OPTIMIZACIÓN DEL DISEÑO Y FUNCIONAMIENTO DE MAQUINAS TÉRMICAS PARA OPERACIONES MINERAS EN ALTURA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPTIMIZACIÓN DEL DISEÑO Y FUNCIONAMIENTO DE MAQUINAS TÉRMICAS PARA OPERACIONES MINERAS EN ALTURA"

Transcripción

1 PERUMIN 31 CONVENCIÓN MINERA ENCUENTRO DE TECNOLOGÍA E INVESTIGACIÓN OPTIMIZACIÓN DEL DISEÑO Y FUNCIONAMIENTO DE MAQUINAS TÉRMICAS PARA OPERACIONES MINERAS EN ALTURA Ing. Percy Castillo Neira Experto Internacional en Combustión y Procesos Industriales Gerente de Combustión y Ecología S.A.C. Director del Instituto Latinoamericano de la Combustión Miembro del Consejo Técnico Consultivo de la Región Arequipa Resumen Las Empresas Mineras, generalmente ubicadas en altura, pierden millones de dólares al año operando en forma ineficiente diferentes máquinas térmicas en sus operaciones de exploración, extracción, producción y tratamientos metalúrgicos, bajo la suposición de que no resulta posible alcanzar rendimientos y niveles de eficiencia similares a los que se consiguen en la costa y condiciones atmosféricas normales. Durante los últimos 20 años, a través de investigación científica, desarrollo académico y trabajo de planta, hemos logrado desarrollar la tecnología adecuada para asegurar similares condiciones de potencia, eficiencia y rendimiento en cualquier de los equipos utilizados en las operaciones mineras que desarrollan sus actividades en altura. En este trabajo sustentamos los fundamentos termodinámicos, analizamos los criterios de aplicación y mostramos las numerosas experiencia de aplicación que proporcionan a la minería nuevas posibilidades de optimización de costos, mayor competitividad y mejores posibilidades de cumplir las exigencias de control de emisiones al ambiente. Abstract The mining companies, generally located in height, lost millions of dollar a year in operating inefficiently different thermal machines in operations of exploration, extraction, production and metallurgical treatments, under the assumption that it is not possible to achieve the performance and efficiency levels similar to those are achieved on the coast and normal weather conditions. During the last 20 years through scientific research, academic and work plant, we have developed the technology to ensure similar conditions of power, efficiency and performance in any of the equipment used in mining operations that are active in activities in height Is this work we sustain thermodynamic fundamentals, we analyze the application criteria and show the many application experience that provide new possibilities, mining cost, optimization, improved competitiveness and better possibilities to reach the requirements of the environment control emissions.

2 1.1 Caracterización del Aire Atmosférico como comburente La naturaleza no se ha limitado a almacenarnos energía química durante millones de años en los combustibles fósiles. También nos proporciona en la atmósfera, el oxígeno necesario para liberarla mediante la combustión. En forma similar a la que debe permitir el perfecto conocimiento del combustible empleado, el aire de combustión también debe ser caracterizado, tanto en los aspectos que definen su empleo como comburente, como para asegurar que sea aportado al quemador en las condiciones previstas en su diseño. Se llama comburente al aire o al oxígeno que participa en la oxidación de la materia combustible liberando luz y calor en el proceso llamado combustión. Debe asegurarse de que tanto el combustible empleado como el aire de combustión sean aportados al quemador en las condiciones previstas en su diseño. Para efectos prácticos resultará suficientemente correcto considerar la siguiente composición, a nivel del mar, en condiciones normales de presión (760 mm de Hg) y temperatura (0ºC): Nitrógeno : (77% en peso) Oxígeno : 79% en volumen 21% en volumen (23% en peso) En el desarrollo de la tecnología de la combustión del siglo XX se cometieron muchos errores, pero sin duda alguna el principal fue desconocer la importancia del aire. Al establecer la Teoría Inorgánica de la Combustión que la formación de llama y el control sobre el desarrollo de la combustión constituyen principalmente un problema de mecánica de fluidos, siendo el aire el flujo dominante para determinar las condiciones de mezcla y turbulencia que definen la calidad de la combustión, demuestra que el aire siempre resulta más importante que los combustibles en la combustión. En la mayor parte de los casos para las determinaciones técnicas de tipo teórico (volumen de los gases de combustión, temperatura máxima, temperatura de rocío, calor sensible de los humos), se comete poco error considerando aire seco en donde la proporción entre el nitrógeno y el oxígeno es de 79 a 21% en volumen, asimilando por tanto el Argón a Nitrógeno y estableciendo el aire como la mezcla molecular siguiente: Equivalente a y más habitualmente para :

3 Esta aproximación da algún error de cierta importancia cuando se pretende tener en cuenta muy estrictamente el contenido de nitrógeno de la materia mineral. Finalmente, para conseguir la combustión completa más próxima a la teórica y según el estado físico del combustible (granos, polvo, líquidos, gases y dispersiones) es preciso emplear una proporción de oxígeno superior a la teórica por razones físicas de contacto que después detallaremos. De aquí el llamado exceso de aire sobre el teórico necesario. Este exceso de aire conlleva especialmente dos efectos importantes en cuanto al propósito de la combustión: 1º Disminución de la temperatura máxima posible, al aumentar la cantidad de gases en la combustión. 2º Variación sensible en cuanto a la concentración de los óxidos formados, en el nitrógeno del aire empleado. Se denomina ecuación de estado a la relación que existe entre las variables p, V, y T. La ecuación de estado más sencilla es la de un gas ideal pv=nrt, donde n representa el número de moles, y R la constante de los gases R=0.082 atm l/(k mol)= J/(K mol). A diferentes alturas respecto al nivel del mar, resultará necesario considerar las variaciones de presión y temperatura que experimenta el aire y como influencian sus características como comburente. Tomando en cuenta la definición de presión de los gases, que se explica por el mayor o menor número de impactos moleculares sobre el recipiente que los contiene, podemos utilizar este concepto de actividad molecular para justificar el mayor volumen que ocupa la misma masa de aire a mayores niveles de altura, al liberarse parcialmente de la presión que soporta de la masa atmosférica. Siendo la masa de oxígeno la que participa directamente en las reacciones de combustión, al disminuir la presión del aire con la altura, se puede decir que disminuye proporcionalmente su calidad como comburente. En la Figura 1 se muestra la curva de variación de presión atmosférica con la altura. 1.2 VARIACIÓN DE LA CALIDAD DEL AIRE CON LA ALTURA Figura 1 Variación de la presión atmosférica con la altura Como ya se ha mencionado, el desarrollo de la tecnología de la combustión se ha preocupado más del combustible caro que del aire gratis, ignorando la importancia del aire como flujo termodinámico, aportante de oxígeno y energía cinética, pero además suponiendo que sus características resultan invaluables. Siendo una mezcla de gases, el aire estará sometido a las leyes de la física como flujo termodinámico, quedando definido en cuanto a sus características por la Presión (P), Volumen (V) y Temperatura (T) como sistema en equilibrio, y ocasionalmente por la Energía Interna, Entalpía y Entropía. Para fines prácticos el aire puede considerarse como un gas ideal, facilitando los cálculos des estados de equilibrio mediante la Ecuación de Estado.

4 Un metro cúbico de aire normal (1 atm y 0 C) aporta como comburente 297 gramos de oxígeno; a la misma temperatura, en la medida que se incrermente la altura, y consecuentemente la presión, disminuirán sus contenidos de masa de oxígeno en la siguiente forma: A 0 msnm A 1000 msnm A 2000 msnm A 3000 msnm A 4000 msnm A 5000 msnm : 1m 3 --->297 gr de 0 2 : 1m 3 --->241 : 1m 3 --->227 : 1m 3 --->192 : 1m 3 --->170 : 1m 3 --->141 A 0 ºC : 1m 3 --->297 gr de 0 2 A 100 ºC : 1m 3 --->216 A 200 ºC : 1m 3 --->172 A 300 ºC : 1m 3 --->133 A 500 ºC : 1m 3 --->105 A 1000 ºC : 1m 3 ---> > PODER CALORÍFICO DEL AIRE En la Figura 2 se muestra la corrección del volumen del aire con la altura a diferentes temperaturas. Figura 2 Corrección del volumen del aire con la altura Aunque este concepto resulte algo extraño, precisamente por el tradicional desconocimiento de la importancia del aire en la combustión, resulta totalmente justificado y particularmente útil para evaluar y compensar su calidad como comburente. En la misma forma y con el mismo derecho que los combustibles, en los cuales se calcula el poder calorífico en función de su contenido de Carbono e Hidrógeno, suponiendo que dispondrán del oxígeno necesario para completar su combustión, en el caso del aire hemos adoptado arbitrariamente el concepto de suponer que todo el oxígeno disponible en el aire dispondrá de suficiente carbono para conseguir una combustión completa. En esta forma, podemos obtener el poder calorífico del aire en Kcal/Kg. Para establecer una comparación, analicemos el efecto de la temperatura sobre la calidad del aire como comburente, apreciando como varía el contenido de masa de oxígeno con el calentamiento: A nivel del mar, el poder calorífico del aire siempre será de 890 Kcal/m 3 N; al realizarse la combustión a más altura, este valor disminuirá progresivamente, por disminuir gradualmente el contenido de oxígeno por metro cúbico, lo que puede apreciarse en la Figura 3.

5 Para cumplir este propósito, el aire debe recibir el impulso que asegure las condiciones de suministro previstas en el diseño del quemador, pudiendo requerir para ello de un ventilador, soplador o compresor, según sea el caso y el trabajo que deba realizar. Las principales funciones mecánicas que realiza el aire en los sistemas, circuitos y procesos de combustión, son los siguientes: Figura 3 Variación del poder calorífico del aire con la altura En la misma forma, al incrementarse la temperatura del aire disminuirá su calidad como comburente, pero se incrementará su entalpía. La comparación entre la variación de ambos parámetros la efectuaremos al analizar la función termodinámica del aire en la combustión. 1-4 LA FUNCIÓN MECÁNICA DEL AIRE EN LA COMBUSTIÓN Aire primario Aporta la energía cinética requerida para formación de llama, es decir, determinar la forma en que se desarrolla la combustión, para lo cual puede requerir una gran potencia, cuando se utiliza combustibles muy difíciles de quemar, o relativamente poca, cuando se utiliza gas natural o GLP, que quemándose con mucha facilidad, a veces requieren demorar la mezcla para tratar de alargar el tiempo de reacción y mejorar la emisividad de llama. Para definir con claridad y sencillez el trabajo del aire primario, hemos determinado la conveniencia de utilizar 2 parámetros que pueden ser aplicados en el diseño de quemadores o para la evaluación de quemadores que se encuentren instalados y operando, para evaluar y optimizar su funcionamiento: Potencia específica, expresada con Newton/ Gcal, y Swirl (fuerza rotacional), que representa el % del impulso total que tiene efecto rotacional. La validez y utilidad de estos parámetros la hemos podido comprobar en cientos de proyectos de optimización de la combustión en plantas industriales. Al analizar la combustión como proceso fisicoquímico se estableció que los 3 principales factores que determinan la calidad de la combustión son la cinética química de la reacción, la mecánica de fluidos que determina las condiciones de mezcla y turbulencia, y la termodinámica que establece las condiciones de transferencia de calor a la operación o proceso para el cual se efectúa la combustión y liberación de calor. El aire resulta protagonista en los 3 casos, pero probablemente la función más importante que cumple en la combustión sea el aporte del impulso que proporciona la energía cinética requerida para establecer las condiciones de mezcla y turbulencia que permitan asegurar combustión completa y la formación de llama que convenga a cada reactor y proceso. Figura 4 Ingreso de aire primario al quemador Pitojet de KHD

6 Cálculo de la Potencia Específica : N/Gcal Los Newtons se calculan multiplicando el flujo másico (kg/seg) por la velocidad en la boquilla del quemador (m/seg). El resultado es el Impulso Total en Kg-m/seg 2 (Newtons). Las Gcal representan el cálculo del poder calorífico del combustible quemado en 1 hora. La relación entre ambos nos dará la Potencia Específica en N/Gcal. La potencia específica para cada quemador dependerá del tipo de quemador, el combustible utilizado, el porcentaje del aire primario total, etc. En los casos que el aire también tiene que proporcionar el aire forzado para empujar los gases de combustión, la potencia será mayor. La experiencia nos ha enseñado que cada quemador individual debe ser caracterizado y definido en cuanto a la potencia más conveniente. Cálculo del Swirl (Fuerza Rotacional) La minería construye sueños Quemadores de atomización por aire a baja presión, en el cual todo el aire lo proporciona un ventilador que impulsa el aire total de combustión, que a su vez atomiza el combustible que sale en forma lateral o radial de la boquilla. El quemador Hauck es el caso típico y tuvo buenos resultados para combustibles sucios y trabajos muy estacionarios del quemador. (Figura 4.10) Figura 4.10 Quemador Hauck Para el cálculo del swirl se aplica la siguiente fórmula: Swirl : I r. Tg R. (d e d i ) / I t. D Donde: I t : Impulso total I r : Impulso rotacional T g : Tangente de la roseta D : Diámetro externo total d i y d e : Diámetros interior y exterior de la roseta de giro. Los valores de Swirl para quemadores normales varían entre 10 y 40%, pudiendo utilizarse valores mayores para conseguir llamas muy cortas, no necesariamente más anchas, si se dispone del diseño que permita formar llamas cónicas huecas Aire de atomización En algunos quemadores de combustibles líquidos se utiliza el aire como fluido pulverizador para atomización del combustible, presentándose en la práctica dos tipos de diseños que utilizan el aire para atomizar: Quemadores de atomización con fluido auxiliar, que puede ser aire comprimido o vapor, para el caso de calderos. La presión normal del aire de atomización es de 4-6 bares Tiro forzado En la mayoría de Calderos Pirotubulares y algunos tipo de hornos pequeños, el ventilador del quemador debe proporcionar, además del aire de combustión y la energía para formación de llama, el impulso necesario para empujar los gases circulantes hasta la base de la chimenea, a partir de la cual se combina este impulso con el tiro natural creado por la chimenea, para eliminar los gases de combustión a la atmósfera. En este tipo de sistemas, la capacidad de los calderos y hornos queda totalmente definido por la capacidad del ventilador para proporcionar el caudal y la presión estática en la descarga que proporcione el impulso (potencia) necesarios para formación de ll ama y circulación de los gases de combustión Aire de transporte y control El transporte neumático resulta una importante posibilidad para un inmenso espectro de operaciones que se efectúan en sistemas de combustión, principalmente de sólidos.

7 En instalaciones de carbón pulverizado con sistemas de combustión directo o indirecto, se debe transportar el carbón del molino o silo al quemador. Para ello se utiliza un sistema de transporte por aire soplado que mantiene las partículas de carbón en suspensión, debiendo mantener velocidades suficientes para evitar depósitos de carbón pero las mínimas necesarias para evitar la abrasión en las tuberías (20-30 m/seg) Para cualquiera de estas funciones se tiene que captar un determinado flujo de aire de la atmósfera y proporcionarle la forma y cantidad de energía que resulte adecuado para transportarse, ser introducido en un sistema establecido y efectuar un trabajo determinado. Los equipos que se utilizan para esta tarea son ventiladores, sopladores y/o compresores (Figura 5) También para eliminación de cenizas el transporte neumático representa una solución práctica y ecológica (Figura 5). Figura 5 Transporte neumático de carbón Aunque la instrumentación neumática ya se utiliza poco, en algún momento representó la mejor opción; el empleo de aire soplado y comprimido para cualquier tipo de accionamiento de control operativo o seguridad siempre representa una posibilidad Ventiladores, Sopladores y Compresores Todo en el universo es materia y energía. Vivimos inmersos en una gran masa de aire, a nuestra disposición para aprovecharla en 3 funciones específicas: Químicas, aprovechando su contenido de oxígeno, que representa el 21 % de su volumen (23% en masa) como comburente; mecánicas, utilizándolo como flujo dominante en la gasodinámica de la combustión; termodinámicas, como medio para transferencia de calor. Figura 5 Ventiladores, sopladores y compresores Estos equipos utilizan un motor, para convertir la energía eléctrica en la energía mecánica de giro del rotor, que se transmite al eje donde se encuentra conectada una turbina con álabes que impactan y desplazan el aire contenido en el interior de la carcasa, provocando una corriente de succión en la admisión y convirtiendo la energía mecánica en energía cinética que se manifiesta en el impulso del flujo en la descarga. La presión estática en la descarga define la nominación del equipo utilizado:

8 Un ventilador generalmente se utiliza para mayores caudales y menores presiones (hasta 120 mbar). Entre 120 y 200 mbar se encuentran los llamados turbo ventiladores que constituyen una interfase entre ventiladores y sopladores, muy convenientes para sistemas de combustión más exigentes. La minería construye sueños En términos generales, para seleccionar un ventilador se debe establecer el caudal requerido y calcular la presión mínima necesaria en la descarga para asumir las pérdidas en el circuito de descarga y ejecutar el trabajo que debe realizar en un sistema determinado. Conociendo estos parámetros, se deberá elegir el modelo adecuado en el catálogo del fabricante o proveedor, en el cual ya está definida la potencia de motor requerida. A partir de 200 mbar y hasta 1 Bar, se denominan sopladores, siendo equipos con mayores presiones y menores caudales. Equipos con más de 1 Bar en la descarga ya puede ser considerado un compresor y requiere criterios distintos de diseño. Existen 2 tipos de ventiladores utilizados en la industria: centrífugos y axiales, siendo los primeros los más utilizados en sistemas de combustión y los axiales en sistemas de ventilación. En cuanto a los diseños de la forma de los álabes, lo cual determina las formas de las curvas de operación de los ventiladores, pueden ser rectos, curvados hacia adelante o atrás. En sistemas de combustión generalmente se utilizan los de álabes rectos por ofrecer flujos más estables, prefiriéndose los de aletas curvadas cuando se maneja flujos sucios, o se requiere condiciones especiales de presión. La capacidad de un ventilador queda determinada por el caudal de aire que desplaza, la presión que le imprime al flujo y la potencia que absorbe el motor para efectuar este trabajo. Estas características quedan perfectamente definidas en la curva de diseño del ventilador o soplador (Figura 6). En sistemas de combustión resulta una buena práctica definir las características del suministro de aire requeridas en cuanto a impulso y caudal, así como el margen de regulación de ambos, establecer las pérdidas de presión en el circuito de transporte al quemador y el sistema de regulación de flujo en la succión, mediante una persiana y/o la descarga, generalmente utilizando un dámper. Normalmente, la presión requerida en el quemador representa 2/3 de la presión total, correspondiendo 1/6 a la válvula de regulación y 1/6 al circuito de transporte.. Las leyes de los ventiladores permiten asumir el comportamiento del sistema cuando se modifican los parámetros de diseño y características del fluido. Siendo: N = La Ley Velocidad Q= Caudal D= Diámetro d= Densidad del fluido H= Presión estática P= Potencia del motor Para el mismo ventilador, manipulando el mismo gas (D y d constantes), N variables: Q es proporcional a la velocidad, N 1 H es proporcional a la velocidad al cuadrado, H 2 P es proporcional a la Potencia al cubo, P 3 La Ley de Densidad Para el mismo ventilador, operando a la misma velocidad, manipulando gases diferentes (D y N constantes, d variable): Figura 6 Curvas típicas de diseño de ventiladores Q es el mismo H (en unidades de presión) es proporcional a la densidad H/d (carga en pies de fluido) es la misma P es proporcional a la Densidad

9 La Ley de Similaridad Ventiladores similares operando a la misma velocidad, manipulando el mismo gas ( d y DN son constantes): 2.1 Influencia de la altura sobre la Operación de Calderos Pirotubulares Q s proporcional a D 2 H ( en unidades de presión) es la misma P es proporcional a D 2 Como un ejemplo de la aplicación de estas leyes, podemos comprobar que no resulta conveniente aplicar convertidores de frecuencia para operar ventiladores en sistemas de combustión, porque el caudal varía proporcionalmente con las RPM, pero la presión estática varía al cuadrado. Al disminuir la velocidad para regular el caudal de aire en llama baja, el impulso disminuirá al cuadrado, con lo cual la llama se desarma, aunque permita ahorrar energía, al disminuir la potencia absorbida por el motor al cubo. En un caldero pirotubular la capacidad de producción de calor depende fundamentalmente del suministro de masa de aire para la combustión y la capacidad para circular y extraer los gases de combustión. Generalmente el quemador aporta todo el aire de combustión y el tiro forzado suficiente para desplazar los gases hasta la base de la chimenea, donde se regula el tiro con el dámper y se elimina los gases con el tiro natural. Al operar un caldero normal en altura se afectan los siguientes factores : 2. COMBUSTIÓN EN ALTURA El desarrollo de la tecnología de la combustión ha sido efectuado para condiciones normales, desconociendo la notable variación de características que reviste la combustión en altura. En realidad la modificación de condiciones operativas origina en la variación de las características del aire, porque el combustible sólido y líquido se afecta muy poco, y los gases se manejan a presiones ajenas a la atmósfera, por distribuirse y utilizarse en sistemas y circuitos aislados. El efecto de la altura sobre las características del aire ya ha sido establecido y se han determinado las acciones que permiten compensar la deficiencia del aire en altura, para no afectar la calidad de combustión en equipos diseñados para operar en condiciones de presión y temperatura de aire normales. En este punto analizaremos su efecto sobre las condiciones que se presentan en los sistemas de combustión interna y externa en plantas industriales ubicadas por encima de 1000 metr0os sobre el nivel del mar.. La capacidad del caldero quedará limitada por la disminución de masa de oxígeno para la combustión, determinando una disminución de la capacidad real del caldero para generación de vapor. Por ejemplo: Un caldero de 300 HP tiene una capacidad nominal de generación de vapor de 5000 Kg/h; instalado a 3000 m.s.n.m de altura solamente podrá producir 3250 Kg/h, resultando equivalente a un caldero de 200 BHP, desde el punto de vista del defecto de aire como comburente. La disminución del flujo másico de aire para proporcionar el impulso necesario para mezcla y desplazamiento de gases podría ser compensado parcialmente por la mayor velocidad de ingreso del aire, solamente si el ventilador tiene la capacidad (presión estática en la descarga), para compensar la caída de presión consecuente, de lo contrario, también podría limitar la producción de calor y vapor en un porcentaje adicional. Para compensar el fenómeno de altura tendría que reemplazarse el ventilador por otro de mayor caudal y presión, probablemente un turbo soplador ( mbar), pero no podría mantenerse las condiciones de eficiencia debido a la aceleración del paso de los gases a través de la zona convectiva.

10 La eficiencia del caldero podría afectarse en mayor proporción cuando se utilice combustibles difíciles de quemar en los cuales resulte fundamental la calidad de mezcla. Cuando la forma de atomización depende del aire atmosférico la operación podría resultar imposible de optimizar por no poderse conseguir una atomización perfecta Los fabricantes de equipo pretenden compensar las deficiencias del aire en altura vendiendo equipos de mayor capacidad, obteniendo mayores beneficios económicos. La adecuada selección de ventiladores con suficiente capacidad para compensar la disminución de presión en altura y/o la modificación de los existentes, resultará suficiente para alcanzar similares condiciones operativas que en condiciones normales. 2.2 Influencia de la altura sobre la Operación de Calderos Acuotubulares La compensación del aporte de mayor volumen de aire y/o incremento de presión podría aumentar la velocidad de circulación de gases, afectando la eficiencia del sistema y poniendo en riesgo los tubos del economizador en casos extremos. En calderos acuotubulares la complicación del trabajo del quemador y la formación de llama puede también complicarse, pudiendo afectar la integridad de los tubos en caso de ancharse o alargarse la llama, ocasionando el impacto de llama sobre tubos o estructuras metálicas y/o refractarias dentro del caldero. La misma compensación anotada para calderos pirotubulares y el asegurarse de que el quemador tenga capacidad para formar llama cónica hueca, resultarán suficientes para optimizar el sistema. 2.3 Influencia de la altura sobre la Operación de Hornos de Proceso En el caso de hornos de procesos, la influencia de la altura dependerá del tipo de quemador empleado. La sustitución de un soplador por un ventilador puede compensar la deficiencia de masa, incrementando la presión de suministro, pudiendo modificarse el diseño del quemador que determina la forma de llama : Potencia Específica y Swirl. En Calderos Acuotubulares el problema químico sería similar, dependiendo la extracción de gases del sistema de circulación (forzado o inducido). En este caso también podría afectarse la transferencia de calor por radiación si disminuye la temperatura de llama, lo que podría suceder por falta de intensidad de mezcla. Respecto a la calidad de transferencia de calor también se vería afectada por el mayor volumen de gases inicial, resultando necesario incrementar la succión para compensar el aumento de presión en el hogar. Debe tomarse en cuenta que en un caldero pirotubular el 80-85% se transfiere por convección, mientras que en acuotubulares la proporción de calor transferido por radiación aumenta proporcionalmente con su capacidad hasta llegar a un 85 %. Un caldero acuotubular de 50 TM/hr transfiere 50/50 % de cada uno de los tipos de transferencia de calor. Cuando el quemador es del tipo de atomización por aire a baja presión, el problema resulta muy grave, porque la deficiencia de masa y consiguientemente de impulso resultará insuficiente para conseguir la atomización perfecta que resulta necesaria para conseguir atomización completa con combustibles líquidos. Un caso típico es el del quemador Hauck, que utiliza el aire del ventilador para atomizar combustibles líquidos (Figura 7). A la deficiencia de aire de atomización se le agrega la insuficiencia de masa de oxígeno para la combustión y falta de impulso para desplazamiento de los gases quemados y la operación del quemador Hauck en altura resulta muy deficiente. Figura 7 Quemador de atomización y formación de llama con aire a baja presión, inadecuado para operar en altura.

11 Para compensar tales deficiencias resulta imprescindible sustituir el ventilador por un turbo ventilador que proporcione toda la masa de aire e impulso requeridos. Adicionalmente y en forma adecuada para cada proceso, se debe efectuar las modificaciones que resulten necesarias el el circuito de gases y transferencia de calor. 2.4 Influencia de la altura sobre la Operación de Motores Endotérmicos Consiste en inyectar oxígeno a la salida del ventilador, efectuando la dosificacion en forma másica. Tomando en cuenta que la combustión con oxígeno representa tener una temperatura de llama de C (adiabática), al disponer de la posibilidad de controlar la temperatura de llama que más convenga para cada caso, e incluso variar el flujo para cada fase del proceso, se puede instalar un sistema de regulación automático. Como un ejemplo, a 2350 metros de atura, el contenido másico del aire atmosférico será de 235 gr/m 3, para disponer de un comburente normal, se tendría que adicionar la msa de oxígeno necesario para tener una mezcla con 23/ en masa. Inyección directa de oxígeno en la llama Los motores de combustión interna se afectan con la altura en la medida que disminuye la presión de admisión, pero compensando este factor mediante un sistema de turbo compensación, el desarrollo interno de la combustión resulta similar o mejor al que se consigue en condiciones atmosféricas normales. Los equipos de uso más generalizado de esta clase son los motores Diesel y las turbinas de gas. En los motores Diesel la influencia de la altura se manifiesta por efecto de la disminución de la presión y la densidad, debiendo compensar tales deficiencias con turbo compresores. En turbinas, las deficiencias de altura deben ser compensadas en la capacidad de los compresores de aire, para asegurar que la masa que impacta los álabes resulte similar a la prevista para su operación en la consta. En esta técnica se utiliza la inyección a alta velocidad de oxígeno en el cuerpo de la llama, con el propósito de pueden conseguir una elevación de temperatura de la misma, favoreciendo la transferencia de calor por radiación. En la práctica se confrontan dos grandes in convenientes: Se quema el tubo de oxígeno, al ser expuesto a las temperaturas del hogar; se produce convección en la llama al producirse zonas calientes de llama en la zona de inyección, lo cual podría producir una desviación de llama, en algunos casos peligrosa. Empleo de un quemador auxiliar oxi-fuel Los quemadores oxi-fuel inyectan una llama de alta temperatura en el cuerpo de la llama principal, confrontando los problemas de alta radiación a las zonas circundantes y la tendencia a la retrollama. En la Figura 8 se muestran los sistemas que se emplean con oxigeno. 2.5 Enriquecimiento del aire con oxígeno En las funciones del aire en altura y en procesos que requieren elevadas temperaturas de operación, se puede justificar el enriquecimiento de aire con oxígeno para normalizar su comportamiento o elevar la temperatura de llama para conseguir mayores velocidades de calentamiento y menores tiempos de fusión. El enriquecimiento del aire se puede efectuar mediante los siguientes procedimientos: Enriquecimiento general del aire de combustión Figura 8

12 3. CONCLUSIONES 3.1 Aplicando la tecnología adecuada, no existe justificación para que los proveedores pretendan justificar menores potencias y eficiencias en máquinas térmicas cuando operan por encima de 1000 m.s.n.m. 3.2 La implementación de proyectos de optimización de la combustión y el rendimiento de máquinas térmicas en altura, representa una inversión de alta rentabilidad para las empresas mineras. 3.3 Para conseguir y mantener la optimización de la combustión y el rendimiento de máquinas térmicas en altura, resulta prioritario capacitar al personal de planta en esta nueva tecnología y la eficiente gestión energética en altura. Referencias Todos los libros y artículos técnicos publicados en la web La selección equivocada del tipo de quemador para sus hornos a 3800 s.n.m en el Complejo Metalúrgico más importante del mundo (Cerro de Pasco, Centromin Perú y Doe Run sucesivamente) determinó que se opere ineficientemente durante 70 años y que La Oroya se convierta en la ciudad mas contaminada del mundo

13

OPTIMIZACIÓN DE LA COMBUSTIÓN EN ALTURA Curso Teórico Práctico

OPTIMIZACIÓN DE LA COMBUSTIÓN EN ALTURA Curso Teórico Práctico OPTIMIZACIÓN DE LA COMBUSTIÓN EN ALTURA Curso Teórico Práctico PRESENTACIÓN En el desarrollo de la Tecnología de la Combustión del Siglo XX se han cometido muchos errores y se ha orientado hacia intereses

Más detalles

Guía Teórica Experiencia Motor Stirling

Guía Teórica Experiencia Motor Stirling Universidad de Chile Escuela de Verano 2009 Curso de Energía Renovable Guía Teórica Experiencia Motor Stirling Escrito por: Diego Huarapil Enero 2009 Introducción El Motor Stirling es un motor térmico,

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO AHORRO DE ENERÍA EN UNA CALDERA UTILIZANDO ECONOMIZADORES Javier Armijo C., ilberto Salas C. Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos Resumen En el presente trabajo

Más detalles

Economizador de consumo Manual de instrucciones e instalación

Economizador de consumo Manual de instrucciones e instalación Economizador de consumo 500450-00 Manual de instrucciones e instalación Economizador de consumo Aplicable a todos los modelos de calderas murales Diva F (tiro forzado) Fácil instalación Económico Ecológico

Más detalles

Termodinámica y. transmisión de calor

Termodinámica y. transmisión de calor UF0565 Eficiencia energética en las instalaciones de calefacción y ACS en los edificios Termodinámica y 1 transmisión de calor Qué? Para poder cumplir correctamente con la eficiencia energética en este

Más detalles

CAUSA EFECTO EN OPERACIÓN Y MANTENIMIENTO DE CALDERAS

CAUSA EFECTO EN OPERACIÓN Y MANTENIMIENTO DE CALDERAS 2015 CAUSA EFECTO EN OPERACIÓN Y MANTENIMIENTO DE CALDERAS Alejandro Palacios Rodrigo Sencillez para un mundo complejo [Escriba aquí] ROSMANN INGENIERÍA, SOFTWARE Y MANTENIMIENTO INDUSTRIAL S.L. 1-4-2015

Más detalles

Se instalan válvulas reductoras de presión por: Necesidad. Presión de diseño del equipo inferior a la presión disponible

Se instalan válvulas reductoras de presión por: Necesidad. Presión de diseño del equipo inferior a la presión disponible Reducción de presión Se instalan válvulas reductoras de presión por: Necesidad Presión de diseño del equipo inferior a la presión disponible Eficacia Mejora la calidad del vapor Aumenta la vida de los

Más detalles

Economizador de Consumo

Economizador de Consumo www.castillasozzani.com.ar Ecológico Reduce la presencia de contaminantes en los gases de escape Económico El costo de adquisición se amortiza en muy poco tiempo Fácil instalación Sólo tiene que sustituir

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial

Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial Tratamiento de Residuos Tema 5 Tratamientos térmicos EUETI Escola Universitaria de Enxeñería Técnica Industrial INCINERACIÓN DE RESIDUOS Definición: Es el procesamiento térmico de los residuos sólidos

Más detalles

El tubo De Vénturi. Introducción

El tubo De Vénturi. Introducción El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9562 EQUIPOS E INSTALACIONES TÉRMICAS E HIDRAULICAS TOPICO II NIVEL 05 EXPERIENCIA E-952 TURBINA

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

Shell Térmico Oil B. Aceite para transferencia térmica

Shell Térmico Oil B. Aceite para transferencia térmica Shell Térmico B es un aceite mineral puro de baja viscosidad, baja tensión de vapor y alta resistencia a la oxidación desarrollado para transferencia de calor ya sea en sistemas de calefacción cerrados

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

GAS NATURAL ALTERNATIVO (GNA) PARA SUSTITUCIÓN DEL GAS NATURAL EN EMERGENCIAS

GAS NATURAL ALTERNATIVO (GNA) PARA SUSTITUCIÓN DEL GAS NATURAL EN EMERGENCIAS GAS NATURAL ALTERNATIVO (GNA) PARA SUSTITUCIÓN DEL GAS NATURAL EN EMERGENCIAS La disponibilidad de gas natural representa una gran ventaja para plantas industriales, pero puede interrumpirse por distintas

Más detalles

EJERCICIOS DE TERMOQUÍMICA

EJERCICIOS DE TERMOQUÍMICA EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos

Más detalles

de aire. Determinar la composicion de la mezcla resultante. Cuál es el porcentaje en exceso de aire, suponiendo conversion completa?

de aire. Determinar la composicion de la mezcla resultante. Cuál es el porcentaje en exceso de aire, suponiendo conversion completa? C A P Í T U L O 2 Dada la importancia que tienen los procesos de combustión en la generación de contaminantes, en este capítulo se han incluido algunos ejercicios relacionados con la combustión estequiométrica.

Más detalles

Quemadores. Ahorro energético con seguridad. Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico

Quemadores. Ahorro energético con seguridad. Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico Quemadores Ahorro energético con seguridad Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico COMBUSTIÓN: Equilibrio rendimiento / emisiones Rendimiento

Más detalles

Elimina la corrosión Reduce el consumo del combustible

Elimina la corrosión Reduce el consumo del combustible Power plant optimisation made in Germany PENTOMAG Optimización de la combustión Elimina la corrosión Reduce el consumo del combustible Aumenta la eficiencia Productos de PentoMag son aditivos de aceite

Más detalles

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.

Más detalles

Líder. Donaldson, Líder en la Fabricación de Sistemas de Filtración de Aire. tecnología

Líder. Donaldson, Líder en la Fabricación de Sistemas de Filtración de Aire. tecnología Fuente: Donaldson Latinoamérica Gas Turbine Systems. Líder Donaldson, Líder en la Fabricación de Sistemas de Filtración de Aire Cada segundo nacen en el mundo ocho niños que requerirán un suministro energético

Más detalles

EFICIENCIA EN PLANTAS DE TÉRMICAS

EFICIENCIA EN PLANTAS DE TÉRMICAS EFICIENCIA EN PLANTAS DE TÉRMICAS En el presente artículo se describen las alternativas de mejoramiento de eficiencia y reducción de costos, asociados a la generación de vapor. 1. Antecedentes Con el fin

Más detalles

Cómo leer la curva característica de una bomba?

Cómo leer la curva característica de una bomba? Cómo leer la curva característica de una bomba? Este boletín trata sobre la lectura y la comprensión de las curvas de funcionamiento de una bomba centrífuga. Se consideran tres tipos de curvas: bomba autocebante

Más detalles

Congeneración Aplicada a Generadores

Congeneración Aplicada a Generadores Congeneración Aplicada a Generadores En el presente artículo, se analizan las interesantes posibilidades de implementar sistemas de cogeneración, que poseen todas aquellas empresas que cuenten con generadores

Más detalles

TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS. Técnica Diseñada para la regulación dela temperatura

TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS. Técnica Diseñada para la regulación dela temperatura TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS Técnica Diseñada para la regulación dela temperatura DESCRIPCIÓN Las torres de enfriamiento son equipos diseñados para disminuir la temperatura

Más detalles

NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS

NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS Se denomina NPSH (Net Positive Suction Head) o ANPA (Altura Neta Positiva de Aspiración) a la diferencia entre la presión

Más detalles

PROBLEMAS DE NAVIDAD 2001

PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magnitudes mecánicas Introducción Sensores potenciométricos Galgas extensiométricas Sensores piezoeléctricos Sensores capacitivos Sensores inductivos Sensores basados en efecto Hall Sensores

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

Sistemas de refrigeración: compresión y absorción

Sistemas de refrigeración: compresión y absorción Sistemas de refrigeración: compresión y absorción La refrigeración es el proceso de producir frío, en realidad extraer calor. Para producir frío lo que se hace es transportar calor de un lugar a otro.

Más detalles

CAPÍTULO ONCE PRÁCTICA DE LABORATORIO DE CIENCIAS TÉRMICAS.

CAPÍTULO ONCE PRÁCTICA DE LABORATORIO DE CIENCIAS TÉRMICAS. CAPÍTULO ONCE PRÁCTICA DE LABORATORIO DE CIENCIAS TÉRMICAS. UNIVERSIDAD DE LAS AMERICA-PUEBLA DEPARTAMENTO DE INGENIERÍA MECÁNICA LABORATORIO DE CIENCIAS TÉRMICAS IM 407 PRÁCTICA GENERADOR DE VAPOR OBJETIVO

Más detalles

Conceptos de combustión y combustibles

Conceptos de combustión y combustibles Jornada sobre CALDERAS EFICIENTES EN PROCESOS INDUSTRIALES Conceptos de combustión y combustibles José M. Domínguez Cerdeira Prescripción - Promoción del Gas Gas Natural Distribución SDG, S.A. Madrid,

Más detalles

El material que sale del molino tubular se separa en un clasificador de aire, del que el material grueso se manda otra vez al molino.

El material que sale del molino tubular se separa en un clasificador de aire, del que el material grueso se manda otra vez al molino. 6.- Sistemas de molienda. Instalaciones con prensa de cilindros. 6.1.- Introducción. En la actualidad se ofrecen prensas de cilindros autónomas o se combinan con molinos de bolas. Los distintos modos de

Más detalles

Cañón neumático CNU-M. Solución idónea para desobstrucción de silos. Flujo continuo del material. Aprovechamiento de toda la capacidad del silo.

Cañón neumático CNU-M. Solución idónea para desobstrucción de silos. Flujo continuo del material. Aprovechamiento de toda la capacidad del silo. Cañón neumático Solución idónea para desobstrucción de silos. Flujo continuo del material. Aprovechamiento de toda la capacidad del silo. Membrana de disparo como única pieza móvil. Sencillo, eficaz, silencioso

Más detalles

Conversión de Calderas para Operar con Gas Natural

Conversión de Calderas para Operar con Gas Natural Conversión de Calderas para Operar con Gas Natural En el presente artículo, se analizan las evaluaciones técnicas y los trabajos, que deben ser llevados a cabo para poder realizar una conversión segura

Más detalles

TECNOLOGÍA DE SECADO DE LECHE

TECNOLOGÍA DE SECADO DE LECHE INFORME TÉCNICO TECNOLOGÍA DE SECADO DE LECHE 1 tecnología de secado de leche El descubrimiento de secado por spray constituyó un avance sumamente importante en la producción de deshidratados sensibles

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica MDSS/vcp

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica MDSS/vcp ASIGNATURA: LABORATORIO GENERAL II 15030 EXPERIENCIA: C226 BALANCE TERMICO DE UNA CALDERA CON SISTEMAS INTEGRADOS CARRERA: INGENIERIA CIVIL EN MECANICA NIVEL: 11 OBJETIVO GENERAL: Observar en terreno la

Más detalles

SISTEMAS DE PROTECCION CONTRA INCENDIOS EN AEROGENERADORES. PONENTE: D. Antonio Tortosa

SISTEMAS DE PROTECCION CONTRA INCENDIOS EN AEROGENERADORES. PONENTE: D. Antonio Tortosa SISTEMAS DE PROTECCION CONTRA INCENDIOS EN AEROGENERADORES PONENTE: D. Antonio Tortosa Quienes somos y que hacemos Una Empresa con 30 años de antigüedad en el sector Instaladora y Mantenedora de Protección

Más detalles

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste

Más detalles

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR:

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: ciclo doble / simple etapa ORC con un innovador motor rotativo termovolumetrico patentada de alta eficiencia 0.Resumen Se presentan algunos resultados

Más detalles

MEDIOS DE CONTROL DE EMISIÓN DE CONTAMINANTES

MEDIOS DE CONTROL DE EMISIÓN DE CONTAMINANTES CAPÍTULO 11 MEDIOS DE CONTROL DE EMISIÓN DE CONTAMINANTES Fuente: National Geographic - Noviembre 2000 INTRODUCCIÓN Por lo general los contaminantes del aire aún en su fuente de emisión, por ejemplo en

Más detalles

Contenidos mínimos Física y Química 3º ESO

Contenidos mínimos Física y Química 3º ESO Contenidos mínimos Física y Química 3º ESO EL TRABAJO CIENTÍFICO Etapas del método científico. Magnitudes y unidades. Cambio de unidades. Sistema Internacional de Unidades (SI). Representación de gráficas

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

FUNDICION A PRESION. También llamado: Proceso de fundición por inyección

FUNDICION A PRESION. También llamado: Proceso de fundición por inyección FUNDICION A PRESION También llamado: FUNDICION A PRESION Proceso de fundición por inyección Procedimiento i En este proceso se inyecta a alta velocidad el metal líquido en el molde. La velocidad está alrededor

Más detalles

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos

Más detalles

Propiedades físicas de los biocombustibles. Importancia y métodos de determinación

Propiedades físicas de los biocombustibles. Importancia y métodos de determinación Índice Propiedades físicas de los biocombustibles. Importancia y métodos de Fátima Arroyo Torralvo AICIA 2. Importancia métodos de de los Revisión: Normalización de de calidad Índice Propiedades físico-mecánicas

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS. M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015

CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS. M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015 CALDERAS: CARACTERÍSTICAS Y DATOS TÉCNICOS M. En C. José Antonio González Moreno Máquinas Térmicas CETI Tonalá Septiembre del 2015 INTRODUCCIÓN: Una caldera es una máquina o dispositivo de ingeniería que

Más detalles

DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA

DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERÍA QUÍMICA PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA TERMODINÁMICA QUÍMICA CLAVE DE MATERIA DEPARTAMENTO

Más detalles

MECÁNICA DE FLUIDOS. Docente: Ing. Alba Díaz Corrales

MECÁNICA DE FLUIDOS. Docente: Ing. Alba Díaz Corrales MECÁNICA DE FLUIDOS Docente: Ing. Alba Díaz Corrales Fecha: 1 de septiembre 2010 Mecánica de Fluidos Tipo de asignatura: Básica Específica Total de horas semanales: 6 Total de horas semestrales: 84 Asignatura

Más detalles

Otro mundo. sí es posible.

Otro mundo. sí es posible. Otro mundo sí es posible. Menos es más. Menos emisiones, un ambiente más limpio. Menos contaminación, más salud para las personas. Menor costo energético, una empresa más competitiva. Sé parte de la solución.

Más detalles

Una gama de eficaces refrigeradores posteriores y separadores de humedad adecuados para su compresor

Una gama de eficaces refrigeradores posteriores y separadores de humedad adecuados para su compresor Una gama de eficaces refrigeradores posteriores y separadores de humedad adecuados para su compresor Atlas Copco ofrece una gama de refrigeradores posteriores y separadores de humedad que combinan una

Más detalles

FÍSICA Y QUÍMICA 4º ESO. MCU. Características. Magnitudes angulares. Ley del movimiento.

FÍSICA Y QUÍMICA 4º ESO. MCU. Características. Magnitudes angulares. Ley del movimiento. FÍSICA Y QUÍMICA 4º ESO Unidad 1. El movimiento Sistema de referencia. o Carácter relativo del movimiento. Conceptos básicos para describir el movimiento. o Trayectoria, posición, desplazamiento. o Clasificación

Más detalles

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS NIVEL: TECNICO MEDIO INGRESOS A LOS CURSOS ESCOLARES: 2008 2009 Y

Más detalles

Sistemas de sobrealimentación del motor

Sistemas de sobrealimentación del motor Sistemas de sobrealimentación del motor 1. Que es el turbocompresor? a) Un elemento que facilita la lubricación interna del motor. b) Un elemento que permite mejorar el llenado de la cámara de combustión

Más detalles

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades.

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. UNIDAD 5 TERMODINÁMICA - HIDRAULICA TERMODINÁMICA La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. ENERGIA TERMICA: Todos los cuerpos se componen de pequeñas

Más detalles

Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández

Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández BALANCE ENERGÉTICO EN CALDERAS 1 Introducción 2 Funcionamiento de una caldera 3 Pérdidas energéticas en calderas 4 Balance energético en una caldera. Rendimiento energético 5 Ejercicios Pedro G. Vicente

Más detalles

VA P O P R E X H V P. Generadores de Vapor a media presión (12-15 bar) DIVISION CALDERAS INDUSTRIALES UNI EN ISO 3834

VA P O P R E X H V P. Generadores de Vapor a media presión (12-15 bar) DIVISION CALDERAS INDUSTRIALES UNI EN ISO 3834 Generadores de Vapor a media presión (12-15 bar) Requisiti di qualità per la saldatura certificati UNI EN ISO 3834 DIVISION CALDERAS INDUSTRIALES La caldera VAPOPREX HVP es un generador de vapor saturado

Más detalles

Existen tres formas de transferencia metálica: 1. Transferencia Spray o de Rocío. 2. Transferencia Globular. 3. Transferencia por Corto-Circuito.

Existen tres formas de transferencia metálica: 1. Transferencia Spray o de Rocío. 2. Transferencia Globular. 3. Transferencia por Corto-Circuito. SISTEMA MIG SÓLIDO Descripción del proceso El sistema MIG fue introducido a fines del año 1940. El proceso es definido por la AWS como un proceso de soldadura al arco, donde la fusión se produce por calentamiento

Más detalles

Módulo 2: Termodinámica. mica Temperatura y calor

Módulo 2: Termodinámica. mica Temperatura y calor Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles

FORMACIÓN EN VÁLVULAS DE CONTROL: CRITERIOS DE SELECCIÓN Y DISEÑOS SEGÚN CONDICIONES DE PROCESO

FORMACIÓN EN VÁLVULAS DE CONTROL: CRITERIOS DE SELECCIÓN Y DISEÑOS SEGÚN CONDICIONES DE PROCESO FORMACIÓN EN VÁLVULAS DE CONTROL: CRITERIOS DE SELECCIÓN Y DISEÑOS SEGÚN CONDICIONES DE PROCESO. Alberto Argilés Ringo Válvulas S.L. 1.- Introducción La válvula de control manipula el fluido que pasa por

Más detalles

QUEMADORES. Ricardo García San José Ingeniero Industrial (Noviembre 2.001) 01C22 02 QUEMADORES

QUEMADORES. Ricardo García San José Ingeniero Industrial (Noviembre 2.001) 01C22 02 QUEMADORES QUEMADORES Ricardo García San José Ingeniero Industrial (Noviembre 2.001) 01C22 02 QUEMADORES 28/11/a INDICE 1.- INTRODUCCION... 3 2.- QUEMADORES ATMOSFERICOS... 3 3.- QUEMADORES MECANICOS... 5 BIBLIOGRAFIA...

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

Control de temperatura, vapor sobrecalentado con atemperadores.

Control de temperatura, vapor sobrecalentado con atemperadores. Control de temperatura, vapor sobrecalentado con atemperadores. Contenido Pág. 1. Razones para optimizar el control de atemperado. AT-1.0 2. Factores que ocasionan cambios en la temperatura del vapor.

Más detalles

Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO

Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO Sistemas de Control Hidráulico y Neumático. Guía 2 1 Tema: UTILIZACIÓN DE SOFTWARE PARA DISEÑO Y SIMULACIÓN DE CIRCUITOS NEUMÁTICOS.

Más detalles

FORMACION DE HIELO EN EL CARBURADOR

FORMACION DE HIELO EN EL CARBURADOR FORMACION DE HIELO EN EL CARBURADOR Los motores con aspiración normal y carburador pueden, bajo ciertas condiciones de humedad, temperatura y condiciones de operación experimentar una formación de hielo.

Más detalles

Condensación por aire Serie R Enfriadora con compresor de tornillo

Condensación por aire Serie R Enfriadora con compresor de tornillo Condensación por aire Serie R Enfriadora con compresor de tornillo Modelo RTAD 085-100-115-125-145-150-165-180 270 a 630 kw (50 Hz) Versión con recuperación de calor Unidades fabricadas para los mercados

Más detalles

ENERGÍAS ALTERNATIVAS. SOLAR Y EÓLICA

ENERGÍAS ALTERNATIVAS. SOLAR Y EÓLICA Objetivos del Curso: SOLAR TÉRMICA: - Estudiar los principios fundamentales de funcionamiento de un sistema de aprovechamiento de la energía solar térmica. - Determinar los elementos integrantes de una

Más detalles

FWESA. Control Calderas de Vapor

FWESA. Control Calderas de Vapor FWESA 9/Abril/2008 Control Calderas de Vapor Rubén Soriano Una caldera... Control Calderas de Vapor Generalidades Qué es?, qué hace? Cómo funciona?. Qué componentes tiene?. Para que sirve?. 2 Generalidades

Más detalles

VENTILACIÓN. Ventajas de la Ventilación:

VENTILACIÓN. Ventajas de la Ventilación: VENTILACIÓN Definición: Se llama Ventilación, en un incendio, a la remoción sistemática de aire y gases calientes de una estructura siniestrada, seguida por el abastecimiento de aire fresco, acción que

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

Gama de productos. UBERTA ENERGÍA, S. L. López Bravo, 87 - nave B BURGOS Tel. y fax:

Gama de productos. UBERTA ENERGÍA, S. L. López Bravo, 87 - nave B BURGOS Tel. y fax: Gama de productos Con la garantía: DATOS DE FUNCIONAMIENTO MODELO LONGITUD CAPACIDAD TÉRMICA CONSUMO POR HORA PRESIÓN DE ALIMENTACIÓN DE GAS (kw) GN (m 3 /h) GLP (Kg/h) GN (mbar) GLP (mbar) MSU 3 M 3 15,1

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

BALANCE ENERGÉTICO CLIMATIZACIÓN

BALANCE ENERGÉTICO CLIMATIZACIÓN BALANCE ENERGÉTICO EN INSTALACIONES DE CLIMATIZACIÓN LAS CARGAS INTERNAS CARGA POR ILUMINACIÓN La iluminación de un local a acondicionar constituye una generación interna de calor sensible que debe ser

Más detalles

Informe Final OT Nº Certificación de prueba controlada para economizador de combustible NEOPLUS 18FA

Informe Final OT Nº Certificación de prueba controlada para economizador de combustible NEOPLUS 18FA Informe Final OT Nº 2006-025-1 Certificación de prueba controlada para economizador de combustible NEOPLUS 18FA PARA: DE: Sr. Jaime Baytelman E-mail: jaimebaytelman@gmail.com Oscar Farías Fuentes Jefe

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

Ingeniería. Instrumentos de Procesos Industriales. Instrumentos de medición de presión. Introducción

Ingeniería. Instrumentos de Procesos Industriales. Instrumentos de medición de presión. Introducción Ingeniería Instrumentos de Procesos Industriales Instrumentos de medición de presión Introducción Junto con la temperatura, la presión es la variable más comúnmente medida en plantas de proceso. Su persistencia

Más detalles

Operaciones Básicas de Transferencia de Materia Problemas Tema 6

Operaciones Básicas de Transferencia de Materia Problemas Tema 6 1º.- En una torre de relleno, se va a absorber acetona de una corriente de aire. La sección de la torre es de 0.186 m 2, la temperatura de trabajo es 293 K y la presión total es de 101.32 kpa. La corriente

Más detalles

REGULADORES PARA GASES PUROS

REGULADORES PARA GASES PUROS REGULADORES PARA GASES PUROS PUREZA TOTAL NUEVA GAMA DE MANORREDUCTORES PARA GASES PUROS Gala Gar amplia su gama de productos para regulación de gas con un catálogo de manorreductores para gases especiales,

Más detalles

GAS Cálculo de Cañerías

GAS Cálculo de Cañerías GAS Cálculo de Cañerías El cálculo de las cañerías se podrá efectuar mediante el empleo de las Tablas 3 y 4 según corresponda para gas natural o gas envasado. Éstas tablas dan el caudal en función del

Más detalles

POR QUE COMPRAR UN CALENTADOR SOLAR??

POR QUE COMPRAR UN CALENTADOR SOLAR?? POR QUE COMPRAR UN CALENTADOR SOLAR?? El calentador solar por termosifón es la manera más práctica y económica de obtener agua caliente para el hogar. La sencillez de su diseño, su durabilidad y la eficacia

Más detalles

CALOR Y TEMPERATURA CALOR

CALOR Y TEMPERATURA CALOR CALOR Y TEMPERATURA El calor y la temperatura no son sinónimos, podemos decir que están estrictamente relacionados ya que la temperatura puede determinarse por la cantidad de calor acumulado. El calor

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles

Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida. Nociones sobre calor y temperatura. Escalas de temperatura.

Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida. Nociones sobre calor y temperatura. Escalas de temperatura. Unidad 1: Conceptos Básicos Longitud. Unidades de medida. Superficie. Unidades de medida. Volumen. Unidades de medida Peso específico. Unidades de medida. Presión. Unidades de medida. Elementos de medición

Más detalles

TECHO BIOSOLAR. Fundación Mujeres y Tecnología ENIAC. Agustín V 1

TECHO BIOSOLAR. Fundación Mujeres y Tecnología ENIAC. Agustín V 1 TECHO BIOSOLAR Agustín V 1 TECHO BIOSOLAR. CONTENIDOS 1. Principios teóricos. 2. Planificación de los techos Biosolares. 3. Implementación e instalación. 4. Mantenimiento y cuidado. Agustín V 2 SINERGIA

Más detalles

AUDENIA Auditoría de la energía y el ahorro _ c/ Mallorca 27, 2º-1º Barcelona _ t _ AUDITORIA

AUDENIA Auditoría de la energía y el ahorro _ c/ Mallorca 27, 2º-1º Barcelona _ t _ AUDITORIA 4 AUDITORÍA 1. INSTALACIONES Los sistemas técnicos eléctricos y térmicos son objeto del estudio energético Se realiza un inventario de las instalaciones y equipos principales La auditoría comprende el

Más detalles

INSTALACION DE ENFRIAMIENTO PARA ACEITE

INSTALACION DE ENFRIAMIENTO PARA ACEITE INSTALACION DE ENFRIAMIENTO PARA ACEITE INTECAMBIADOR DE CALOR AIRE/ACEITE AGUA/ACEITE EL PRIMER INTERCAMBIADOR DE CALOR DISEÑADO Y FABRICADO PARA EL ENFRIAMIENTO DEL ACEITE EN LA INDUSTRIA CERAMICA INSTALACION

Más detalles

DISEÑO DE SISTEMAS DE COGENERACIÓN

DISEÑO DE SISTEMAS DE COGENERACIÓN DISEÑO DE SISTEMAS DE COGENERACIÓN M. I. Liborio Huante Pérez Gerencia de Turbomaquinaria Junio, 2016 1. Que es la cogeneración 2. Diferencias respecto al ciclo convencional 3. Equipos que lo integran

Más detalles

Ventajas de las puertas de madera maciza.

Ventajas de las puertas de madera maciza. Ventajas de las puertas de madera maciza. POR ANDRÉS CÁCERES G. Las puertas macizas tienen muchas ventajas respecto a las puertas huecas, es por esto que está justificado su mayor precio. Su densidad tiene

Más detalles

INNOVACIÓN TECNOLÓGICA

INNOVACIÓN TECNOLÓGICA TIPO DE DOCUMENTO: ÁREA: CÓDIGO: HOJA TÉCNICA. GERENCIA TÉCNICA INNOVACIÓN TECNOLÓGICA PACKING E INTERNALS REVISIÓN FECHA REVISIÓN ELABORADO REVISADO APROBADO 01 Octubre, 2009 Proyectos especiales Ingal

Más detalles

Secado de granos en Silos. El equipo completo está constituido por

Secado de granos en Silos. El equipo completo está constituido por Secado de granos en Silos Cereal Motor Ventilador Quemador (Toneladas) (HP) (Kcal/hora) 30 4 65000 60 7,5 100 90 10 200000 150 20 000 200 25 400000 30 600000 El equipo completo está constituido por Ventilador

Más detalles

LA AUDITORÍA ENERGÉTICA COMO INSTRUMENTO PARA IDENTIFICAR OPORTUNIDADES DE AHORRO

LA AUDITORÍA ENERGÉTICA COMO INSTRUMENTO PARA IDENTIFICAR OPORTUNIDADES DE AHORRO LA AUDITORÍA ENERGÉTICA COMO INSTRUMENTO PARA IDENTIFICAR OPORTUNIDADES DE AHORRO Carlos García Sánchez. Responsable Área Ahorro y Eficiencia Energética Situación sector energía Grandes retos del sector

Más detalles