Tema: MEDICIÓN DE FRECUENCIA, VSWR, LONGITUD DE ONDA Y POTENCIA EN TECNOLOGÍA DE GUÍA ONDAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema: MEDICIÓN DE FRECUENCIA, VSWR, LONGITUD DE ONDA Y POTENCIA EN TECNOLOGÍA DE GUÍA ONDAS"

Transcripción

1 Líneas de transmisión. Guía 8 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Líneas de transmisión Tema: MEDICIÓN DE FRECUENCIA, VSWR, LONGITUD DE ONDA Y POTENCIA EN TECNOLOGÍA DE GUÍA ONDAS Objetivos Medir frecuencia, VSWR, longitud de onda y potencia en sistemas de microondas. Equipos y materiales transmisor de microondas mod. MW/TX con fuente de alimentación medidor POWER & LEVEL METER medidor mod. MW/ME guía de onda rectilínea mod. MW/01 frecuencímetro de absorción mod. MW/03 detector de cristal mod. MW/4 terminal mod. MW/05 guía ranurada mod. MW/11 antena de bocina con ganancia de 15 db mod. MW/12 placa de cortocircuito mod. MW/25 atenuador variable mod. MW/8. base móvil mod. MW/16 reflector plano mod. MW/17 cable de 50 ohmios BNC/BNC Introducción teórica Ver texto de la materia.

2 2 Líneas de transmisión. Guía 8 Procedimiento PARTE I: Medición de frecuencia 1. Conectar entre sí los componentes como se muestran en la Figura Predisponer el medidor POWER & LEVEL METER en LEVEL y HIGH, y poner la sensibilidad en el mínimo, conectar el instrumento al diodo detector a través de un cable coaxial BNC BNC. 3. Girar el micrómetro en sentido contrario a las agujas del reloj (en posición de 700) (ver Figura 3). 4. Alimentar a +12V Vcc el transmisor y regular en posición intermedia la polarización del Gunn (BIAS). 5. Encender el medidor y aumentar la sensibilidad hasta que la aguja llegue a fondo de escala. 6. Girar lentamente el micrómetro del frecuencímetro hasta obtener la lectura mínima en el instrumento indicador. Esto significa que la cavidad del ondímertro absorbe la máxima potencia, ya que está sintonizada a la frecuencia de la señal que circula en la guía. De hecho, pueden haber otras posiciones del micrómetro en las cuales se obtengan absorciones de potencia, pero la posición correcta es la que corresponde al valor más elevado. Anote la posición del micrómetro:. 7. Utilizando la tabla de la Figura 2 determine la frecuencia de la señal emitida por el oscilador; se obtendrá un valor comprendido entre 10.5GHz y 10.9GHz. f =. Figura 1 Medidas de Frecuencia y Longitud de Onda.

3 Líneas de transmisión. Guía 8 3 Figura 2 Frecuencia contra lectura del micrómetro. Figura 3 Lectura de micrómetro. Parte II: Medición de longitud de onda en la guía 8. Extraer completamente el micrómetro del ondímetro. 9. Conectar el medidor a la sonda de la guía con ranura y predisponerlo en LEVEL - LOW. 10. Desconectar el diodo detector MW/04 y montar la placa de corto circuito, de modo que se provoque reflexión y por consiguiente onda estacionaria en la guía. 11. Desplazar el carro de la guía con ranura y observar en el instrumento las indicaciones de máximo y mínimo. Eventualmente regular la ganancia del instrumento para facilitar la lectura. 12. Medir la distancia L en centímetros entre 2 mínimos o entre 2 máximos (son iguales). L= 13. La longitud de onda en guía corresponde al doble de dicha distancia: λ g =2L.

4 4 Líneas de transmisión. Guía 8 Parte III: Medición de longitud de onda en el aire 14. Quitar el cortocircuito y montar la antena de bocina MW/ Poner la sonda de guía con ranura en la posición fija. 16. Montar el reflector plano MW/17 sobre la base móvil MW/16 y situarlo a una distancia de alrededor de 15 cm. de la antena de bocina, perpendicularmente a ella (ver Figura 4) Figura 4 Medida de la longitud de onda en espacio libre. 17. Alejar y acercar el reflector plano a la antena y observar en el medidor las indicaciones de máximo y mínimo. Eventualmente regular la ganancia del instrumento para obtener una fácil lectura. 18. Medir en la base del soporte móvil la distancia L en centímetros entre 2 mínimos o entre 2 máximos (son iguales). L= 19. La longitud de onda en espacio libre corresponde al doble de dicha distancia: λ 0 = 2L 20. Sabiendo que la dimensión a de la guía es igual a 2.29 cm., verificar la exactitud de la relación. Usar la expresión: λ g = λ 0 λ 1 4a Parte IV: Medición de VSWR con línea abierta 21. Conectar entre sí los componentes como se muestra en la Figura Predisponer el medidor MW/ME en VOLTAGE y " ", y poner al máximo la ganancia. 23. Alimentar a +12Vcc al transmisor y regular en posición intermedia la polarización (BIAS) del diodo Gunn. 24. Desplazar el carro de la guía con ranura y observar en el instrumento las indicaciones de tensión máxima (Vmáx) y mínima (Vmín). 25. Observar que en proximidad de la sección terminal se obtiene un máximo de tensión. 26. Calcular la VSWR: con línea abierta tendría que ser infinito, pero en realidad el circuito abierto no es ideal, por lo tanto el valor de la VSWR resulta inferior.

5 Líneas de transmisión. Guía 8 5 Figura 5. Medición de VSWR con línea abierta Parte V: Medición de VSWR con línea en corto circuito 27. Montar la placa de cortocircuito al final de la línea (sección terminal de la línea con ranura). 28. Desplazar el carro de la guía con ranura y observar en el instrumento las indicaciones de tensión máxima (Vmáx) y mínima (Vmín). Para facilitar la lectura del instrumento regular la ganancia de modo que se lleve el índice a fondo de escala en correspondencia con los máximos de tensión. 29. Observar que en proximidad de la sección terminal ahora se obtiene un mínimo de tensión. 30. Calcular la VSWR: ya que el cortocircuito realizado se acerca a un corte ideal, el valor de la VSWR es muy elevada. Parte VI: Medición de VSWR con línea con terminación 31. Sacar la placa de cortocircuito y conectar el terminal MW/ Desplazar el carro de la guía con ranura y observar en el instrumento las indicaciones de tensión máxima (Vmáx) y mínima (Vmín). 33. Calcular la VSWR y observar que asume valores poco superiores a 1, lo que significa que el terminal constituye una buena adaptación hacia la línea. Parte VII: Medición de VSWR con línea conectada a una antena 34. Quitar el terminal y conectar la antena MW/ Desplazar el carro de la guía con ranura y observar en el instrumento las indicaciones de tensión máxima (VMAX) y mínima (VMIN). 36. Calcular la VSWR y observar que asume valores poco superiores a 1, lo que significa que la antena está bien adaptada a la línea. Poner un obstáculo delante de la antena (un objeto). Cuál es la variación de la VSWR? Parte VIII: Medición de potencia y cálculo de atenuación 37. Conectar entre sí los componentes como se muestra en la Figura Predisponer el medidor MW/ME en POWER mw y conectarlo al detector MW/04.

6 6 Líneas de transmisión. Guía Alimentar a + 12 V el transmisor y regular al máximo la polarización (BIAS) del diodo Gunn. 40. La potencia indicada por el medidor tendría que estar comprendida entre 8 y 10 mw aproximadamente. Poner el instrumento en POWER- UNCALIBRATED y ajustar SENSITIVITY para obtener una lectura de 10 mw. Esto facilitará los cálculos de atenuación en los ejercicios siguientes. Figura 6 Conexión de los componentes. 41. Insertar el atenuador MW/08 entre la guía rectilínea MW/01 y el detector MW/04. Poner el micrómetro del atenuador en algunos de las posiciones indicadas en la Tabla 1 y medir la potencia correspondiente en la salida. Considerando PM = 10 mw la potencia suministrada en ausencia de atenuación AdB insertada vale (en db). P A = 10 log M [ db] P 42. Anotar en la Tabla 1; posición del micrómetro del atenuador, potencia máxima PM, potencia medida P y atenuación calculada AdB. 43. Observar que la atenuación se provoca mediante la inserción de una lámina hacia el centro de la guía. Tabla 1 Valores obtenidos.

7 Líneas de transmisión. Guía 8 7 Figura 7 Curva de calibración del atenuador variable. 44. Conectar el detector MW/04 directamente a la salida de la guía rectilínea (ver Figura 8). 45. Predisponer el medidor MW/ME en POWER UNCALIBRATED y conectarlo al detector MW/ Alimentar a + 12 V el transmisor y regular al máximo la polarización (BIAS) del diodo Gunn. 47. Variar SENSITIVITY en el medidor para llevar el índice a fondo escala (+10 dbm). 48. Insertar el atenuador de 3 db (MW/06) entre la guía rectilínea y el detector (ver Figura 9), luego efectuar de nuevo la medida. Sea P la potencia medida ahora. 49. Calcular la atenuación introducida por el atenuador: P A = 10 log M [ db] P Se debería hallar un valor de alrededor de 3 db. 50. Desconectar el atenuador de 3 db (MW/06) e insertar el de 6 db (MW/07), efectuar la medida de potencia y calcular de nuevo la atenuación. Se debería hallar un valor de alrededor de 6 db. Figura 8 Sin atenuadores fijos

8 8 Líneas de transmisión. Guía 8 Figura 9 Con atenuadores fijos Guía8:MEDICIÓN DE FRECUENCIA, VSWR, LONGITUD DE ONDA Y POTENCIA EN TECNOLOGÍA DE GUÍA ONDAS Alumno: Docente: GL: Fecha: EVALUACION % Nota CONOCIMIENTO 20.0% El estudiante conoce deficiente los procedimientos desarrollados en la práctica. El estudiante evidencia conocer parcialmente los procedimientos desarrollados en la práctica. El estudiante evidencia conocer bien los procedimientos desarrollados en la práctica. APLICACIÓN DEL CONOCIMIENTO 75.0% El estudiante realiza pocos procedimientos de la práctica correctamente. ACTITUD 2.5% Es un observador pasivo. TOTAL 100% 2.5% Es ordenado pero no hace un uso adecuado de los recursos. El estudiante realiza parte los procedimientos de la práctica correctamente. Participa ocasionalmente o lo hace constantemente pero sin coordinarse con su compañero Hace un uso adecuado de lo recursos, respeta las pautas de seguridad, pero es desordenado. El estudiante realiza todos los procedimientos de la práctica correctamente. Participa propositiva e integralmente en toda la práctica. Hace un manejo responsable y adecuado de los recursos de conformidad a pautas de seguridad e higiene.

Describir las características de las antenas de bocina. Efectuar las medidas de ganancia y diagramas de radiación.

Describir las características de las antenas de bocina. Efectuar las medidas de ganancia y diagramas de radiación. 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Propagación y Antenas. Título: Antenas de Bocina. Lugar de Ejecución: Telecomunicaciones Objetivos específicos Describir las características de

Más detalles

TEMA: DIPOLO SIMPLE Y DIPOLO PLEGADO. Objetivos. Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas. Equipos y materiales

TEMA: DIPOLO SIMPLE Y DIPOLO PLEGADO. Objetivos. Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas. Equipos y materiales Propagación y antenas. Guía 1 1 TEMA: DIPOLO SIMPLE Y DIPOLO PLEGADO Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas Objetivos Medir parámetros de interés en un Dipolo Simple

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

Tema: Componentes Opto electrónicos

Tema: Componentes Opto electrónicos 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Componentes Opto electrónicos Objetivos - Definir el funcionamiento de los diodos emisores de luz (LED)

Más detalles

Tema: Transformación de impedancias con líneas de transmisión

Tema: Transformación de impedancias con líneas de transmisión 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Líneas de transmisión Tema: Transformación de impedancias con líneas de transmisión Objetivos Medir impedancia Demostrar la relación entre la impedancia

Más detalles

GUÍA DE TRABAJO LÍNEA DE TRANSMISIÓN COAXIAL

GUÍA DE TRABAJO LÍNEA DE TRANSMISIÓN COAXIAL Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica EL3003 Laboratorio de Ingeniería Eléctrica GUÍA DE TRABAJO LÍNEA DE TRANSMISIÓN COAXIAL Contenido 1.

Más detalles

Tema: Modulación de Amplitu d - Primera Parte. Objetivos. Equipos y materiales. Introducción teórica. Sistemas de Comunicación I.

Tema: Modulación de Amplitu d - Primera Parte. Objetivos. Equipos y materiales. Introducción teórica. Sistemas de Comunicación I. 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Modulación de Amplitu d - Primera Parte. Objetivos Observar la forma de una señal AM en el dominio del tiempo y

Más detalles

A Telecomunicaciones SISTEMA DIDÁCTICO EN Microondas

A Telecomunicaciones SISTEMA DIDÁCTICO EN Microondas A Telecomunicaciones SISTEMA DIDÁCTICO EN Microondas TECNOLOGÍA DE LAS MICROONDAS, MODELO 8090 Sistema didáctico en tecnología de las microondas completo, con T híbrida y diodo PIN, modelo 8090-2 El Sistema

Más detalles

Aplicación de un sistema de control de velocidad en un motor hidráulico.

Aplicación de un sistema de control de velocidad en un motor hidráulico. Sistemas de Control Automático. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Hidráulica y Neumática (Edificio 6, 2da planta). Aplicación

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR

AMPLIFICADOR INVERSOR Y NO INVERSOR 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Determinar

Más detalles

Laboratorio de Microondas, Satélites y Antenas. Práctica #1. Introducción al Equipo de Laboratorio

Laboratorio de Microondas, Satélites y Antenas. Práctica #1. Introducción al Equipo de Laboratorio Laboratorio de Microondas, Satélites y Antenas Práctica #1 Introducción al Equipo de Laboratorio Objetivo Familiarizar al alumno con los instrumentos básicos con que se cuenta, para suministrar potencia

Más detalles

Filtros Activos de Segundo Orden

Filtros Activos de Segundo Orden Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Filtros Activos de Segundo Orden Objetivos Específicos Medir las tensiones de entrada y

Más detalles

OSCILADORES SENOIDALES

OSCILADORES SENOIDALES 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). OSCILADORES SENOIDALES Objetivo general Verificar el correcto

Más detalles

Filtros Activos de Primer Orden

Filtros Activos de Primer Orden Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Filtros Activos de Primer Orden Objetivos Específicos Medir las tensiones de entrada y salida

Más detalles

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector.

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector. 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO ZENER Objetivos específicos Trazar la curva característica

Más detalles

Electrónica II. Guía 4

Electrónica II. Guía 4 Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). COMPARADORES Objetivo General Verificar

Más detalles

PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS

PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS PROBLEMA 1 Calcular la matriz S del siguiente cuadripolo: R l 1 l 2 Z 1 Z 2 PROBLEMA 2 Determine la matriz de parámetros ABCD

Más detalles

PARTE I. CURVA CARACTERISTICA

PARTE I. CURVA CARACTERISTICA 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO ZENER Objetivos generales Analizar el comportamiento del

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA CICLO: 01-2013 GUIA DE LABORATORIO # 3 Nombre de la Práctica: Optoelectrónica Lugar de Ejecución: Laboratorio

Más detalles

Laboratorio N 4: Sensibilidad de la Resistencia Dependiente de Luz (LDR) ante cambios de intensidad y longitud de onda.

Laboratorio N 4: Sensibilidad de la Resistencia Dependiente de Luz (LDR) ante cambios de intensidad y longitud de onda. 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Laboratorio N 4: Sensibilidad de la Resistencia Dependiente de Luz (LDR) ante cambios de intensidad y longitud

Más detalles

Laboratorio de Microondas, Satélites y Antenas. Práctica #3. Ganancia, Formula de Friis y Acoplamiento

Laboratorio de Microondas, Satélites y Antenas. Práctica #3. Ganancia, Formula de Friis y Acoplamiento Laboratorio de Microondas, Satélites y Antenas Práctica #3 Ganancia, Formula de Friis y Acoplamiento Objetivo Familiarizar al alumno con el concepto de Ganancia y Área Efectiva de una antena. Medir la

Más detalles

TRABAJO PRACTICO No 9 MEDICIONES DE POTENCIA DE SALIDA DE TRANSMISORES

TRABAJO PRACTICO No 9 MEDICIONES DE POTENCIA DE SALIDA DE TRANSMISORES TRABAJO PRACTICO No 9 MEDICIONES DE POTENCIA DE SALIDA DE TRANSMISORES INTRODUCCION TEORICA: Debido a las condiciones de alta frecuencia y componentes de varias frecuencias, a la potencia puesta en juego,

Más detalles

Propagación básica de ondas electromagnéticas. Fórmula de Friis

Propagación básica de ondas electromagnéticas. Fórmula de Friis Propagación básica de ondas electromagnéticas. Fórmula de Friis Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C 1. Introducción El objetivo de esta práctica es

Más detalles

Ejercicios típicos de Líneas A)RG 58 B) RG 213 C) RG 220. (Perdida del Cable RG 58 a 100 MHz) db = 10 * Log (W Ant / W TX ) = - 6,44dB

Ejercicios típicos de Líneas A)RG 58 B) RG 213 C) RG 220. (Perdida del Cable RG 58 a 100 MHz) db = 10 * Log (W Ant / W TX ) = - 6,44dB Ejercicios típicos de Líneas 1- Tenemos que instalar un transmisor de 500W, en una radio de FM que trabaja en.1 MHz. Sabiendo que la torre disponible para sostener la antena es de 40m, calcular la potencia

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA CICLO: I/215 GUIA DE LABORATORIO #8 Nombre de la Practica: Circuitos Rectificadores de Onda Lugar de Ejecución: Fundamentos

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar

Más detalles

PROBLEMAS DE OSCILADORES DE MICROONDAS

PROBLEMAS DE OSCILADORES DE MICROONDAS PROBLEMAS DE OSCILADORES DE MICROONDAS Curso 10-11 PROBLEMA 1 (febrero 02) Se pretende diseñar un oscilador a 5 GHz haciendo uso de un diodo Impatt del que sabemos que presenta, alrededor de esta frecuencia,

Más detalles

Amplificador inversor y no inversor

Amplificador inversor y no inversor Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Amplificador inversor y no inversor Objetivo General Implementar los circuitos amplificadores

Más detalles

Microondas 3º ITT-ST. Tema 2: Circuitos pasivos de microondas. Pablo Luis López Espí

Microondas 3º ITT-ST. Tema 2: Circuitos pasivos de microondas. Pablo Luis López Espí Microondas 3º ITT-ST Tema 2: Circuitos pasivos de microondas Pablo Luis López Espí Dispositivos pasivos recíprocos 1 Dispositivos de una puerta: Conectores de microondas. Terminaciones y cargas adaptadas.

Más detalles

PROBLEMAS DE MICROONDAS (adaptación de impedancias)

PROBLEMAS DE MICROONDAS (adaptación de impedancias) PROBLEMAS DE MICROONDAS (adaptación de impedancias) PROBLEMA 1 Qué valores deberían de tomar l y d para lograr la adaptación en el siguiente esquema? L 5 Ω d Z L =5.57j4. 1Ω PROBLEMA 2 Una línea de transmisión

Más detalles

RECTIFICACIÓN. Objetivos específicos. Materiales y equipo. Procedimiento

RECTIFICACIÓN. Objetivos específicos. Materiales y equipo. Procedimiento Electrónica I. Guía 3 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). RECTIFICACIÓN Objetivos específicos Observar

Más detalles

Tema: Sistemas de lazo abierto y lazo cerrado

Tema: Sistemas de lazo abierto y lazo cerrado 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Se hará en dos sesiones Tema: Sistemas

Más detalles

Bioinstrumentación, Guía 2

Bioinstrumentación, Guía 2 1 Tema: TERMOMETRÍA Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Objetivos Conocer el principio de funcionamiento del termómetro analógico. Emplear de manera

Más detalles

Tema: Fuente de Alimentación de Rayos X

Tema: Fuente de Alimentación de Rayos X Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Fuente de Alimentación de Rayos X Objetivos Analizar la fuente de alimentación de un sistema de rayos X Conocer

Más detalles

CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN 5.2 GENERACIÓN DE MICROONDAS

CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN 5.2 GENERACIÓN DE MICROONDAS CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN En este capítulo se presenta una técnica fotónica que permite medir la potencia de reflexión en una antena microstrip, como resultado de las señales de

Más detalles

Sistemas de lazo Abierto y lazo cerrado

Sistemas de lazo Abierto y lazo cerrado Sistemas de Control Automático. Guía 3 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta).

Más detalles

Electrónica II. Guía 2

Electrónica II. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). SUMADOR Y RESTADOR Objetivo general Verificar el correcto funcionamiento

Más detalles

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en:

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en: PRÁCTICA 1. DISEÑO Y RESPUESTA EN FRECUENCIA 1 Objetivo. DE UN MEDIDOR DE AC Diseñar y construir un voltímetro elemental de corriente alterna utilizando un puente rectificador de media onda y otro de onda

Más detalles

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA I - Finalidades 1.- Estudiar el código de color de las resistencias. 2.- Utilización del multímetro

Más detalles

Table of Contents. Table of Contents UniTrain Cursos UniTrain Cursos UniTrain de tecnología de alta frecuencia

Table of Contents. Table of Contents UniTrain Cursos UniTrain Cursos UniTrain de tecnología de alta frecuencia Table of Contents Table of Contents UniTrain Cursos UniTrain Cursos UniTrain de tecnología de alta frecuencia 1 2 2 3 Lucas Nülle GmbH Página 1/11 www.lucas-nuelle.es UniTrain Unitrain el sistema de aprendizaje

Más detalles

Tema: Perdidas en Cableado Coaxial

Tema: Perdidas en Cableado Coaxial Tema: Perdidas en Cableado Coaxial Contenidos Características del cableado coaxial Terminales Coaxiales Perdidas por sobrecarga de redes coaxiales Objetivos Específicos Materiales y Equipo Fundamentos

Más detalles

CARACTERÍSTICAS DEL FET EN DC.

CARACTERÍSTICAS DEL FET EN DC. Electrónica I. Guía 10 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CARACTERÍSTICAS DEL FET EN DC. Objetivos

Más detalles

Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo:

Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo: Montaje en placa protoboard de un circuito detector de oscuridad. Miembros del grupo: 1) 2) 3) 4) 5) 1 PRÁCTICAS DE ELECTRÓNICA ANALÓGICA. PRÁCTICA 1. Montajes en placa protoboard. Medida de magnitudes

Más detalles

Tema: USO DE MULTIPLEXORES Y DEMULTIPLEXORES.

Tema: USO DE MULTIPLEXORES Y DEMULTIPLEXORES. Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas digitales Lugar de Ejecución: Fundamentos Generales. Tema: USO DE MULTIPLEXORES Y DEMULTIPLEXORES. Objetivo general Aplicar dispositivos MSI

Más detalles

Tema: SÍNTESIS DE CIRCUITOS LÓGICOS.

Tema: SÍNTESIS DE CIRCUITOS LÓGICOS. Sistemas Digitales. Guía 5 1 Tema: SÍNTESIS DE CIRCUITOS LÓGICOS. Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas digitales Lugar de Ejecución: Fundamentos Generales. Objetivo general Sintetizar

Más detalles

Planificaciones Sistemas Inalámbricos. Docente responsable: COLOMBO HUGO ROBERTO. 1 de 5

Planificaciones Sistemas Inalámbricos. Docente responsable: COLOMBO HUGO ROBERTO. 1 de 5 Planificaciones 8632 - Sistemas Inalámbricos Docente responsable: COLOMBO HUGO ROBERTO 1 de 5 OBJETIVOS Proveer los fundamentos, dentro del área de comunicaciones, acerca de la aplicación de las ondas

Más detalles

Prueba experimental. Absorción de luz por un filtro neutro.

Prueba experimental. Absorción de luz por un filtro neutro. Prueba experimental. Absorción de luz por un filtro neutro. Objetivo Cuando un haz de luz de intensidad I 0 incide sobre una de las caras planas de un medio parcialmente transparente, como un filtro de

Más detalles

Tema: Modulación QAM.

Tema: Modulación QAM. Sistemas de comunicación II. Guía 8 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación II Tema: Modulación QAM. Contenidos Formas de onda del modulador 8 QAM Formas de onda

Más detalles

Tema: Amplificador de Instrumentación

Tema: Amplificador de Instrumentación Instrumentación Industrial. Guía 1 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Instrumentación Industrial Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta) Tema: Amplificador

Más detalles

Tema: Parámetros del Cableado Coaxial

Tema: Parámetros del Cableado Coaxial Tema: Parámetros del Cableado Coaxial Contenidos Impedancia característica. Velocidad de propagación. Onda reflejada. Línea de transmisión terminada con cargas. Objetivos Específicos Fundamentos de Cableado

Más detalles

Tema: Controladores tipo P, PI y PID

Tema: Controladores tipo P, PI y PID Sistemas de Control Automático. Guía 5 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta).

Más detalles

RADIOCOMUNICACIÓN. PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos

RADIOCOMUNICACIÓN. PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos RADIOCOMUNICACIÓN PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos P1.- Un sistema consiste en un cable cuyas pérdidas son 2 db/km seguido de un amplificador cuya figura de ruido

Más detalles

CIRCUITOS RECTIFICADORES

CIRCUITOS RECTIFICADORES Electrónica I. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES Objetivos generales

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO I / 2016 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA GUÍA DE LABORATORIO Nº 08 NOMBRE DE LA PRACTICA : Modulación en Frecuencia (2da Parte) LUGAR DE EJECUCIÓN:

Más detalles

OSCILADORES SINUSOIDALES Y NO SINUSOIDALES

OSCILADORES SINUSOIDALES Y NO SINUSOIDALES OSCILADORES SINUSOIDALES Y NO SINUSOIDALES GUÍA DE LABORATORIO Nº 4 Profesor: Ing. Aníbal Laquidara. J.T.P.: Ing. Isidoro Pablo Perez. Ay. Diplomado: Ing. Carlos Díaz. Ay. Diplomado: Ing. Alejandro Giordana

Más detalles

Tema: Operaciones de Carga, Transferencia, Comparación y Aritméticas del S7-1200

Tema: Operaciones de Carga, Transferencia, Comparación y Aritméticas del S7-1200 Autómatas Programables. Guía 6 1 Tema: Operaciones de Carga, Transferencia, Comparación y Aritméticas del S7-1200 Objetivo General Programar con instrucciones de carga, transferencia, comparación y aritméticas.

Más detalles

1. Medidor de potencia óptica

1. Medidor de potencia óptica En este anexo se va a hablar del instrumental de laboratorio más importante utilizado en la toma de medidas. Este instrumental consta básicamente de tres elementos: el medidor de potencia óptica, el osciloscopio

Más detalles

INDICE. 1. Introducción a los Sistemas de Comunicaciones y sus

INDICE. 1. Introducción a los Sistemas de Comunicaciones y sus INDICE 1. Introducción a los Sistemas de Comunicaciones y sus 15 Limitaciones 1.1. Objetivos 15 1.2. Cuestionario de autoevaluación 15 1.3. Componentes básicos de un sistema de comunicaciones 16 1.4. Varios

Más detalles

Laboratorio de Microondas, Satélites y Antenas. Práctica #8. Antenas de Microcinta - Enlace de Microondas

Laboratorio de Microondas, Satélites y Antenas. Práctica #8. Antenas de Microcinta - Enlace de Microondas Laboratorio de Microondas, Satélites y Antenas Práctica #8 Antenas de Microcinta - Enlace de Microondas Objetivo Evaluar la ganancia y ancho de haz de una antena de micro-strip Entender los factores determinantes

Más detalles

Obtener la curva de carga y descarga para baterías de ciclo profundo.

Obtener la curva de carga y descarga para baterías de ciclo profundo. 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de energía en telecomunicaciones TEMA: Carga y descarga de baterías. Contenido Ciclo de carga y descarga de la batería Objetivos Obtener

Más detalles

REFLEXIÓN, REFRACCIÓN Y POLARIZACIÓN CON MICROONDAS

REFLEXIÓN, REFRACCIÓN Y POLARIZACIÓN CON MICROONDAS REFLEXIÓN, REFRACCIÓN Y POLARIZACIÓN CON MICROONDAS 1. OBJETIVO - Estudiar el cumplimiento de las leyes de la reflexión y de la ley de Snell en ondas electromagnéticas - Estudiar cómo varía la intensidad

Más detalles

CARACTERISTICAS DEL JFET.

CARACTERISTICAS DEL JFET. Electrónica I. Guía 4 1 / 1 CARACTERISTICAS DEL JFET. Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21).

Más detalles

BLOQUE I MEDIDAS ELECTROTÉCNICAS

BLOQUE I MEDIDAS ELECTROTÉCNICAS 1.- Un galvanómetro cuyo cuadro móvil tiene una resistencia de 40Ω, su escala está dividida en 20 partes iguales y la aguja se desvía al fondo de la escala cuando circula por él una corriente de 1 ma.

Más detalles

Tema: S7-1200, Valores Analógicos.

Tema: S7-1200, Valores Analógicos. Autómatas Programables. Guía 7 1 Tema: S7-1200, Valores Analógicos. Objetivo General Conocer como se opera con valores analógicos en el PLC S7-1200 de Siemens Objetivos Específicos Conectar correctamente

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Tema: Aplicaciones prácticas de circuitos magnéticos. I. Objetivos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Analizar la relación del número de vueltas en los

Más detalles

LABORATORIO DE FÍSICA 1. PRÁCTICA 6: Guía de circuitos de corriente continua y RC PRÁCTICA 6 1ER CUATRIMESTRE 2014 OBJETIVO GENERAL

LABORATORIO DE FÍSICA 1. PRÁCTICA 6: Guía de circuitos de corriente continua y RC PRÁCTICA 6 1ER CUATRIMESTRE 2014 OBJETIVO GENERAL PRÁCTICA 6: Guía de circuitos de corriente continua y RC OBJETIVO GENERAL Estudiar la relación entre la diferencia de potencial y la corriente que circula en una resistencia eléctrica. Analizar el comportamiento

Más detalles

La ley de desplazamiento de Wien (Premio Nobel 1911):

La ley de desplazamiento de Wien (Premio Nobel 1911): Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya

Más detalles

Tema: USO DE CODIFICADORES Y DECODIFICADORES.

Tema: USO DE CODIFICADORES Y DECODIFICADORES. Sistemas Digitales. Guía 6 1 Tema: USO DE CODIFICADORES Y DECODIFICADORES. Objetivo general Aplicar codificadores y decodificadores Objetivos específicos Utilizar codificadores para la introducción de

Más detalles

Art : Receptor de radio para Marcadores Serie FS

Art : Receptor de radio para Marcadores Serie FS Art.302-01: Receptor de radio para Marcadores Serie FS Manual de instalación y servicio Índice general 1. INTRODUCCIÓN...1 2. MONTAJE DEL RECEPTOR DE RADIO...1 2.1 Posición de instalación...2 2.2 Montaje...2

Más detalles

RADIACIÓN TÉRMICA TRABAJO PRÁCTICO. Objetivos

RADIACIÓN TÉRMICA TRABAJO PRÁCTICO. Objetivos FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA II TERMODINÁMICA TRABAJO PRÁCTICO RADIACIÓN TÉRMICA Objetivos Verificar experimentalmente

Más detalles

PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC

PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC Se inician las prácticas de laboratorio con dos sesiones dedicadas al análisis de algunos circuitos DC con un doble propósito: comprobar algunos de los circuitos

Más detalles

PRACTICA 1: Instrumentación en corriente continua. Manejo del polímetro digital.

PRACTICA 1: Instrumentación en corriente continua. Manejo del polímetro digital. PRACTICA 1: Instrumentación en corriente continua. Manejo del polímetro digital. ESTUDIO PREVIO El propósito de esta práctica consiste en familiarizarse con el manejo de los instrumentos de medida de magnitudes

Más detalles

Construcción de las etapas de potencia del transmisor del ROJ Presentado por: Otto Castillo G. Area de Operaciones de Radar

Construcción de las etapas de potencia del transmisor del ROJ Presentado por: Otto Castillo G. Area de Operaciones de Radar Construcción de las etapas de potencia del transmisor del ROJ Presentado por: Otto Castillo G. Area de Operaciones de Radar Antecedentes El presente tema corresponde al proyecto de construcción de transmisores

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

Tema: S7-200, Escalado de Valores analógicos

Tema: S7-200, Escalado de Valores analógicos Autómatas Programables. Guía 8 1 Tema: S7-200, Escalado de Valores analógicos Objetivo General Configurar las entradas analógicas del módulo EM235 en el S7-200 Objetivos Específicos Conectar correctamente

Más detalles

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU PRÁCTICA 1 MODULACIONES LINEALES 1.1.- Modulación de Amplitud: AM 1.2.- Modulación en doble banda Lateral: DBL 1.3.- Modulación en banda Lateral Única: BLU Práctica 1: Modulaciones Lineales (AM, DBL y

Más detalles

Tema: Medición de nivel con un sensor ultrasónico

Tema: Medición de nivel con un sensor ultrasónico Instrumentación Industrial. Guía 10 1 Tema: Medición de nivel con un sensor ultrasónico Objetivo General Utilizar el transmisor de nivel por ultrasonido de uso industrial model LIT25 de Greyline Instruments

Más detalles

1 Pérdida total (de un enlace radioeléctrico)*** (símbolos: L l o A l )

1 Pérdida total (de un enlace radioeléctrico)*** (símbolos: L l o A l ) Rec. UIT-R P.341-4 1 RECOMENDACIÓN UIT-R P.341-4 * NOCIÓN DE PÉRDIDAS DE TRANSMISIÓN EN LOS ENLACES RADIOELÉCTRICOS ** Rec. UIT-R P.341-4 (1959-1982-1986-1994-1995) La Asamblea de Radiocomunicaciones de

Más detalles

Manual de instrucciones Simulador de ph

Manual de instrucciones Simulador de ph Manual de instrucciones Simulador de ph 1 Índice 1. Introducción 3 2. Pantalla y teclado de funciones 4 2.1. Pantalla 4 2.2. Teclado 5 3. Preparación 6 3.1. Inserción y Extracción de la funda de goma 6

Más detalles

Medir las contribución de potencia por fuentes paralelas

Medir las contribución de potencia por fuentes paralelas 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de energía en telecomunicaciones TEMA: Fuentes de poder paralelas Contenido Fuentes de poder. Redundancia en las fuentes de poder. Objetivos

Más detalles

PRÁCTICA 4. Polarización de transistores en emisor/colector común

PRÁCTICA 4. Polarización de transistores en emisor/colector común PRÁCTICA 4. Polarización de transistores en emisor/colector común 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la polarización de un transistor y la influencia de distintos parámetros

Más detalles

Medida del campo magnético terrestre

Medida del campo magnético terrestre Práctica 8 Medida del campo magnético terrestre 8.1 Objetivo El objetivo de esta práctica es medir el valor del campo magnético terrestre. Para ello se emplea un campo magnético de magnitud y dirección

Más detalles

Tema: Modulación FSK.

Tema: Modulación FSK. Sistemas de comunicación II. Guía 6 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación II Tema: Modulación FSK. Contenidos Formas de onda del modulador FSK. Formas de onda

Más detalles

Pérdidas por inserción y de retorno en componentes pasivos de radiofrecuencia

Pérdidas por inserción y de retorno en componentes pasivos de radiofrecuencia Pérdidas por inserción y de retorno en componentes pasivos de radiofrecuencia *Por José Toscano Hoyos 1. Introducción La consideración de las pérdidas que se presentan en un sistema de transmisión de radiofrecuencia,

Más detalles

Tema: Manejo del Puerto Paralelo con LabView

Tema: Manejo del Puerto Paralelo con LabView Facultad: Ingeniería Escuela: Electrónica Asignatura: Interfaces y Periféricos Tema: Manejo del Puerto Paralelo con LabView Objetivos Específicos. Configurar la entrada y salida del puerto paralelo por

Más detalles

PRÁCTICA 6. CIRCUITOS ARITMÉTICOS

PRÁCTICA 6. CIRCUITOS ARITMÉTICOS PRÁCTICA 6. CIRCUITOS ARITMÉTICOS 1. Objetivo El objetivo de esta práctica es estudiar un circuito aritmético y aprender cómo construir un componente básico en electrónica digital: el generador de reloj.

Más detalles

Antena De Exterior Activa DVB-T SRT ANT 15

Antena De Exterior Activa DVB-T SRT ANT 15 Antena De Exterior Activa DVB-T SRT ANT 15 Manual de usuario 1.0 Introducción Estimado cliente Le agradecemos haber adquirido la antena DVB-T STRONG SRT ANT 15. Esta antena ha sido diseñada para la recepción

Más detalles

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Contenidos. Objetivos Específicos

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Contenidos. Objetivos Específicos Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II Tema: Fundamentos de motores síncronos Contenidos Operación de un motor a tensión nominal y en vacío.

Más detalles

Laboratorio de Electricidad PRACTICA - 4 PROPIEDADES DE LOS CIRCUITOS SERIE-PARALELO LEYES DE KIRCHHOFF (PARA UN GENERADOR)

Laboratorio de Electricidad PRACTICA - 4 PROPIEDADES DE LOS CIRCUITOS SERIE-PARALELO LEYES DE KIRCHHOFF (PARA UN GENERADOR) PRACTICA - 4 PROPIDADS D LOS CIRCUITOS SRI-PARALLO LYS D KIRCHHOFF (PARA UN GNRADOR) I - Finalidades 1.- Comprobar experimentalmente que la resistencia total R T de una combinación de resistencias en conexión

Más detalles

Nota de Aplicación. Oscar Branje

Nota de Aplicación. Oscar Branje Agilent N9330B/N9912A Analizador de Cables & Antenas Nota de Aplicación Oscar Branje obranje@avantec.cl COMPRENDIENDO EL ANALISIS DE LOS SISTEMA DE CABLES Y ANTENAS Introducción: El sistema de cables y

Más detalles

Redes inalámbricas. ondas y antenas. Eduardo Interiano

Redes inalámbricas. ondas y antenas. Eduardo Interiano Redes inalámbricas Comunicación y propagación de ondas y antenas Eduardo Interiano Agenda Conceptos de los sistemas de comunicaciones inalámbricos. El cálculo en decibeles Conceptos de antenas y propagación

Más detalles

Microondas 3º ITT-ST. Tema 2: Circuitos pasivos de microondas. Pablo Luis López Espí

Microondas 3º ITT-ST. Tema 2: Circuitos pasivos de microondas. Pablo Luis López Espí Microondas 3º ITT-ST Tema 2: Circuitos pasivos de microondas Pablo Luis López Espí 1 Dispositivos pasivos recíprocos Dispositivos de una puerta: Conectores de microondas. Terminaciones y cargas adaptadas.

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 0 CICLO 0-0 I. II. NOMBRE DE LA PRACTICA: Teoremas Res LUGAR DE EJECUCIÓN: Laboratorio

Más detalles

EXPERIENCIAS CON MICROONDAS

EXPERIENCIAS CON MICROONDAS EXPERIENCIAS CON MICROONDAS OBJETIVOS 1)Generales 1 1) Comprender en la práctica, algunas de las propiedades generales de las ondas electromagnéticas. 1 2) Estudiar las propiedades y fenómenos relacionados

Más detalles

Teoría de Circuitos (1º de ITI) Práctica 1

Teoría de Circuitos (1º de ITI) Práctica 1 Práctica 1: Aparatos de medida y medidas eléctricas básicas. Las leyes de Ohm y de Kirchoff en corriente continua. Asociación de resistencias en serie y en paralelo. Teorema de Thevenin y de máxima transferencia

Más detalles

Tema: Medición Óptica de Ángulo

Tema: Medición Óptica de Ángulo Instrumentación Industrial. Guía 3 1 Tema: Medición Óptica de Ángulo Objetivo General Analizar los procedimientos fundamentales para la medición de ángulo. Objetivos Específicos Experimentar con el codificador

Más detalles

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo Electrónica II. Guía 4 FILTROS ACTIVOS DE PRIMER ORDEN Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.2 (Edificio

Más detalles

Tema: PARÁMETROS DE LÍNEAS DE TRANSMISIÓN

Tema: PARÁMETROS DE LÍNEAS DE TRANSMISIÓN 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Líneas de transmisión Tema: PARÁMETROS DE LÍNEAS DE TRANSMISIÓN Objetivos Medir impedancia característica Medir factor de velocidad Determinar atenuación

Más detalles

El controlador On-Off (si-no o todo y nada).

El controlador On-Off (si-no o todo y nada). 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). El controlador On-Off (si-no o todo y nada).

Más detalles

MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL

MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS EC1113 PRACTICA Nº 1 MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL

Más detalles