PRÁCTICA 6 MEDIDA DE LA CONSTANTE DE RESTITUCIÓN DE UN RESORTE A PARTIR DE UN MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA 6 MEDIDA DE LA CONSTANTE DE RESTITUCIÓN DE UN RESORTE A PARTIR DE UN MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.)"

Transcripción

1 PRÁCTICA 6 MEDIDA DE LA CONSTANTE DE RESTITUCIÓN DE UN RESORTE A PARTIR DE UN MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) SERGIO ARAGÓN SANTOS Código CONSUELO GÓMEZ ORTIZ Código LICENCIADA SANDRA LILIANA RAMOS DURÁN UNIVERSIDAD DE LOS LLANOS FACULTAD DE CIENCIAS HUMANAS Y DE LA EDUCACIÓN LICENCIATURA EN MATEMÁTICAS Y FÍSICA MECÁNICA I VILLAVICENCIO 2012

2 MEDIDA DE LA CONSTANTE DE RESTITUCIÓN DE UN RESORTE A PARTIR DE UN MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Objetivo general Obtener el valor de la constante de elasticidad de varios resortes utilizando un método gráfico amparado en la ley de Hooke. Objetivos específicos Desarrollar habilidades para hacer mediciones de tiempo, longitudes y en la determinación de valores medios de estas magnitudes. Comprobar experimentalmente el valor de la constante de elasticidad de dos resortes conectados en paralelo. Desarrollar habilidades en el tratamiento gráfico de resultados experimentales. Desarrollar habilidades en la comparación de resultados obtenidos experimentalmente. Desarrollar habilidades en la utilización de la teoría de errores. FUERZAS ELÁSTICAS O DE RESTITUCIÓN El primero en estudiar las fuerzas elásticas o de restitución fue Robert Hooke ( ), quien llegó a establecer que estas fuerzas siempre son proporcionales a la deformación que sufre el cuerpo y a una constante que depende del material. Cuando sobre un cuerpo se ejerce una fuerza, esta acción se transmite a la sustancia de que está compuesto, modificando la posición de los átomos, a su vez, la estructura responde con otra fuerza igual y contraria, lo cual podría interpretarse como el cumplimiento de la tercera ley de Newton (acción y reacción). La relación entre la respuesta de una sustancia oponiéndose a su propia deformación se conoce como la Ley de Hooke, la cual se expresa matemáticamente como: F = - kx (1) El signo menos indica que la fuerza de restitución siempre apunta hacia la posición de equilibrio. Como todo cuerpo es en parte elástico y en parte plástico, cuando la fuerza externa que se aplica es muy grande, también lo serán las deformaciones y por lo tanto la ley de Hooke deja de cumplirse, porque se sobrepasan los límites de flexibilidad de la sustancia, lo cual impone que para utilizar esta ley confiablemente, las deformaciones que se produzcan en los cuerpos elásticos deben ser pequeñas. La ley de Hooke puede ser comprobada experimentalmente de muchas maneras, dos de las más conocidas son: Directamente: Midiendo la deformación que experimenta un resorte bajo la acción de una fuerza; se coloca verticalmente fijándose a un extremo y al otro lado se le

3 acopla un dinamómetro, se aplican diferentes fuerzas y se miden los valores correspondientes de alargamiento Δx. Los resultados se representan en un plano cartesiano F vs x, y se ajustan los valores a una recta. La pendiente de la recta trazada de esta manera será numéricamente igual a la constante de restitución del resorte. El mismo resultado puede obtenerse si en vez de utilizar un dinamómetro, se cuelgan diferentes masas tomando el peso de las mimas como la fuerza. Este será el primer método utilizado en este trabajo experimental. Indirectamente: Midiendo el período para oscilaciones pequeñas del sistema masa-resorte vertical, y a partir de esta magnitud, obtener la constante de restitución del resorte, utilizando la expresión matemática: T = 2π m/k (2) Este método será el utilizado en esta práctica de laboratorio. Para desarrollar la actividad experimental es importante conocer el origen de las expresiones matemáticas que se van a utilizar. En este caso se utilizarán algunos conocimientos básicos: 1. Un cuerpo suspendido de un resorte, al separarse una pequeña distancia de su posición de equilibrio y soltarse, realiza un movimiento armónico simple, al menos durante las primeras 6 ó 7 oscilaciones. Aquí una distancia pequeña es aquella que nunca exceda más de 3 veces la separación entre las espiras del resorte. 2. La ecuación del movimiento de un sistema que oscila con movimiento armónico simple (MAS) puede ser expresada matemáticamente como: X = Acos(ωt + φ o ) (3) donde A es la máxima separación hacia arriba o hacia abajo, de la masa oscilante, medida desde la posición en que se encontraba detenida al inicio del experimento; ω es la frecuencia angular, definida en el movimiento circunferencial uniforme como ω = 2π/T; T es el período y se obtiene midiendo el tiempo que demora la masa en realizar una oscilación completa; y φ o es el ángulo o la fase a partir del cual comenzó a observarse el movimiento. 3. La velocidad del cuerpo oscilante en cada punto de la trayectoria se expresa como: V = - ωasen(ωt + φ o ) (4) 4. Y la aceleración de la partícula animada de movimiento armónico simple, se expresa matemáticamente como: a = - ω 2 Acos(ωt + φ o ) (5) 5. Teniendo en cuenta la segunda Ley de Newton, y considerando que en este caso la fuerza cumple con la Ley de Hooke, se puede escribir: F = ma = - kx (6) de donde se puede plantear: a = - kx/m (7) Si en esta ecuación se sustituyen los valores de aceleración y posición para el movimiento armónico simple, se obtiene: - ω 2 Acos(ωt + φ o ) = - KAcos(ωt + φ o ) / m (8) De cuya igualdad, se obtiene que: ω = k/m (9)

4 MATERIALES Estuche con accesorios y juego de masas de 50 gr. Un resorte Riel de aire Cronómetro Dinamómetro Una gramera PROCEDIMIENTO Figura 1. Materiales necesarios para la práctica 1. Realizamos el montaje de la figura 2, medimos la longitud del resorte es 8.5cm. Figura 2. Montaje de la práctica 2. Colocamos el resorte de manera horizontal, midiendo la fuerza necesaria para estirarlo, por medio del dinamómetro: medimos el desplazamiento y la fuerza aplicada. Medimos la masa del móvil del riel es de 100 g. y fijamos el resorte. Estiramiento resorte Fuerza aplicada 0.15 m. 0.1 N 0.20 m. 0.2 N 0.25 m. 0.3 N 0.3 m. 0.4 N Tabla 1. Desplazamientos según la fuerza aplicada. F(N) 0,6 0,4 0,2 0 Gráfica de fuerza en función del desplazamiento 0,05 0,1 0,15 0,2 X(m) Gráfica 1. Fuerza en función del desplazamiento.

5 Después pusimos a oscilar el sistema midiendo previamente la amplitud con la regla, que posee el riel de aire, teniendo en cuenta que dicha amplitud no sea superior a tres veces la medida del resorte. Construimos un gráfico de F vs Δx, trace la mejor recta con los puntos experimentales. El valor de la pendiente de dicha recta será aproximadamente el de la constante de restitución del resorte. 3. Repetimos todo el proceso colocando masas de diferentes magnitudes sobre la superficie que se desliza sobre el riel de aire, como se muestra en la figura 3, para continuamente hallar la constante, cada masa redonda pesa 50g. Consignamos los datos de los valores de masa periodo y constante de restitución en la tabla 1. Figura 3. Peso de las masas y segundo montaje de la práctica con las masas Masa 0.05Kg 0.10Kg 0.15Kg 0.20Kg Periodo Constante de restitución 3.43Kg/s.s 3.25Kg/s.s 3.13Kg/s.s 3.30Kg/s.s Tabla 2. Datos de masa con valores de periodo y constante de restitución calculado Obtuvimos el período de oscilación midiendo el tiempo en que realiza 8 oscilaciones. Teniendo el valor promedio del período y la masa oscilante calculamos el valor de la constante de restitución. (Método indirecto) Masa (Kg) Tiempo en hacer 8 oscilaciones (s) Tiempo Promedio (s) Periodo (T) Tabla 3. Datos de masa, tiempo medido y periodo calculado Gráfica de masa en función del periodo m(kg) Gráfica 2. Masa en función del periodo T

6 2relación directamente proporcional entre las dos variables. 4. Establecimos una relación gráfica de la constante de restitución contra el período utilizando la relación de trabajo. K(Kg/s 2 ) 2,2 2,1 2 1,9 1,8 1,7 1,6 Gráfica de k en función del periodo 3,43 3,25 3,13 3,3 T Gráfica 1. Fuerza en función del desplazamiento. 5. Estimamos los errores cometidos, calculando el error absoluto y el error relativo en la medición de la constante de restitución k. Masas Tiempo Error relativo Error absoluto Masas Tiempo Error relativo Error absoluto 50 g s g s s s s s s s s s g s g s s s s s s s s s Tabla 4. Errores para la medición de tiempos ANÁLISIS Podemos observar y medir la elongación del resorte al colocarle las respectivas masas y más aún al aplicarle la fuerza, entre más fuerza se le aplica más deformación se presenta en este como lo muestra la gráfica 2. Al graficar los datos

7 vemos que estos tienden a describir una recta, por lo que podemos decir que son directamente proporcionales y que responden a una constante de restitución. Midiendo el período para oscilaciones pequeñas del sistema masa-resorte vertical, y a partir de esta magnitud, obtuvimos la constante de restitución del resorte utilizando la ecuación (2), en la cual se despeja la constante donde el promedio de los valores nos dio 3.277Kg/s.s, como vemos el proceso de toma de datos, fue bueno ya que la constante de restitución hallada fue pequeña. CONCLUSIONES Se logró determinar la constante de restitución del resorte. Por el método directo el resultado arrojado fue de 3.11 Kg/s.s, y por el método indirecto el resultado promedio fue de 3.277Kg/s.s. Lo que indica que la constante de restitución del resorte es de: 3.11Kg/s.s± 0.13 Las variables a considerar para analizar el sistema masa-resorte vertical, son la masa, el tiempo, la fuerza aplicada y el desplazamiento. A partir de la gráfica 1, de fuerza en función del desplazamiento, en donde la curva se aproxima a una recta, se obtiene la constante de restitución, que para nuestro sistema masa resorte vertical se obtuvo una constante de 0,042 ± 0,05 En el desarrollo de habilidades encontramos que para poder verificar los valores y confiar en ellos, es necesario tomarlos varias veces promediarlos y compararlos para disminuir los errores en la toma de datos. BIBLIOGRAFÍA 1. Resnick Halliday Física para Estudiantes de Ciencias e Ingeniería. Tomo I. Edición Fidel Rodríguez Puerta. Física Interactiva I. Edición Universidad de los Llanos www. Portal interactivo. 4. Física II, Oscilaciones, Ondas, Electromagnetismo y Física Moderna. Edición 1995.

porque la CALIDAD es nuestro compromiso

porque la CALIDAD es nuestro compromiso PRÁCTICA 9 LEY DE HOOKE 1. NORMAS DE SEGURIDAD El encargado de laboratorio y el docente de la asignatura antes de comenzar a desarrollar cada práctica indicaran las normas de seguridad y recomendaciones

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado.

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. Departamento de Física Aplicada Universidad de Cantabria 3 Diciembre 013 Resumen

Más detalles

Medición del módulo de elasticidad de una barra de acero

Medición del módulo de elasticidad de una barra de acero Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez hpatera@fra.utn.edu.ar Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

Deducir la ley de Hooke a partir de la experimentación. Identificar los pasos del método científico en el desarrollo de este experimento.

Deducir la ley de Hooke a partir de la experimentación. Identificar los pasos del método científico en el desarrollo de este experimento. LABORATORIO DE FISICA I LEY DE HOOKE UNIVERSIDAD TECNOLÓGICA DE PEREIRA PEREIRA RISARALDA OBJETIVOS Verificar la existencia de fuerzas recuperadas. Identificar las características de estas fuerzas. Deducir

Más detalles

DETERMINACIÓN DE LA ACELERACIÓN DE GRAVEDAD UTILIZANDO UN SISTEMA PÉNDULO SIMPLE-CBR

DETERMINACIÓN DE LA ACELERACIÓN DE GRAVEDAD UTILIZANDO UN SISTEMA PÉNDULO SIMPLE-CBR DETERMINACIÓN DE LA ACELERACIÓN DE GRAVEDAD UTILIZANDO UN SISTEMA PÉNDULO SIMPLE-CBR INTRODUCCION Víctor Garrido Castro vgarrido@uvm.cl vgarridoster@gmail.com 03()46680 El objetivo del experimento es encontrar

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

LABORATORIO DE MECANICA LEY DE HOOKE

LABORATORIO DE MECANICA LEY DE HOOKE No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento

Más detalles

Universidad Nacional de General San Martín Escuela de Ciencia y Tecnología Laboratorio de Física 1 Comparación de métodos para el cálculo de g

Universidad Nacional de General San Martín Escuela de Ciencia y Tecnología Laboratorio de Física 1 Comparación de métodos para el cálculo de g Universidad Nacional de General San Martín Escuela de Ciencia y Tecnología Laboratorio de Física 1 Comparación de métodos para el cálculo de g!"profesores: Dr. Salvador Gil y Dr. D. Tomasi!"Integrantes

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

SISTEMAS ELÁSTICOS. Pablo Játiva Carbajal. Prácticas Curso : Práctica sobre sistemas elásticos

SISTEMAS ELÁSTICOS. Pablo Játiva Carbajal. Prácticas Curso : Práctica sobre sistemas elásticos SISTEMAS ELÁSTICOS Pablo Játiva Carbajal Prácticas Curso 20-202: Práctica sobre sistemas elásticos Profesores: Antonio J. Barbero García y Mª Mar Artigao Castillo Sea un resorte en un instante inicial:

Más detalles

PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO

PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO Labor ator io Dinámica de Máquinas UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DINÁMICA DE MÁQUINAS 3.1. Objetivos PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO 1.

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa.

Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa. Péndulo físico x Consideraciones generales En la Figura 1 está representado un péndulo físico, que consiste de un cuerpo de masa m suspendido de un punto de suspensión que dista una distancia d de su centro

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

MAGNITUDES FISICAS Y UNIDADES DE MEDIDA. 1ª PARTE.

MAGNITUDES FISICAS Y UNIDADES DE MEDIDA. 1ª PARTE. 1 MAGNITUDES FISICAS Y UNIDADES DE MEDIDA. 1ª PARTE. 1. CONCEPTOS DE MEDICION, DE MAGNITUD FISICA Y DE UNIDAD DE MEDIDA El proceso de medición es un proceso físico experimental, fundamental para la ciencia,

Más detalles

Momento de Torsión Magnética

Momento de Torsión Magnética Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento

Más detalles

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos. Laboratorio 1 Péndulo físico 1.1 Objetivos 1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1.2 Preinforme 1. Exprese y explique el teorema de ejes paralelos.

Más detalles

Fuerzas de Rozamiento

Fuerzas de Rozamiento Fuerzas de Rozamiento Universidad Nacional General San Martín. Escuela de Ciencia y Tecnología. Baldi, Romina romibaldi@hotmail.com Viale, Tatiana tatianaviale@hotmail.com Objetivos Estudio de las fuerzas

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Movimiento rectilíneo uniformemente acelerado

Movimiento rectilíneo uniformemente acelerado Movimiento rectilíneo uniormemente acelerado Objetivo General El alumno estudiará el movimiento rectilíneo uniormemente acelerado Objetivos particulares 1. Determinar experimentalmente la relación entre

Más detalles

Síntesis Examen Final

Síntesis Examen Final Síntesis Examen Final Presentación El siguiente material permitirá repasar los contenidos que se evaluarán en el Examen Final de la Asignatura que estudiamos durante el primer semestre y/o revisamos en

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA

UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA FUERZA CENRÍPEA OBJEIVO Estudiar los efectos de la fuerza centrípeta en un objeto que describe una trayectoria circular, al variar la masa del objeto, y el radio del círculo que describe en su movimiento.

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Torques y equilibrio de momentos. Bogotá D.C., 4 de marzo de 2014

Torques y equilibrio de momentos. Bogotá D.C., 4 de marzo de 2014 Torques y equilibrio de momentos Mara Salgado 1*, Diego Villota Erazo 1*, Diego Buitrago 1*, Katherine Aguirre Guataquí 1*. Bogotá D.C., 4 de marzo de 2014 Departamento de Matemáticas, Laboratorio de Física

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

Péndulo en Plano Inclinado

Péndulo en Plano Inclinado Péndulo en Plano nclinado Variación del Período en función de g Alejandra Barnfather: banfa@sion.com - Matías Benitez: matiasbenitez@fibertel.com.ar y Victoria Crawley: v_crawley@hotmail.com Resumen El

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

LABORATORIO DE MECANICA LEY DE HOOKE

LABORATORIO DE MECANICA LEY DE HOOKE No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento

Más detalles

MANUAL DE PROCESOS MISIONALES CODIGO GESTIÓN ACADÉMICA GUIAS DE PRÁCTICAS ACADEMICAS DE LABORATORIO

MANUAL DE PROCESOS MISIONALES CODIGO GESTIÓN ACADÉMICA GUIAS DE PRÁCTICAS ACADEMICAS DE LABORATORIO PRÁCTICA 10 TRANSFORMACION Y CONSERVACION DE LA ENERGIA Nombre de la asignatura: Código de la asignatura: FISICA 1. NORMAS DE SEGURIDAD El encargado de laboratorio y el docente de la asignatura antes de

Más detalles

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática Cinemática INTRODUCCIÓN La cinemática es la ciencia que estudia el movimiento de los cuerpos. Sistemas de referencia y móviles Desplazamiento, rapidez, velocidad y aceleración Pero un movimiento (un cambio

Más detalles

LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF.

LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF. GRUPO # 4 to Cs PRACTICA DE LABORATORIO # 3 Movimientos horizontales OBJETIVO GENERAL: Analizar mediante graficas los diferentes Tipos de Movimientos horizontales OBJETIVOS ESPECIFICOS: Estudiar los conceptos

Más detalles

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así: Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

Práctica de Óptica Geométrica

Práctica de Óptica Geométrica Práctica de Determinación de la distancia focal de lentes delgadas convergentes y divergentes 2 Pre - requisitos para realizar la práctica.. 2 Bibliografía recomendada en referencia al modelo teórico 2

Más detalles

y d dos vectores de igual módulo, dirección y sentido contrario.

y d dos vectores de igual módulo, dirección y sentido contrario. MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo

Más detalles

LABORATORIO DE MECÁNICA MOVIMIENTO DE PROYECTILES

LABORATORIO DE MECÁNICA MOVIMIENTO DE PROYECTILES No 3 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar el movimiento de proyectiles. 2. Identificar los valores para cada

Más detalles

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON I. LOGROS Comprobar e interpretar la segunda ley de Newton. Comprobar la relación que existe entre fuerza, masa y aceleración. Analizar e interpretar las gráficas

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

DINÁMICA. Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones (efecto elástico).

DINÁMICA. Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones (efecto elástico). DINÁMICA La Dinámica es la parte de la Física que estudia las fuerzas. 1. FUERZAS Qué son? Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

Ingeniería en Sistemas Informáticos

Ingeniería en Sistemas Informáticos Facultad de Tecnología Informática Ingeniería en Sistemas Informáticos Matéria: Electromagnetismo- Estado sólido I Trabajo Práctico N 4 Circuitos Eléctricos Carga de un Capacitor Alumnos: MARTINO, Ariel

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

LAS MEDICIONES FÍSICAS. Estimación y unidades

LAS MEDICIONES FÍSICAS. Estimación y unidades LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones. Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 1 Estática y Cinemática A ENTREGAR POR EL ALUMNO

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 1 Estática y Cinemática A ENTREGAR POR EL ALUMNO LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA A ENTREGAR POR EL ALUMNO Ing. RONIO GUAYCOCHEA Ing. MARCO DE NARDI Lic. FABRIZIO FRASINELLI Ing. ESTEBAN LEDROZ AÑO 2014 1 ESTÁTICA CUESTIONARIO 1. Que es una magnitud

Más detalles

Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín

Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín UNIVERSIDAD COOPERATIVA DE COLOMBIA CURSO FISICA MECANICA PRACTICA DE LABORATORIO PRACTICA No. 10: SUMA DE TORQUES Y EQUILIBRIO ROTACIONAL 1. INTRODUCCION. La aplicación de fuerzas sobre un cuerpo puede

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás

Más detalles

ESTUDIO DE LA FUERZA CENTRÍPETA

ESTUDIO DE LA FUERZA CENTRÍPETA Laboratorio de Física General Primer Curso (ecánica) ESTUDIO DE LA FUERZA CENTRÍPETA Fecha: 07/02/05 1. Objetivo de la práctica Verificación experimental de la fuerza centrípeta que hay que aplicar a una

Más detalles

LABORATORIO Nº 1 MOVIMIENTO EN CAÍDA LIBRE

LABORATORIO Nº 1 MOVIMIENTO EN CAÍDA LIBRE LABORATORIO Nº 1 MOVIMIENTO EN CAÍDA LIBRE I. LOGROS Determinar experimentalmente el valor de la aceleración de la gravedad. Analizar el movimiento de un cuerpo mediante el Software Logger Pro. Identificar

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 7: EJEMPLOS SOBRE EQUILIBRIO DE LA PARTÍCULA Diego Luis Aristizábal R., Roberto Restrepo A.,

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor ey de Ohm y dependencia de la resistencia con las dimensiones del conductor Ana María Gervasi y Viviana Seino Escuela Normal Superior N 5, Buenos Aires, anamcg@ciudad.com.ar Instituto Privado Argentino

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.

Más detalles

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL DATOS GENERALES PROGRAMA ANALITICO DE LA ASIGNATURA FISICA I (FIS- 100) ASIGNATURA:. Física I SIGLA Y CODIGO:... FIS 100 CURSO:.. Primer Semestre PREREQUISITOS: Ninguno HORAS SEMANAS:... 4 Teóricas y 4

Más detalles

PRÁCTICA 4 ESTUDIO DEL RESORTE

PRÁCTICA 4 ESTUDIO DEL RESORTE INGENIERÍA QUÍICA 1 er curso FUNDAENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 4 ESTUDIO DEL RESORTE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 IV. Estudio del resorte 1. Objetivos

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Energía: Planificación de la unidad Física de PSI

Energía: Planificación de la unidad Física de PSI Energía: Planificación de la unidad Física de PSI Objetivos El trabajo y el teorema del trabajo- 1) Los estudiantes deberían comprender la definición de trabajo, incluyendo cuando el trabajo es positivo,

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO 8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la practica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

Dependencia de la aceleración de un cuerpo en caída libre con su masa

Dependencia de la aceleración de un cuerpo en caída libre con su masa Dependencia de la aceleración de un cuerpo en caída libre con su masa Ramón Ramirez 1 y Guillermo Kondratiuk 2 E. E. T. N 4 Profesor Jorge A. Sábato, Florencio Varela, Buenos Aires 1 rar14@uolsinectis.com.ar

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides.

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. Objetivos: Identificar y familiarizarse con las ondas senoides. construir e identificar claramente las características

Más detalles

PRIMER CÁLCULO DE LA UNIDAD ASTRONÓMICA MEDIANTE EL TRÁNSITO DE VENUS

PRIMER CÁLCULO DE LA UNIDAD ASTRONÓMICA MEDIANTE EL TRÁNSITO DE VENUS PRIMER CÁLCULO DE LA UNIDAD ASTRONÓMICA MEDIANTE EL TRÁNSITO DE VENUS (adaptado y traducido de textos de Internet por Luis E.) Hacia 1700 gracias a Kepler- las distancias relativas entre los seis planetas

Más detalles

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN FUERZAS CONCURRENTES Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN En este laboratorio lo que se hizo inicialmente fue tomar diferentes masas y ponerlas en la mesa de fuerzas de esa manera precisar

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE INSTITUTO TECNOLÓGICO DE MATAMOROS SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE PROYECTO SEMESTRAL MATERIA HORARIO ASESOR EQUIPO 2 Análisis de vibraciones Lunes a Viernes, 17:00-18:00hrs.

Más detalles

FÍSICA EXPERIMENTAL I. Péndulo Simple. Mediciones de Período para amplitudes mayores a 7. 11/11/2013

FÍSICA EXPERIMENTAL I. Péndulo Simple. Mediciones de Período para amplitudes mayores a 7. 11/11/2013 FÍSICA EXPERIMENTAL I Péndulo Simple Mediciones de Período para amplitudes mayores a 7. 11/11/2013 Autores: Grigera Paladino, Agustina (agrigerapaladino@yahoo.com.ar) Lestani, Simón Exequiel (saimon_l_f@hotmail.com)

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Equilibrio y Movimiento de los objetos

Equilibrio y Movimiento de los objetos Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento

Más detalles

Sólo cuerdas dinámicas

Sólo cuerdas dinámicas Efectos de una caída Al caernos desde una cierta altura estando amarrados con una se producen varios sucesos simultáneos. Toda la energía potencial que habíamos ganado con la altura se convierte en cinética

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. Experimento 1

MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. Experimento 1 MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. 1 Introducción. La dinámica de cuerpos rígidos constituye el caso especial, en que un sistema de partículas

Más detalles