación Cruzada de n-folds 1 Caso usualmente recomendado: 10 veces validación cruzada con 10 folds. 2 La principal desventaja es el costo computacional de evaluar K veces n modelos. Se tiene una complejidad de orden O(K n) O(modelo utilizado) 3 En el caso de tener pocos datos, es muy útil considerar leave-one-out cross validation. Funciona igual a n-fold c.v., donde n es el numero de observaciones presentes.

37 Evaluación Modelos de Clasificación [1] Matriz de confusión Real y = +1 Real y = 1 Clasificado y = +1 TP FP Clasificado y = 1 FN TN TP: Verdadero Positivo TN: Verdadero Negativo FP: Falso Positivo (error de tipo 1) FN: Falso Negativo (error de tipo 2)

38 Evaluación Modelos de Clasificación [2] Matriz de confusión Real y = +1 Real y = 1 Clasificado y = +1 TP FP Clasificado y = 1 FN TN N = TP + TN + FP + FN TP + TN Accuracy = N FP FP-rate = FP + TN TP TP-rate = TP + FN

39 Evaluación Modelos de Clasificación [2] Matriz de confusión Real y = +1 Real y = 1 Clasificado y = +1 TP FP Clasificado y = 1 FN TN Precision: Porcentaje de las observaciones correctamente clasificadas. Precision = TP TP + FP Recall: Porcentaje de todas las observaciones que deban ser clasificacdas, sean clasificadas correctamente. Recall = F-measure = TP TP + Fn 2 Precision Recall Precision + Recall

40 Verificación de hipótesis [1] Supongamos que repetimos r veces la evaluación de K veces dos modelos con los mismos conjuntos de entrenamiento y prueba. (i.e. r veces K Holdouts con reemplazo, o r veces Cross-Validation de K-folds) Figura: Se asume que a 1 N(µ 1, σ 1 ) y a 2 N(µ 2, σ 2 ).

41 Verificación de hipótesis [2] Sea x ij = a ij b ij, se considera el siguiente test de hipotesis H 0 : µ D = ɛ donde µ D = µ 1 µ 2 Si se considera, ˆσ = ˆµ = 1 r k 1 r K 1 rx i=1 rx i=1 KX x ij (media observada) j=1 KX (x ij ˆµ) 2 (varianza observada) j=1 ˆµ t = q (Estadístico del test t-student) ( 1 + n 2 r K n 1 )σ 2 n 1 y n 2 determinados por la cantidad de evaluaciones realizadas para modelo 1 y modelo 2 en el K-Cross Validation.

42 Verificación de hipótesis [3] Verificación de la hipotesis H : µ D ɛ si t > t α,r K 1 H : µ D > ɛ si t > t α,r K 1 H : µ D < ɛ si t < t α,r K 1 Cómo concluímos? Por ejemplo si se tiene entonces tenemos que H : µ D > ɛ si t α,r K 1 µ 1 > µ 2 Lo anterior indicaría que el modelo 1 puede ser considerado mejor que el modelo 2, con cierto nivel de significancia.

43 References I Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4): Fausett, L., editor (1994). Fundamentals of neural networks: architectures, algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA. Hornik, K., Stinchcombe, M. B., and White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 3(5): Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY, USA. PDP Research Group, C. (1986). Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations. MIT Press, Cambridge, MA, USA.

44 References II Werbos, P. J. (1994). The roots of backpropagation: from ordered derivatives to neural networks and political forecasting. Wiley-Interscience, New York, NY, USA.

Aux 6. Introducción a la Minería de Datos

Aux 6. Introducción a la Minería de Datos Aux 6. Introducción a la Minería de Datos Gastón L Huillier 1,2, Richard Weber 2 glhuilli@dcc.uchile.cl 1 Departamento de Ciencias de la Computación Universidad de Chile 2 Departamento de Ingeniería Industrial

Más detalles

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani Inteligencia Artificial Aprendizaje neuronal Ing. Sup. en Informática, 4º Curso académico: 20/202 Profesores: Ramón Hermoso y Matteo Vasirani Aprendizaje Resumen: 3. Aprendizaje automático 3. Introducción

Más detalles

CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7)

CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7) Tema 1: Conceptos Básicos Sistemas Conexionistas 1 CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7) 1.- Introducción. 1.1.- Redes Neuronales de Tipo Biológico. 1.2.- Redes Neuronales dirigidas

Más detalles

Aprendizaje: Boosting y Adaboost

Aprendizaje: Boosting y Adaboost Técnicas de Inteligencia Artificial Aprendizaje: Boosting y Adaboost Boosting 1 Indice Combinando clasificadores débiles Clasificadores débiles La necesidad de combinar clasificadores Bagging El algoritmo

Más detalles

Una aproximación a la regularización de redes cascada-correlación para la predicción de series de tiempo

Una aproximación a la regularización de redes cascada-correlación para la predicción de series de tiempo F. Villa et al. / Investigação Operacional, 8 (008) 151-161 151 Una aproximación a la regularización de redes cascada-correlación para la predicción de series de tiempo Fernan A. Villa Juan D. Velásquez

Más detalles

TECNOLOGÍAS INTELIGENTES PARA EXPLOTACIÓN DE INFORMACIÓN

TECNOLOGÍAS INTELIGENTES PARA EXPLOTACIÓN DE INFORMACIÓN TECNOLOGÍAS INTELIGENTES PARA EXPLOTACIÓN DE INFORMACIÓN FUNDAMENTOS CURSO DE DOCTORADO Dr. Ramón García-Martínez * * * CONTEXTO La inteligencia de negocio propone un abordaje interdisciplinario que tomando:

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Complejidad de los Algoritmos

Complejidad de los Algoritmos Que es un Algoritmo? Complejidad de los Algoritmos Webster: cualquier método especial para resolver cierta clase de problemas. Horowitz: método preciso utilizable en una computadora para la solución de

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS INSTITUTO DE INVESTIGACION DE LA FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS INFORME FINAL DEL PROYECTO DE INVESTIGACIÓN

Más detalles

License Plate Detection using Neural Networks

License Plate Detection using Neural Networks License Plate Detection using Neural Networks Luis Carrera, Marco Mora Les Fous du Pixel Image Processing Research Group Department of Computer Science Catholic University of Maule http://www.lfdp-iprg.net

Más detalles

Redes Neuronales Artificiales

Redes Neuronales Artificiales Redes Neuronales Artificiales Claudio Javier Tablada Germán Ariel Torres Resumen. Una Red Neuronal Artificial es un modelo matemático inspirado en el comportamiento biológico de las neuronas y en la estructura

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

Validación Cruzada (cross-validation) y Remuestreo (bootstrapping)

Validación Cruzada (cross-validation) y Remuestreo (bootstrapping) Validación Cruzada (cross-validation) y Remuestreo (bootstrapping) Padres de cross-validation y el bootstrapping Bradley Efron y Rob Tibshirani Bradley Efron Rob Tibshirani Enfoque: tabla de aprendizaje

Más detalles

Aprendizaje basado en ejemplos.

Aprendizaje basado en ejemplos. Aprendizaje basado en ejemplos. In whitch we describe agents that can improve their behavior through diligent study of their own experiences. Porqué queremos que un agente aprenda? Si es posible un mejor

Más detalles

Modelo Predictivo del Crimen para la Región Metropolitana

Modelo Predictivo del Crimen para la Región Metropolitana Análisis Espacial de la Criminalidad basado en Georeferenciación de Denuncias José Miguel Benavente PhD Departamento de Economía. Departamento de Ingeniería Industrial. Universidad de Chile. Carabineros

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Aplicación de Vectores Estadísticos de Características y Ensambles para el Reconocimiento Automático del Llanto de Bebés

Aplicación de Vectores Estadísticos de Características y Ensambles para el Reconocimiento Automático del Llanto de Bebés Aplicación de Vectores Estadísticos de Características y Ensambles para el Reconocimiento Automático del Llanto de Bebés Amaro Camargo Erika, Reyes García Carlos A. Instituto Nacional de Astrofísica, Óptica

Más detalles

Luis Felipe Duque Álvarez. Estudiante de Ingeniería Electrónica. Grupo de Política y Gestión Tecnológica. Universidad Pontificia Bolivariana Medellín.

Luis Felipe Duque Álvarez. Estudiante de Ingeniería Electrónica. Grupo de Política y Gestión Tecnológica. Universidad Pontificia Bolivariana Medellín. Bogotá 15 y 16 de Agosto de 2008 EXTRACCIÓN DE PATRONES DE LA ENCUESTA ANUAL MANUFACTURERA COLOMBIANA EMPLEANDO INTELIGENCIA ARTIFICIAL Luis Felipe Duque Álvarez. Estudiante de Ingeniería Electrónica.

Más detalles

Introducción a la unidad 4:

Introducción a la unidad 4: Introducción a la unidad 4: Valor actual neto, tasa interna de retorno INACAP Virtual Introducción a la Unidad 4 Matemática financiera 2 ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS... 3 INTRODUCCIÓN... 4

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO 2 Objetivo El objetivo principal de las técnicas de clasificación supervisada es obtener un modelo clasificatorio válido para permitir tratar

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

Introducción. Autoencoders. RBMs. Redes de Convolución. Deep Learning. Eduardo Morales INAOE (INAOE) 1 / 60

Introducción. Autoencoders. RBMs. Redes de Convolución. Deep Learning. Eduardo Morales INAOE (INAOE) 1 / 60 Deep Learning Eduardo Morales INAOE (INAOE) 1 / 60 Contenido 1 2 3 4 (INAOE) 2 / 60 Deep Learning El poder tener una computadora que modele el mundo lo suficientemente bien como para exhibir inteligencia

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

IMPORTANCIA DE LOS ENSAYOS DE APTITUD TRATAMIENTO ESTADÍSTICO DE LOS RESULTADOS

IMPORTANCIA DE LOS ENSAYOS DE APTITUD TRATAMIENTO ESTADÍSTICO DE LOS RESULTADOS IMPORTANCIA DE LOS ENSAYOS DE APTITUD TRATAMIENTO ESTADÍSTICO DE LOS RESULTADOS Dra. Celia Puglisi Lic. Jennifer Kavior Departamento de Metrología Científica e Industrial Servicio Argentino de Interlaboratorios

Más detalles

x^new = x^old + K(b new A new x^old )

x^new = x^old + K(b new A new x^old ) El Filtro de Kalman: La idea fundamental del filtro de Kalman es la actualización La llegada de una nueva observación supone un cambio en la mejor estimación mínimo cuatrática del parámetro x Se desea

Más detalles

Colección de Tesis Digitales Universidad de las Américas Puebla. Romero Martínez, Modesto

Colección de Tesis Digitales Universidad de las Américas Puebla. Romero Martínez, Modesto 1 Colección de Tesis Digitales Universidad de las Américas Puebla Romero Martínez, Modesto El procesamiento de consultas en un sistema multibase de datos es la pieza mas importante para la operación del

Más detalles

Neuronas Artificiales

Neuronas Artificiales Modelos básicos b de Redes de Neuronas Artificiales Julián n Dorado Departamento de Tecnologías de la Información n y las Comunicaciones Universidade da Coruña Contenidos Tema 10: Procesado temporal mediante

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE. Un motor de inducción tiene físicamente el mismo estator de una máquina

3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE. Un motor de inducción tiene físicamente el mismo estator de una máquina 220 3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE ARDILLA 3.2.1 Descripción del problema. Un motor de inducción tiene físicamente el mismo estator de una máquina sincrónica con diferente construcción

Más detalles

LOS SISTEMAS ADAPTATIVOS

LOS SISTEMAS ADAPTATIVOS 0010100100100101010110010001 0101010001010100101000101 0010100011110010110010001 11111111111010100010101001010010100010101010101 0010100011110101010101011100101001001010101100100010010100011110101010001

Más detalles

1: INTRODUCCIÓN AL USO DE LA HOJA DE CALCULO EXCEL COMO HERRAMIENTA PARA DESARROLLAR PROBLEMAS EN INGENIERÍA. SOLVER, REGRESION LINEAL MULTIPLE

1: INTRODUCCIÓN AL USO DE LA HOJA DE CALCULO EXCEL COMO HERRAMIENTA PARA DESARROLLAR PROBLEMAS EN INGENIERÍA. SOLVER, REGRESION LINEAL MULTIPLE Practica 1: INTRODUCCIÓN AL USO DE LA HOJA DE CALCULO EXCEL COMO HERRAMIENTA PARA DESARROLLAR PROBLEMAS EN INGENIERÍA. SOLVER, REGRESION LINEAL MULTIPLE I. INTRODUCCION Las planillas de cálculo se han

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro

Más detalles

TESIS DE MAESTRÍA: MODELACIÓN DE LA GENERACIÓN Y ATRACCIÓN DE VIAJES EN EL VALLE DE ABURRÁ 2006

TESIS DE MAESTRÍA: MODELACIÓN DE LA GENERACIÓN Y ATRACCIÓN DE VIAJES EN EL VALLE DE ABURRÁ 2006 ESCUELA DE INGENIERÍA CIVIL MAESTRÍA EN INGENIERÍA INFRAESTRUCTURA Y SISTEMAS DE TRANSPORTE TESIS DE MAESTRÍA: MODELACIÓN DE LA GENERACIÓN Y ATRACCIÓN DE VIAJES EN EL VALLE DE ABURRÁ 2006 CLAUDIA MARCELA

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Análisis de Componentes de la Varianza

Análisis de Componentes de la Varianza Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable

Más detalles

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México Presentan: Dr. Miguel

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Guía práctica de estudio 03: Algoritmos

Guía práctica de estudio 03: Algoritmos Guía práctica de estudio 03: Algoritmos Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 03: Algoritmos Objetivo:

Más detalles

Análisis de la varianza ANOVA

Análisis de la varianza ANOVA Estadística Básica. Mayo 2004 1 Análisis de la varianza ANOVA Francisco Montes Departament d Estadística i I. O. Universitat de València http://www.uv.es/~montes Estadística Básica. Mayo 2004 2 Comparación

Más detalles

Aprendizaje Automatizado. Redes Neuronales Artificiales

Aprendizaje Automatizado. Redes Neuronales Artificiales Aprendizaje Automatizado Redes Neuronales Artificiales Introducción Una forma de emular características propias de los humanos: memorizar y asociar hechos. Se aprende de la experiencia. El cerebro humano

Más detalles

NOTACIÓN O GRANDE. El análisis de algoritmos estima el consumo de recursos de un algoritmo.

NOTACIÓN O GRANDE. El análisis de algoritmos estima el consumo de recursos de un algoritmo. NOTACIÓN O GRANDE El análisis de algoritmos estima el consumo de recursos de un algoritmo. Esto nos permite comparar los costos relativos de dos o más algoritmos para resolver el mismo problema. El análisis

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte)

TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte) TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte) Francisco José Ribadas Pena Modelos de Razonamiento y Aprendizaje 5 Informática ribadas@uvigo.es 17 de abril de 2012 FJRP ccia [Modelos

Más detalles

Introducción a la regresión ordinal

Introducción a la regresión ordinal Introducción a la regresión ordinal Jose Barrera jbarrera@mat.uab.cat 20 de mayo 2009 Jose Barrera (UAB) Introducción a la regresión ordinal 20 de mayo 2009 1 / 11 Introducción a la regresión ordinal 1

Más detalles

Guía práctica de estudio 03: Algoritmos

Guía práctica de estudio 03: Algoritmos Guía práctica de estudio 03: Algoritmos Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 03: Algoritmos Objetivo:

Más detalles

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN PROGRAMACIÓN NO LINEAL Conceptos generales INTRODUCCIÓN Una suposición importante de programación lineal es que todas sus funciones Función objetivo y funciones de restricción son lineales. Aunque, en

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

Modelos de cola.

Modelos de cola. Modelos de cola http://humberto-r-alvarez-a.webs.com Las colas Las colas son frecuentes en la vida cotidiana: En un banco En un restaurante de comidas rápidas Al matricular en la universidad Los autos

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

MODULO VIII. Semana 1 ASPECTOS DE EVALUACIÓN FINANCIERA, ECONÓMICA, SOCIAL Y AMBIENTAL.

MODULO VIII. Semana 1 ASPECTOS DE EVALUACIÓN FINANCIERA, ECONÓMICA, SOCIAL Y AMBIENTAL. MODULO VIII Semana 1 ASPECTOS DE EVALUACIÓN FINANCIERA, ECONÓMICA, SOCIAL Y AMBIENTAL Esquema de Proyecto SNIP INDICE INTRODUCCION I. ASPECTOS GENERALES II. IDENTIFICACION III. FORMULACION IV. EVALUACION

Más detalles

ReCAD Revista electrónica de Ciencias Aplicadas al Deporte, Vol. 5, N 17, junio 2012

ReCAD Revista electrónica de Ciencias Aplicadas al Deporte, Vol. 5, N 17, junio 2012 NUEVAS HERRAMIENTS DE INVESTIGACION: LAS REDES NEURONALES. Nelio Bazán. Instituto Superior de Deportes, Buenos Aires, 2012. Contacto: nelio_bazan@yahoo.com.ar Las redes neuronales A pesar de la evolución

Más detalles

Unidad V. Control Estadístico de la Calidad

Unidad V. Control Estadístico de la Calidad UNIVERSIDAD NACIONAL DE INGENIERÍA UNI- NORTE - SEDE REGIONAL ESTELÍ Unidad V. Control Estadístico de la Calidad Objetivos Reconocer los principios estadísticos del control de calidad. Explicar la forma

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

CAPÍTULO 3 RED NEURONAL PARA EL RECONOCIMIENTO DE ROSTROS

CAPÍTULO 3 RED NEURONAL PARA EL RECONOCIMIENTO DE ROSTROS CAPÍTULO 3 RED NEURONAL PARA EL RECONOCIMIENTO DE ROSTROS Descripción de la base de datos Como datos de entrenamiento, en este proyecto, se utilizó la base de datos ORL [1], la cual contiene un conjunto

Más detalles

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

Reconocimiento de Caracteres: Un abordaje invariante a translación, rotación y escala

Reconocimiento de Caracteres: Un abordaje invariante a translación, rotación y escala Reconocimiento de Caracteres: Un abordaje invariante a translación, rotación y escala Jesús P. Mena-Chalco jmena@vision.ime.usp.br Departamento de Ciência da Computação Instituto de Matemática e Estatística

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Perceptrón Multicapa. Aplicaciones

Perceptrón Multicapa. Aplicaciones Perceptrón Multicapa Aplicaciones Perceptrón Multicapa Para qué se puede usar un perceptrón multicapa? Aproximación de funciones Clasificación Compresión Radiación solar Peligro Calma Datos originales

Más detalles

Maxima Verosimilitud [Escribir el subtítulo del documento] Valores que hacen mas verosímil la información

Maxima Verosimilitud [Escribir el subtítulo del documento] Valores que hacen mas verosímil la información Maxima Verosimilitud [Escribir el subtítulo del documento] Valores que hacen mas verosímil la información Theodoro Perez Brito 24/05/2009 1. Principio de la máxima Verosimilitud: Supongamos que la distribución

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

6. CONTRIBUCIÓN A LA FORMACIÓN PROFESIONAL Y FORMACIÓN GENERAL Esta disciplina contribuye al logro de los siguientes resultados de la carrera:

6. CONTRIBUCIÓN A LA FORMACIÓN PROFESIONAL Y FORMACIÓN GENERAL Esta disciplina contribuye al logro de los siguientes resultados de la carrera: Universidad Católica San Pablo Facultad de Ingeniería y Computación Programa Profesional de Ciencia de la Computación SILABO CS360. Computación Bioinspirada (Electivo) 2012-2 1. DATOS GENERALES 1.1 CARRERA

Más detalles

Clase 4 Funciones polinomiales y racionales

Clase 4 Funciones polinomiales y racionales Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n

Más detalles

Introducción a las Redes Neuronales. Tomás Arredondo Vidal Depto. Electronica UTFSM 4/5/12

Introducción a las Redes Neuronales. Tomás Arredondo Vidal Depto. Electronica UTFSM 4/5/12 Introducción a las Redes Neuronales Tomás Arredondo Vidal Depto. Electronica UTFSM 4/5/2 Introducción a las Redes Neuronales Contenidos Introducción a las neuronas Introducción a las redes neuronales artificiales

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 28 Contenido 1 Probabilidad

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

GRAFICOS DE CONTROL DATOS TIPO VARIABLES

GRAFICOS DE CONTROL DATOS TIPO VARIABLES GRAFICOS DE CONTROL DATOS TIPO VARIABLES OBJETIVO DEL LABORATORIO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos de control, para realizar

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Compresión de Imágenes para Diagnóstico Médico utilizando Redes Neuronales

Compresión de Imágenes para Diagnóstico Médico utilizando Redes Neuronales Compresión de Imágenes para Diagnóstico Médico utilizando Redes Neuronales Lic. Lanzarini Laura 1 A.C. María Teresa Vargas Camacho 2 Dr. Amado Badrán 3 Ing. De Giusti Armando. 4 Laboratorio de Investigación

Más detalles

Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) 1 DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Encontrar la Ruta más Corta 2 Se requiere llegar de

Más detalles

Propuesta de un modelo basado en redes neuronales para la detección de riesgo crediticio

Propuesta de un modelo basado en redes neuronales para la detección de riesgo crediticio Revista de Investigación ULASALLE, Rev Inv ULASALLE, Número 1, 2012 (55-64) Universidad La Salle Arequipa, Perú Propuesta de un modelo basado en redes neuronales para la detección de riesgo crediticio

Más detalles

Breve introducción a la Investigación de Operaciones

Breve introducción a la Investigación de Operaciones Breve introducción a la Investigación de Operaciones Un poco de Historia Se inicia desde la revolución industrial, usualmente se dice que fue a partir de la segunda Guerra Mundial. La investigación de

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

Optimización. Búsqueda en una Dimensión ITESM. Búsqueda en una Dimensión Profr. E. Uresti - p. 1/19. Dr. E Uresti

Optimización. Búsqueda en una Dimensión ITESM. Búsqueda en una Dimensión Profr. E. Uresti - p. 1/19. Dr. E Uresti Optimización Búsqueda en una Dimensión Dr. E Uresti ITESM Búsqueda en una Dimensión Profr. E. Uresti - p. 1/19 Algunos de los métodos numéricos de búsqueda de óptimos de una función en varias variables

Más detalles

Restauración de imágenes usando el criterio de minimización de rizado en la imagen restaurada

Restauración de imágenes usando el criterio de minimización de rizado en la imagen restaurada CAPTURA Y PROCESAMIENTO DIGITAL DE SEÑALES E IMAGENES: TRABAJO FINAL 1 Restauración de imágenes usando el criterio de minimización de rizado en la imagen restaurada Allegri Carlos, Buruchaga Leandro Trabajo

Más detalles

Pruebas de Hipótesis Multiples

Pruebas de Hipótesis Multiples Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ

Más detalles

Tema 5. Reconocimiento de patrones

Tema 5. Reconocimiento de patrones Tema 5. Reconocimiento de patrones Introducción al reconocimiento de patrones y a la clasificación de formas Un modelo de general de clasificador Características discriminantes Tipos de clasificación Clasificadores

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

Tema: Codificación de canal

Tema: Codificación de canal Tema: Codificación de canal Adriana Dapena Janeiro (adriana@udc.es) Facultad de Informática Universidade da Coruña Campus de Elviña s/n 15071. A Coruña Codificación de canal.- Adriana Dapena p. 1 Objetivos

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación)

MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación) Aprendiae Automático y Data Mining Bloque III MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación) REDES NEURONALES 2 Redes neuronales (I) Red neuronal: método de aprendiae inductivo inspirado en la estructura

Más detalles

1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5

1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ANÁLISIS DE SISTEMAS Y SEÑALES 1418 4 09 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería de Control

Más detalles