TRANSDUCTORES OPTOELECTRONICOS
|
|
|
- Alejandra Macías Ortíz
- hace 8 años
- Vistas:
Transcripción
1 TRANSDUCTORES OPTOELECTRONICOS Hay dos aspectos relacionados con la luz que se utilizan, juntos o separados, para explicar muchos fenómenos relacionados con ella. Fenómenos ópticos, tales como la interferencia y la difracción, se explican con la teoría ondulatoria, en forma similar que con las ondas de radio. Sin embargo, la mayoría de los fenómenos estudiados en este tema se explican mejor con la teoría cuántica, donde se considera la luz como partícula. De acuerdo con esta teoría, la luz consiste en cuantos discretos o paquetes llamados fotones. Estos son partículas sin carga, cada una de las cuales tiene una energía que depende sólo de su frecuencia o longitud de onda, dada por: siendo: c E = hf = h λ E = energía en ev. h = constante de Planck, X (ev)(s). f = frecuencia, en Hz. c = velocidad de la luz, 3X10 8 m/s. λ = longitud de onda, en m 2. Se observará en la Ecuación anterior que cuando la longitud de onda de la luz decrece, su energía aumenta. Este fenómeno se observa en el espectro electromagnético. La energía exacta, asociada con una longitud de onda determinada de luz, puede calcularse usando la ecuación: E ( ev ) 1,240 = λ Las unidades de longitud de onda, generalmente se expresan en nanometros (nm) (10-9 m), angstroms (Å)(10-8 m). La emisión de fotones procedentes de los átomos, obedece también a las ecuaciones anteriores, es decir, cuando un electrón cae de un nivel alto de energía a otro inferior, se emite un fotón cuya energía es igual a la diferencia de energía de los dos niveles. En la Figura 1 se muestran las líneas características de emisión en tales transiciones, para varios elementos. Los fotones también son absorbidos en una variedad de materiales. Si la energía de un fotón entrante es superior al intervalo de energía inherente del material, los electrones de valencia del material pueden ser excitados a la banda de conducción, con lo cual se crean electrones y huecos libres, portadores de corriente. Este proceso es el funcionamiento básico de los fotodetectores. La Tabla 1 muestra el intervalo típico de energía para varios materiales, entre los usados para la fabricación de fotodetectores. También es conveniente hacer referencia a la absorción de fotones en distintos materiales fotoconductores. La absorción de fotones se refiere mas bien a su atenuación que al proceso de conversión en otra forma de energía. Cuando un fotón que viaja a la velocidad de la luz choca con un átomo, se aniquila y toda su energía se transfiere al átomo. Por tanto, un simple fotón, no importa con cuánta energía, no puede crear más que un par electrón-hueco. Sin embargo, si el par es de una energía adecuada, puede crear más portadores por colisión con otros átomos. ( nm) U2-T1 Introducción - 1
2 Tabla 1. Intervalo de energía óptica para Varios materiales fotodetectores. Figura 1. espectro de emisión atómica de Los elementos. Alguna energía de un fotón puede transformarse en calor, pero es más importante considerar el caso en que el fotón con una energía adecuada es absorbido en la estructura de un fotodetector y libera un electrón de valencia, completando así la conversión de energía radiante en energía eléctrica. El coeficiente de absorción se define como la medida del promedio de disminución de la intensidad del haz de fotones, al pasar por una determinada sustancia. La Figura 2 muestra un gráfico del coeficiente de absorción para el silicio. Para explicar las unidades del coeficiente de absorción se hace referencia a la fórmula de la intensidad de atenuación y a un simple ejemplo. La intensidad final de un haz de luz que atraviesa un medio es: I = I o e -ax U2-T1 Introducción - 2
3 siendo, I = intensidad a una distancia x de la superficie (o de otro punto de referencia). I o = intensidad de la luz incidente. a = coeficiente de absorción, cm -1. x = distancia recorrida en el material, cm. La transmisión es I/I o. Figura 2. Coeficiente de absorción del silicio. Con relación a la Fig. 2 se observa que a una longitud de onda de 370 nm, el coeficiente de absorción del Si es 10 5 cm -1. Una de las formas más simples de emplear la ecuación anterior es tener en cuenta que cuando ax = 1, e -ax = e -1 = 0,37 ó I = 0,37 Io. Es decir, el haz incidente se reduce a 37 % de su valor, cuando ax = 1. En este ejemplo, ax será 1, cuando x = 10-3 cm, es decir, -(a) (x) = -(10 +5 cm -1 )(10-5 cm) = -1 cm, 10-5 cm = 100 nm, con lo cual se ve que los fotones de una radiación ultravioleta, que son aproximadamente de una longitud de onda de 370 nm, se reducen al 37 % de su intensidad original, sólo a 100 nm, que es muy cerca de la superficie del silicio. Para resumir, la Fig. 2 muestra cómo la absorción de un fotón aumenta rápidamente al aproximarse al ultravioleta, y ésta es la razón por la que la respuesta de los fotodetectores cae en la banda ultravioleta. Pero, simplemente invirtiendo el signo del coeficiente de absorción, puede usarse para medir directamente la profundidad para la cual la intensidad original se reduce a 37 %; un coeficiente de absorción de l0 3 cm -1, en la Fig. 6-3 corresponde a 63 % de absorción (100-37, en tanto por ciento de transmisión) a una profundidad de 10-3 cm. U2-T1 Introducción - 3
4 La medida de la emisión de luz, de la absorción, o de la reflexión se emplea frecuentemente para determinar la composición y/o la densidad de una sustancia desconocida. Como ejemplo de utilidad de los estudios de emisión, la composición de un gas desconocido puede deducirse calentando una muestra hasta que, emita luz, y registrando las distintas longitudes de onda emitidas con una instrumentación óptica adecuada. Por medio de unas tablas de emisión y absorción puede determinarse la composición de la muestra. En los estudios de absorción o reflexión, el haz luminoso se sitúa dé forma que pueda pasar a través del medio y se registra el promedio de luz que se transmite o que se refleja. Esta técnica emplea para medir la concentración y el tamaño de partículas extrañas en los sistemas de acondicionamiento de aire, para eliminar frutos en mal estado, y en la elaboración de granos y alimentos; en un oxímetro médico se puede medir el promedio de oxígeno en la sangre. A menudo se observa alternativamente una fuente de luz estándar antes y después de pasar por el medio que se analiza, proporcionando electrónicamente una salida igual a la diferencia entre las dos señales. CLASIFICACION DE LOS TRANSDUCTORES OPTOELECTRONICOS FOTODETECTORES 1. FOTORESISTENCIA (FOTOCONDUCTOR DE UNA PIEZA). 2. FOTODIODOS. +. FOTODIODO pn. +. FOTODIODO pin. +. FOTODIODO DE AVALANCHA. 3. FOTOTRANSISTOR. 4. FOTOFET. 5. FOTOTIRISTOR (LASCR). 6. FOTOCELDA. FUENTES LUMINOSAS 1. LAMPARAS 2. LED 3. Ir LED 4. DIODO LASER 5. DISPLAYS FOTODETECTORES PARAMETROS BASICOS DEL FOTODETECTOR El fotodetector o transductor es el corazón de casi todos los sistemas optoelectrónicos, por lo tanto, la selección del mejor detector, en una aplicación determinada, es de suma importancia. Esto no quiere decir que no sea importante la fuente luminosa del sistema, pero a veces la fuente es natural. Como el sol. Los fotodetectores pueden dividirse en dos categorías. U2-T1 Introducción - 4
5 1. Detectores térmicos. En los que la radiación es absorbida y transformada en calor, con lo que el detector responde a un cambio de temperatura (energía). 2. Detectores cuánticos, que responden directamente a los fotones incidentes. Este grupo se divide en los siguientes subgrupos: a. Fotoemisivo, cuando los fotones incidentes liberan electrones de la superficie del detector. Este fenómeno generalmente ocurre en el vacío, en un fotodiodo de vacío o fototubo multiplicador. b. Fotoconductivo, en que la conductividad del fotosensor varía con la luz incidente. 1. Fotoconductores intrínsecos, tales como fotorresistores generalmente intrínsecos. 2. Fotoconductores dopados, tales como fotodiodos. c. Fotovoltaicos, en que se genera una tensión al incidir la luz, sin polarización exterior. Un ejemplo de este tipo son las células solares; sin embargo, el funcionamiento del fotodiodo también se basa en este efecto. Hay cuatro características básicas que son importantes para hacer una selección óptima de los fotodetectores (sensores). 1. Responsividad; Se refiere a la sensibilidad del detector, o salida por unidad de luz de entrada. Tal como salida en amperios/flujo radiante de entrada, en vatios. 2. Respuesta espectral. Indica la habilidad del detector para responder a radiaciones de diferentes longitudes de onda. Por ejemplo, si la salida de una fuente espectral está comprendida entre los 400 y 800 nm con un pico en la zona media, el detector deberá tener una respuesta espectral similar, o al menos deberá tener un solape apreciable. 3. Respuesta en frecuencia o velocidad con la cual el detector puede responder a una radiación modulada. 4. Ruido. Se refiere a las fluctuaciones aleatorias de las corrientes o tensiones de salida (se emplea el término corriente oscura para indicar la c.c. de salida del fotodetector en la oscuridad, mientras que la corriente de ruido es una corriente alterna aleatoria). El ruido es directamente proporcional a la raíz cuadrada del área del detector. La relación señal-ruido del detector se obtiene dividiendo I señal por I ruido, para una entrada y condición de funcionamiento dadas. Normalmente se indican dos factores de calidad para especificar el comportamiento de un fotodetector. Primero, la potencia equivalente de ruido (NEP), definida como la potencia necesaria para producir una relación señal-ruido de 1, con un ancho de banda de ruido de 1 Hz. Esto es una medida del mínimo nivel de señal detectable. corriente NEP para un fotodiodo = respuesta 1 2 de ruido( A Hz ) de corriente( A W ) siendo las unidades vatios por raíz cuadrada de hertzios (W/Hz 1/2 ). Cuanto más bajo sea NEP, menor será el límite de detección. Con un ancho de banda de 1 Hz y una entrada de detector de W, un NEP de (W /Hz 1/2 ) significaría que la señal de salida del detector no es discernible de ruido. El segundo factor de calidad es la detectividad (D) y la denominada D* U2-T1 Introducción - 5
6 (léase D asterisco). La detectividad se define como la relación señal-ruido producida por vatio de flujo radiante, incidente en el detector. D = 1 Hz 1 2 NEP W Es más popular la notación D*, que es independiente del ancho de banda del detector y del área A. D* = D A (cm)(hz 1/2 ) / W Por lo tanto, D* = NEP A Así pues, D* es un factor de calidad que expresa el comportamiento del detector solamente en función de su estructura, y permite una comparación entre detectores de áreas distintas. U2-T1 Introducción - 6
Diapositiva 1 PRINCIPIOS DE LA ENERGÍA FOTOVOLTAICA. Radiación solar. Radiación electromagnética emitida por el el Sol. Espectro. Prof. J.G.
Diapositiva 1 Radiación solar Radiación electromagnética emitida por el el Sol Espectro Diapositiva 2 Radiación luminosa Parte Parte de de la la radiación electromagnética emitida emitida por por el el
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones
CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de
CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. 2.1 INTRODUCCIÓN. Uno de los componentes clave en las comunicaciones ópticas es la fuente de luz monocromática. En sistemas de comunicaciones ópticas, las fuentes
SEMICONDUCTORES. Silicio intrínseco
Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.
Capítulo 24. Emisión y absorción de la luz. Láser
Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E
INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA
INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA Haydee Karszenbaum Veronica Barrazza [email protected] [email protected] Clase 1.2: ondas y leyes de la radiación Teledetección cuantitativa 1 Características
Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H
Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie
El Espectro Electromagnético
El Espectro Electromagnético ONDAS ELECTROMAGNETICAS Se componen de un campo eléctrico y un campo magnético, ambos variando en el tiempo Su energía aumenta con la frecuencia Se distinguen ondas ionizantes
LASER Conceptos Básicos
LASER Conceptos Básicos Laser - Light Amplification by Stimulate Emission of Radiation Amplificación de Luz por Emisión Estimulada de Radiación Como Funciona? Usa a emisión estimulada para desencadenar
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0
B.0. Introducción y unidades de medida
B.0. Introducción y unidades de medida B.0.1. La era de la información. Corresponde al auge de la optoelectrónica. Optoelectrónica: técnica de procesar la información mediante la luz. Necesidad de medios
Espectro electromagnético
RADIOCOMUNICACIONES 11-03-2015 Espectro electromagnético La naturaleza de la luz ha sido estudiada desde hace muchos años por científicos tan notables como Newton y Max Plank. Para los astrónomos conocer
FOTODIODO. (a) (b) Figura 14. (a) Símbolo. (b) Corte y funcionamiento de un fotodiodo de unión p-n.
FOTODIODO Casi para cada tipo de semiconductor de unión existe un dispositivo óptico análogo que responde a la luz en vez (o en conjunción) de a una señal eléctrica. La primera vez que se observó que un
EL MODELO ATOMICO DE BOHR
EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente
FOTOCONDUCTORES DE UNA PIEZA (FOTORESISTENCIAS)
FOTOCONDUCTORES DE UNA PIEZA (FOTORESISTENCIAS) Cuando se añade suficiente energía, por cualquier medio, a un material, los electrones de valencia escapan de sus átomos y se convierten en electrones libres.
DESARROLLO. La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor
CONSIGNAS TP1 Teoría de la luz Desarrollar una investigación teniendo como base el origen de la luz como fenómeno físico y su comportamiento. Dicho trabajo práctico requiere rigor en los datos técnicos
Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica
Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje
EL ESPECTRO ELECTROMAGNÉTICO
FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 2 EL ESPECTRO ELECTROMAGNÉTICO Bibliografía: http://almaak.tripod.com/temas/espectro.htm Facultad de Ciencias Químicas F.C.Q.
Guía docente 2006/2007
Guía docente 2006/2007 Plan 304 Ing.Tec.Telec Esp Sist Electrónicos Asignatura 44452 DISPOSITIVOS FOTONICOS Grupo 1 Presentación Programa Básico TEMA1.- NATURALEZA DE LA LUZ. PROPIEDADES. TEMA2.- PROPIEDADES
Dispositivos Electrónicos
Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo
BLOQUE 4.1 ÓPTICA FÍSICA
BLOQUE 4.1 ÓPTICA FÍSICA 1. NATURALEZA DE LA LUZ Hasta ahora hemos considerado a la luz como algo que transporta energía de un lugar a otro. Por otra parte, sabemos que existen dos formas básicas de transportar
La luz y las ondas electromagnéticas
La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)
EMISORES y DETECTORES
EMISORES y DETECTORES Los dispositivos utilizados como emisores y detectores de radiación luminosa en los sistemas de comunicaciones ópticas son el láser de semiconductores (diodo láser) y el LED (diodo
Ejercicios de Física cuántica y nuclear. PAU (PAEG)
1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones
EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.
EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de
Problemas de Ondas Electromagnéticas
Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?
LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES
LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra [email protected] Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional
Radiación. La radiación electromagnética
Radiación Curso Introducción a las Ciencias de la Tierra y el Espacio II La radiación electromagnética Es el portador de la información de los objetos astronómicos. Es la forma en que la energía electromagnética
Principios básicos de Absorciometría
Principios básicos de Absorciometría Prof. Dr. Luis Salazar Depto. de Ciencias Básicas UFRO 2004 NATURALEZA DE LA LUZ MECÁNICA CUÁNTICA Isaac Newton (1643-1727) Niels Bohr (1885-1962) Validación del modelo
Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León.
Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Química General. Código: 0348. Primer semestre. Hoja de trabajo.
CAPITULO I: La Luz CAPITULO I: LA LUZ 1
CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción
Prueba experimental. Constante de Planck y comportamiento de un LED
Prueba experimental. Constante de Planck y comportamiento de un LED Objetivo. Se va a construir un circuito eléctrico para alimentar LEDs de diferentes colores y obtener un valor aproximado de la constante
INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA
NTERACCON DE LAS RADACONES ELECTROMAGNETCAS CON LA MATERA B.C. Paola Audicio Asistente de Radiofarmacia, CN Radiación ionizante: ionización del material atravesado M M + + e - excitación de las estructuras
Ejercicio 1. Ejercicio 2. Ejercicio 3.
Ejercicio 1. Suponiendo que la antena de una espacio de radio de 10 [kw] radia ondas electromagnéticas esféricas. Calcular el campo eléctrico máximo a 5 [km] de la antena. Ejercicio 2. La gente realiza
Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda.
La luz es una forma de energía la cual llega a nuestros ojos y nos permite ver, es un pequeño conjunto de radiaciones electromagnéticas de longitudes de onda comprendidas entre los 380 nm y los 770 nm.(nm
Detector de Mercurio por Fluorescencia Modelo 2500
Detector de Mercurio por Fluorescencia Modelo 2500 El Modelo 2500 es un detector de mercurio elemental por Espectrometría de Fluorescencia Atómica de Vapor Frío (CVAFS). Las ventajas de la fluorescencia
MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s
MODELOS ATOMICOS 1. Calcular el valor del radio de la órbita que recorre el electrón del hidrogeno en su estado normal. Datos. h = 6 63 10 27 erg s, m(e ) = 9 1 10 28 gr, q(e ) = 4 8 10-10 u.e.e. Solución.
Unidad 1 Estructura atómica de la materia. Teoría cuántica
Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos
Química Biológica TP 1: ESPECTROFOTOMETRIA.
TP 1: ESPECTROFOTOMETRIA. Introducción Al observar una solución acuosa de un colorante a trasluz, observamos una leve coloración, la cual se debe a la interacción entre las moléculas del colorante y la
Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )
CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.
RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.
RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS λ Tipos de radiaciones electromagnéticas según λ. Rayos γ Rayos X Rayos UV Radiación visible. Rayos IR Microondas Ondas de radio Ondas de radar Ondas de
Módulo 5: La luz. Ondas electromagnéticas
Módulo 5: La luz 1 Ondas electromagnéticas Partículas cargadas eléctricamente (cargas) en movimiento forman una corriente eléctrica Una corriente eléctrica que cambia (debida al movimiento) crea un campo
3.1. Conceptos básicos sobre semiconductores
1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales
EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS
EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo
Semiconductores. La característica común a todos ellos es que son tetravalentes
Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd
RADIACIÓN ELECTROMAGNÉTICA
FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 1 RADIACIÓN ELECTROMAGNÉTICA Bibliografía: SKOOG, D.A.; Leary J.J.; ANÁLISIS INSTRUMENTAL, 4 ed.; Ed. McGraw-Hill (1994), págs.
El Espectro Electromagnético Radiación Ionizante y NO Ionizante
27-03-2015 El Espectro Electromagnético Radiación Ionizante y NO Ionizante 01-04-2015 El Espectro Electromagnético Radiación Ionizante y NO Ionizante Las radiaciones, atendiendo a su energía, se clasifican
RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO
ENUNCIADOS Pág. 1 EL MOVIMIENTO ONDULATORIO 1 Cuando a un muelle se le aplica una fuerza de 20 N, sufre una deformación de 5 cm. Cuál es el valor de la constante de recuperación? Cuáles serán sus unidades?
XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física
XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y
SENSORES DE FLUJO. Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons
SENSORES DE FLUJO Referencias bibliográficas Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons Sensores y acondicionamiento de señal, R. Pallás
LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff
LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO Aproximarnos a los procesos que absorben y generan radiación electromagnética en la Tierra y en el espacio. Basada en presentación de Tabaré
MEDIDAS DE POTENCIAL ZETA EN LA SERIE ZETASIZER NANO. Enrique Mazarrón
MEDIDAS DE POTENCIAL ZETA EN LA SERIE ZETASIZER NANO Enrique Mazarrón Medida de Potencial Zeta Usando Electroforesis Doppler con Láser Es una técnica usada para medir el movimiento de las partículas cargadas
El Espectro Electromagnético Radiación Ionizante y NO Ionizante
El Espectro Electromagnético Radiación Ionizante y NO Ionizante El Espectro Electromagnético Radiación Ionizante y NO Ionizante Las radiaciones, atendiendo a su energía, se clasifican en radiaciones ionizantes
PRACTICO N 1: ESPECTROFOTOMETRIA
UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE TECNOLOGIA MEDICA BIOQUIMICA PRACTICO N 1: ESPECTROFOTOMETRIA 1.- INTRODUCCIÓN Utilizando términos quizás excesivamente simplistas puede definirse la espectrofotometría
RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1
RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN Curso 2011-12 Introducción a la Astronomía 1 Brillo Magnitud aparente El ojo detecta la luz de forma logarítmica, es decir, detecta cambios no de manera
CURSO DE TÉCNICO EN SEGURIDAD DE REDES Y SISTEMAS CONCEPTOS SOBRE ONDAS JOSÉ MARÍA TORRES CORRAL 03/03/2011
CURSO DE TÉCNICO EN SEGURIDAD DE REDES Y SISTEMAS CONCEPTOS SOBRE ONDAS JOSÉ MARÍA TORRES CORRAL 03/03/2011 1 Introducción Qué es un campo eléctrico? Qué es un campo magnético? Radiación electromagnética:
Introducción al calor y la luz
Introducción al calor y la luz El espectro electromagnético es la fuente principal de energía que provee calor y luz. Todos los cuerpos, incluído el vidrio, emiten y absorben energía en forma de ondas
GUIA DE ESTUDIO 1 Medio Física ONDAS Y SONIDO. Preparación prueba coeficiente dos. Nombre del Alumno. Curso Fecha.
I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA Depto. de Física M. Castro GUIA DE ESTUDIO 1 Medio Física ONDAS Y SONIDO. Preparación prueba coeficiente
Puntos de ebullición.
1.-Indica el tipo de enlace de los siguientes hidruros. Ayundándote de la siguiente tabla comenta la polaridad de los enlaces. Hidruro % carácter iónico HF 43 HCl 17 HBr 11 HI 6 Representa gráficamente
Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla
Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese
Practica nº n 5: Fenómenos de Difracción.
Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular
Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1
Radiación Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler L. Infante 1 Cuerpo Negro: Experimento A medida que el objeto se calienta, se hace más brillante ya que emite más radiación
Práctica Nº 4 DIODOS Y APLICACIONES
Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente
radiación Transferencia de Calor p. 1/1
Transferencia de Calor p. 1/1 radiación la radiación térmica corresponde a la parte del espectro electromagnético con logitudes de onda por encima del bajo UV y el visible hasta las microondas... Transferencia
DIODOS EMISORES DE LUZ (LED)
DIODOS EMISORES DE LUZ (LED) El hecho de que las uniones pn puedan absorber luz y producir una corriente eléctrica, se estudió anteriormente. Lo contrario también es posible; es decir, un diodo de unión
TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS
UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo EL DIODO
TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR
TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar
Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo
1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas
EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.
EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación
ANÁLISIS CUANTITATIVO POR WDFRX
ANÁLISIS CUANTITATIVO POR WDFRX El análisis cuantitativo se obtiene mediante la medida de las intensidades de las energías emitidas por la muestra. Siendo la intensidad de la emisión (número de fotones)
radiación electromagnética
radiación electromagnética ondas propagándose en el espacio con velocidad c crestas amplitud l valles longitud de onda [ l]=cm, nm, μm, A Frecuencia=n=c/l [ n ]=HZ=1/s l= numero de ondas por unidad de
L m u i m n i o n t o ec e n c i n a
LUMINOTECNIA LA LUZ Y LA VISIÓN LUMINOTECNIA La Luminotecnia es la ciencia que estudia las distintas formas de producción de luz, así como su control y aplicación. LUMINOTECNIA La luz natural y artificial
La Fibra Óptica. Carlos Eduardo Molina C. www.redtauros.com [email protected]
Los sistemas clásicos de comunicación utilizan señales eléctricas soportadas por cable coaxial, radio, etc., según el tipo de aplicación. Estos sistemas presentan algunos inconvenientes que hacen necesario
LED. Alma Rocío Alonso Zuñiga Iván Cossi Camacho
LED Alma Rocío Alonso Zuñiga Iván Cossi Camacho Funcionamiento Un led es un componente optoelectónico pasivo y, más concretamente, un diodo que emite luz. Cuando un led se encuentra en polarización directa,
ESTRUCTURA DEL ÁTOMO
ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor
Espectros de emisión y absorción.
Espectros de emisión y absorción. Los espectros de emisión y absorción de luz por los átomos permitieron la justificación y ampliación del modelo cuántico. Espectros de emisión: Calentar un gas a alta
Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I
1 Fundamentación de la adecuación curricular de Física III a las necesidades de IACI. Relación con Electrónica Analógica I En el campo de la Ingeniería en Automatización y Control, es común el desarrollo
Introducción a las ondas electromagnéticas
Introducción a las ondas electromagnéticas Maxwell (1831-1879), relacionando las fórmulas de la electricidad y del magnetismo llegó a conclusiones decisivas para el estudio de la Física. Afirma que las
Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS
Thompson (1898) Modelo Atómico Rutherford (1911) Bohr (1913) Propiedad corpuscular de las onda (PLANCK) Propiedad ondulatoria de las partículas (De Broglie) Schrödinger (1926) Números cuánticos 1 NUMEROS
EXTRUCTURA ATOMICA ACTUAL
ATOMOS Y ELEMENTOS TEMA 4 Química ATOMOS EXTRUCTURA ATOMICA ACTUAL PARTICULA UBICACION CARGA MASA PROTON NUCLEO + SI NEUTRON NUCLEO 0 SI ELECTRON ORBITAS - DESPRECIABLE La masa del átomo reside en el núcleo.
TRANSDUCCIÓN Y MEDICIÓN DE EVENTOS FISIOLÓGICOS (parte 1)
TRANSDUCCIÓN Y MEDICIÓN DE EVENTOS FISIOLÓGICOS (parte 1) * Transductores Dispositivos que convierten eventos fisiológicos en señales eléctricas, aplicando también a la conversión de un tipo de energía
Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III
CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes
ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en
IES JIMENA MENÉNDEZ PIDAL DEPARTAMENTO DE FÍSICA Y QUÍMICA MATERIA: FÍSICA 2º bachillerato SEGUNDO TRIMESTRE CONTENIDOS, CRITERIOS DE EVALUACIÓN, ESTÁNDARES DE APRENDIZAJE, INSTRUMENTOS DE CALIFICACIÓN
Capítulo 25. Rayos X
Capítulo 25 Rayos X 1 Generación y absorción de rayos X La frecuencia máxima de rayos X producidos por una diferencia de potencial V vale: ν max = e V h Para que un fotón de rayos X se pueda desintegrar
Espectroscopía Clase integradora
Espectroscopía Clase integradora Qué es la espectroscopía? La espectroscopia es el estudio de la INTERACCIÓN entre la materia y energía radiante, por ejemplo, radiación electromagnética. Busca relacionar
La luz y las ondas electromagnéticas
La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)
La formación de la visión humana del color
COLOR DEFINICIÓN El color es una percepción visual que se genera en el cerebro al interpretar las señales nerviosas que le envían los foto receptores de la retina del ojo y que a su vez interpretan y distinguen
2. Movimiento ondulatorio (I)
2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación
LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI
LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI -Se propagan en línea recta. -Ionizan el aire.
2.3. PARAMETROS CARACTERISTICOS DE LAS FIBRAS OPTICAS
Figura 2.3. Angulo límite de entrada. El mismo fenómeno se repite en la siguiente reflexión si el índice de refracción en todo el núcleo de la fibra es el mismo. De este modo, el rayo llegará al final
Las estructura electrónica de los átomos
Las estructura electrónica de los átomos Al preguntarnos por las diferencias entre las propiedades químicas y físicas de los elementos, así como, su forma de enlazarse y la forma en la cual emiten o absorben
Detección y características del receptor
Capítulo 7 Detección y características del receptor El receptor en un sistema de comunicación por fibra óptica para transmisión no coherente consiste en un fotodoetector más un amplificador y unos circuitos
Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio
Radiaciones Ionizantes: Utilización y Riesgos RIUR . Estructura y radiaciones atómicas Esta guía describe el conjunto de actividades que forman el tema 2 del módulo 1: " Estructura y radiaciones atómicas"
TRANSFERENCIA DE CALOR
Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel
Seminario 1: Reflexión, Refracción y ángulo crítico
Seminario 1: Reflexión, Refracción y ángulo crítico Fabián Andrés Torres Ruiz Departamento de Física,, Chile 21 de Marzo de 2007. Problemas 1. Problema 16, capitulo 33,física para la ciencia y la tecnología,
Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente...
Índice general 1. Principios fundamentales de la electricidad...1 1.1 Introducción...1 1.2 Principios fundamentales de la electricidad...1 1.2.1 Moléculas, átomos y electrones...2 1.3 Estructura del átomo...3
Tutoría 2: Experimentos de difracción
Tutoría 2: Experimentos de difracción T2.1 Introducción En esta tutoría trataremos la cuestión fundamental de cómo conocemos donde se sitúan los átomos en un sólido. La demostración realizada se basa en
Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?
Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo
