APUNTES ASTRONOMÍA BÁSICA ECOTURISMO - UNIVERSIDAD ANDRÉS BELLO. Profesor: Jorge Ianiszewski Rojas (2016) COSMOLOGIA: EL UNIVERSO EN EXPANSION

Documentos relacionados
Nuestra galaxia: la Vía Láctea

AST Temario. Distancias Movimientos y tiempos La Radiación Los Planetas Las Estrellas Las Galaxias El Universo

LA ESCALA DEL UNIVERSO

Ayudantía 11. Astronomía FIA Ayudante: Felipe Garrido Goicovic

Estructura del Universo. Expansión de Universo Ley de Hubble Cosmología

COMPONENTES BÁSICOS DEL UNIVERSO

Grupo Ciencias Planetarias Universidad del País Vasco

1. El universo. 2. Las galaxias y las estrellas. 3. El sistema solar. 4. Las constelaciones

VII Olimpiada Nacional de Astronomía y Astronáutica. Evaluación Nivel Enseñanza Básica

CÚMULOS Y GALAXIAS. Las Mega estructuras del Universo

El Universo es todo, sin excepciones.

Andrés Aceña. Cosmología, o... dónde estamos, de dónde venimos y a dó

Astrofísica moderna. En la segunda parte de esta asignatura tratamos la historia de la astronomía en los últimos años.

Origen, evolución y posible destino del Universo, III. Prof. Alejandro García Universidad de los Andes 20/02/2010

Temario. Distancias Movimientos y tiempos La Radiación Los Planetas Las Estrellas Las Galaxias El Universo

Tema 1. Universo y Sistema Solar

EL UNIVERSO Cómo nació el universo

El origen del Universo: Del Big Bang hasta nuestros días. Ángel Serrano Sánchez de León Universidad de Mayores URJC

Ciencias Sociales 5º Primaria Tema 1: El Universo

ORIGEN DEL UNIVERSO. Tipos de partículas elementales (indivisibles): Fermiones. Bosones

Una galaxia es una gigantesca agrupación de estrellas, nebulosas de gas y polvo, y otros astros, que se encuentran unidos debido a la fuerza de

Origen, evolución y posible destino del Universo, II. Prof. Alejandro García Universidad de los Andes

Giran alrededor del sol. - Los cometas son pequeños astros compuestos por polvo, rocas y

EL ORIGEN DEL UNIVERSO

Origen del Universo: La teoría del Big Bang

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL El universo y el sistema solar

Tema 2: El UNIVERSO. Cultura Científica_ curso 2016/2017 Centro de Bachillerato Fomento Fundación

Estándar Anual. Física. Ejercicios PSU. Ciencias Básicas. Guía práctica El universo y el sistema solar GUICES028CB32-A16V1.

Astronomía. Ayudantía 13 Prof. Jorge Cuadra Ayudante: Paulina González

Cosmología y la radiación fósil. Ariel G. Sánchez

MATERIA OSCURA. Motivos de su existencia Distribución Candidatos a materia oscura Formas de medida Conclusiones

9. Evolución Estelar 08 de mayo de 2009

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL El universo y el sistema solar

- Regiones HII: nebulosas de formación estelar, excitadas por estrellas masivas y jóvenes

Nacimiento, vida y muerte de las estrellas

T 2 - La Tierra en el Universo Las Estrellas Evolución estelar

Astronomía. Ayudantía 11 Prof. Jorge Cuadra Ayudante: Paulina González

EL UNIVERSO Y EL SISTEMA SOLAR

Un paseo por el Universo. Rosa Martha Torres y Ramiro Franco Papirolas

Programa curso CFG

Gigante Roja vs Sol. Nebulosas planetarias. Evolución para masa baja (1 M )

Astronomía. Ayudantía 10 Prof. Jorge Cuadra Ayudante: Paulina González

La física del plasma primordial del Universo en los tres primeros minutos: Un reto para la física

Dr. Tabaré Gallardo Departamento de Astronomía Facultad de Ciencias

COSMOS: Una breve introducción al Universo. Aniceto Porcel Rosales SOCIEDAD ASTRONÓMICA GRANADINA

El Origen del Universo

CÓMO PODEMOS SABER LA COMPOSICIÓN DE LAS ESTRELLAS?

Claudio Ptolomeo (90 168) -La Tierra ocupa el centro del universo. -Todos los planetas giran alrededor de la Tierra. -La Tierra no tiene movimiento.

COSMOLOGÍA. Ciencia que estudia al Universo como un sistema físico. / OAC-/Introducción a la cosmología/

La estructura y el origen del Universo

qué hay entre las estrellas? Vía Láctea: en una noche oscura podemos ver miles de estrellas y estructuras extendidas

Cúmulos estelares. Asociados generalmente a regiones HII

VII Olimpiada Nacional de Astronomía y Astronáutica. Evaluación Nivel Enseñanza Media. Prueba de Alternativas

Desde el Big Bang. Dr. Tabaré Gallardo Departamento de Astronomía Instituto de Física Facultad de Ciencias

Cómo se forman los elementos químicos?

Prof. Elba M. Sepúlveda, MA.Ed.

Formación estelar. Gerardo Martínez Avilés. Las estrellas son componentes fundamentales de las estructuras más

UNA BREVE HISTORIA DEL UNIVERSO. M. En C. Dan J. Deras Instituto de Astronomía, UNAM

Las Metamofrosis de la Materia

El Lado Oscuro del Universo

LOS COMPONENTES DEL UNIVERSO. Hecho:Liberto Perez Fuentes. Colegio: N.t.r.a.S.r.a. Del Rosario. Curso:4ºA Primaria. Población:Villacarrillo.

TEMA 1: ORIGEN Y COMPOSICIÓN DEL UNIVERSO

Galaxia espiral Messier 31 (2.5 millones de años luz=775 kpc)

El universo en expansión

3e.2 ) Objetos del universo

Tema: La Tierra y su entorno Eje temático: Física.

Técnico Profesional FÍSICA

Aquí y ahora. Dra. Rosa Martha Torres Clase Astronomía General

La magia de Regiones HII

Por: Sra. Nyurka Castro Unidad: Astronomía Ciencias Terrestres Noveno Grado

Galaxias. Yago Ascasibar. Introducción a la Astronomía Programa Universidad para Mayores (PUMA) UAM, 26/04/2012

Astrofísica " Extragaláctica! INTRODUCCIÓN!

Edwin Hubble ( ) 1953)

Estrellas de Neutrones: en los límites de la Física José A. Pons Departament de Física Aplicada Universitat d Alacant

FIA0111 Temario Completo. Movimientos y tiempos La Radiación Los Planetas Las Estrellas Distancias Las Galaxias El Universo

Introducción: Las galaxias y sus componentes

El Origen y la Evolución del Universo

UN VIAJE DE IDA Y VUELTA ENTRE PARTICULAS Y CUERDAS. Esperanza López Manzanares

Tamaño Galáctico. Sistema Solar. Distancia de la Tierra al Sol = Km. = 8 minutos-luz. Tamaño del Sistema Solar = 5,5 horas-luz

01. EL UNIVERSO Y EL SISTEMA SOLAR. Vamos allá marcianos!

ASTRONOMÍA. Ciencias Terrestres 9no Sandra Vega CBCMR

LAS GALAXIAS Y EL UNIVERSO

Ángeles Díaz Beltrán Dpto. de Física Teórica Universidad Autónoma de Madrid Módulo C15, 3ª Planta, 313 Tfno:

La partícula invisible: El Neutrino

OBSERVACIÓN ASTRONÓMICA 05/08/2016 CÚMULOS GLOBULARES

Las estrellas. Las grandes masas de gases incandescentes

Después del Big Bang, el universo tuvo un periodo en el que fue muy homogéneo

BREVE HISTORIA DEL UNIVERSO

La formacion de deuterio (solo el nucleo)

Cúmulos globulares. (ω Centauri) por José Bosch

El Universo comenzó a formarse hace unos millones de años de acuerdo a la Teoría del BIG-BANG, llamada también Gran Explosión o Tiempo Cero

El universo: teorías y componentes

De Donde Venimos? Lo conocido es finito, lo desconocido, infinito. Desde el punto de vista intelectual estamos en una pequeña isla en medio de un océa

Que son las Galaxias?

Transiciones de Fase en Cosmología

Las supernovas y la expansión del Universo Carlos G. Bornancini

La fauna galáctica y cosmología

El lado oscuro del Universo

FÍSICA COMÚN Y ELECTIVO

Transcripción:

APUNTES ASTRONOMÍA BÁSICA ECOTURISMO - UNIVERSIDAD ANDRÉS BELLO Profesor: Jorge Ianiszewski Rojas (2016) COSMOLOGIA: EL UNIVERSO EN EXPANSION A comienzos del Siglo XX, se discutía si el Universo se limitaba a la Vía Láctea o si nuestra Galaxia era una de muchas en un Universo más extenso. Finalmente una serie de descubrimientos astronómicos, físicos y matemáticos llevaron a la conclusión que nuestro universo es miles de millones de veces más grande que la Vía Láctea; que se encuentra en expansión; y que debió haber tenido un punto de partida muy caliente. (Lamaitre y Gamow). Este modelo explica también la forma como el Universo llegó a tener la abundancia relativa de elementos que vemos: un 74% de hidrógeno, un 24% de helio y un 2% de todo lo demás. Con la ayuda de la Relatividad General y el Principio Cosmológico, que supone que la materia del Universo está distribuida en forma homogénea e isotrópica, visto a gran escala; además de los aportes de la mecánica cuántica, ha sido posible desarrollar un convincente modelo que reproduce la historia del universo "casi" desde el momento de la Gran Explosión. Este modelo sostiene que nuestro universo partió de un punto del tamaño de un protón (10-14 m, la cien mil millonésima parte de un milímetro) y que la materia, el espacio y el tiempo no existían. Lo qué ocurría antes que se desencadenara la Gran Explosión, aun no está al alcance de la física. Veremos que en pequeñas fracciones de segundo pueden pasar muchas cosas: 10-43 seg a 10-35 seg: (Cero coma y 43 ceros antes del uno), diez millones de billonésimas de billonésimas de billonésimas de segundo, después de la explosión (Big Bang): El universo es una minúscula bolita supercaliente, superdura y superdensa en expansión. Al terminar esta era comienzan a separarse la Fuerza Nuclear Fuerte de la Fuerza Electrodébil y de la Gravedad. Comenzaba a contarse el tiempo. La temperatura era de unos 10 32 grados K y la densidad 10 48 g/cm 3. Fue la Era de la Gran Unificación de las fuerzas de la naturaleza. 10-35 seg a 10-32 seg: T = 1x10 27 K. Se produce la rápida inflación del Universo, producto de un estado de alta energía que actúa como antigravedad. En este pequeño intervalo de tiempo el Universo creció en diámetro desde 10-25 mm a unos 30 cm. El universo está lleno de un plasma de cuarks y gluones. Las irregularidades generadas en esta época darán lugar más tarde a las galaxias y otras estructuras. A esta breve época se le llama la Era de la Inflación. 10-32 seg a 10-12 seg: T = 1 TeV. La fuerte interacción de las partículas permite la creación de un gran número de partículas que hoy llamamos exóticas, como bosones W, Z y de Higgs. 10-12 seg a 10-6 seg: T =1x10 15 K, se separa la Fuerza Nuclear Fuerte de la Débil y la Electromagnética y las partículas adquieren masa. El Universo es un plasma de quarks, electrones y otras partículas, que comienza a frenar su velocidad de expansión debido a su masa, bajo la fuerza de gravedad. Fue la Era de los Quarks. 10-6 seg a 1 seg: La temperatura ha descendido a mil billones de grados. Se separa la Fuerza Nuclear Débil de la Electromagnética, el universo es un denso gas de partículas y antipartículas que se aniquilan y crean constantemente; Los quarks se unen en protones y neutrones. Fue la Era de los Hadrones.

1 seg a 3 min: T = 1x10 9 K, La temperatura ha bajado a 5.000 millones de grados ( 1 MeV?) y el universo contenía: protones, neutrones, fotones de radiación gama, electrones, neutrinos, quarks y sus antipartículas. Al haber más de las primeras, la materia triunfa sobre la antimateria, que es aniquilada. El universo continuaba expandiéndose rápidamente. Se combinan las partículas elementales, primero en protones y neutrones, luego éstos entre sí, en parejas de a uno y de a dos, dando origen a los núcleos de hidrógeno y helio ionizados, en una proporción de 76,99% y 23% en medio de una fantástica cantidad de radiación. La alta temperatura y los fotones de alta energía existentes impedían que los electrones se combinaran con estos núcleos para formar átomos. Fue la llamada Era de la Nucleosíntesis. 1 min a 380.000 años: El Universo es dominado por fotones, electrones y núcleos atómicos. 16 minutos después: 4x10 8 K, el rápido descenso de la temperatura y el aumento de la distancia entre las partículas, interrumpe la primera nucleosíntesis. El mundo debería esperar a la formación de las primeras estrellas, para conocer elementos más pesados que el hidrógeno y el helio. 380.000 años después: La temperatura había bajado hasta los 3.000 K, los electrones se unen a los núcleos de H + y He + y se forman los primeros átomos, se liberan los fotones, haciendo visible la materia. El universo era una nube de hidrógeno y helio muy densa y brillante donde comienzan a desarrollarse irregularidades. En este momento se libera la radiación de fondo, que hoy día detectamos en todas las direcciones del espacio, con una temperatura de 2,73 K. Comenzaba la Era de los Átomos, que dura hasta hoy. 100 millones de años después: La temperatura ha bajado a algunos centenares de grados y el Universo está formado por densas nubes de gases de hidrógeno y helio neutros. Es la Edad Oscura. 200 millones de años después: Comienzan a formarse las primeras estrellas en las nubes de hidrógeno y helio que se mueven en las zonas más densas donde más tarde se formarán las primeras galaxias. Comienza la Era de la Luz del Universo. 630 millones de años después: La temperatura promedio es de 20 K. Se forman las primeras galaxias partiendo de las irregularidades en la nube primordial y las primeras estrellas, en estas comienzan a producirse los elementos pesados. Las estrellas comienzan a reionizar el gas intergaláctico y los fotones recorren el Universo. A los 3.500 millones de años el Universo continúa expandiéndose. En esa época existían los quasares, galaxias con núcleos super activos, hoy desaparecidos, que son los objetos más brillantes y lejanos detectados. Serían producto de los frecuentes encuentros de las galaxias primitivas, debido a la mayor densidad del universo temprano. Se encuentran quasares más allá de los 10 mil millones de años de la Tierra, y algunos viajan a velocidades cercanas al 90% de la velocidad de la luz. Son aun la frontera de lo observable. Alrededor de los 8.000 millones de años después del Big Bang la velocidad de expansión comienza a acelerarse por la acción de la Energía Oscura, una propiedad del espacio con gravedad negativa que domina sobre la materia conocida, previene su frenado y eventualmente colabora a acelerar su expansión, y que hoy constituye el 68,3% de la masaenergía de Universo..

(Datos de Peter Lamb, Boesgaard, Steigman, Harrison, Kolb, Peebles, James Glanz, Turner y Ferris)

CURSO DE ASTRONOMÍA Y ASTRONÁUTICA I / CÍRCULO ASTRONÓMICO LAS GALAXIAS Son inmensas agrupaciones de todo tipo de objetos celestes: - Nubes de gases - Estrellas (Sistemas planetarios) - Materia Oscura - Polvo estelar. Se les considera la unidad básica en la estructura del universo, y se supone que son las mayores estructuras coherentes conocidas. Existirían cientos de miles de millones de galaxias distribuidas en Cúmulos y Super Cúmulos de Galaxias en el Universo. Teorías sobre la formación de las galaxias: 1.- Origen Nebular: Las primeras galaxias se habrían formado a partir de los 750 mil años después del Big Bang, a partir de pequeñas irregularidades en la densa nube de hidrógeno y helio primordiales. A medida que el universo se expandía la materia se fue fragmentando y condensando hasta formar las galaxias, simultáneamente en su interior ocurría la formación de las primeras estrellas. Las galaxias quedaron agrupadas en cúmulos de galaxias con formas diferentes. 2.- Origen Estelar: Tras enfriarse la materia generada en el Big Bang (H y He), se habría formado una primera generación de estrellas, que se agruparon en cúmulos estelares. Éstos al interactuar entre sí, habrían formado las galaxias. Durante la infancia del universo, cuando existía una mayor densidad de la materia, las galaxias estaban más cerca e interactuaban entre ellas con mayor frecuencia, generando inmensos objetos hoy desaparecidos, como los quasares y las galaxias activas. Sus imágenes nos siguen llegando luego de viajar miles de millones de años. Las galaxias tienen formas que parecen obedecer a ciertas leyes universales, predominando en nuestra época, la forma espiral. Las irregulares, parecen ser producto de encuentros de galaxias. Mientras que las elípticas son al parecer galaxias antiguas con una espiral reducida y poco brillante que no alcanzamos a ver, junto a un núcleo brillante, tienen muy pocos elementos pesados.

Actualmente también se clasifica a las galaxias por su luminosidad superficial. Los instrumentos modernos han delatado enormes cantidades de galaxias de poca masa y luminosidad, cuya presencia había pasado desapercibida: las enanas azules. En las galaxias se pueden encontrar tres zonas o estructuras principales: - Núcleo (Formado por estrellas antiguas cercanas y a veces un Agujero Negro) - Disco (Polvo y gases, y estrellas luminosas formadas recientemente) - El Halo Galáctico (Cúmulos Globulares de estrellas y Materia Oscura) En las nébulas de los brazos espirales galácticos, formadas de hidrógeno y helio primordiales, y gases y polvo expulsado por la actividad de varias generaciones de estrellas, tienen lugar ocasionales períodos de formación de estrellas. Son desatados por mareas gravitacionales, explosiones de supernovas, el cruce a través del disco galáctico de cúmulos globulares o por el encuentro con otra galaxia. Mientras, otras estrellas terminan su ciclo y se desintegran, en un devenir constante de la materia cuyos pasos podemos observar en los cielos de la Vía Láctea. Las estrellas dentro de las galaxias se encuentran tan distantes entre sí, que durante los encuentros entre galaxias, es muy improbable que lleguen a chocar dos estrellas. Para hacernos una idea, imaginemos que nuestro Sol tuviese el tamaño de un grano de arena de 1,3 milímetros. Próxima Centauro, la estrella más cercana que en esta escala sería otro punto luminoso de 0,1 milímetros, la encontraríamos a 40 kilómetros de distancia del Sol. Esta es la distancia promedio entre las estrellas ubicadas en los brazos galácticos. Las galaxias espirales se mueven como cuerpos rígidos a diferencia por ejemplo de los planetas en el Sistema Solar, donde los más lejanos al Sol se mueven con mayor lentitud, esto contradice las leyes de Newton y Kepler. Este rápido movimiento de sus brazos, hace suponer que existe una gran cantidad de materia que no podemos ver, a la que se ha llamado Materia Oscura, encontrarla es uno de los grandes desafíos actuales de la astronomía. Los brazos de las galaxias espirales son en realidad "ondas de densidad", que circulan alrededor del núcleo de la galaxia induciendo la masiva formación de estrellas, lo que les da su brillo característico. En nuestros cielos podemos ver a simple vista tres galaxias vecinas: La galaxia Andrómeda; y las 2 Nubes de Magallanes, en las cercanías del Polo Sur Celeste. VÍA LÁCTEA Tan solo en 1922, el astrónomo norteamericano Edwin Hubble, demostró lo que algunos ya suponían: nuestro Sistema Solar es parte de un objeto astronómico de fantásticas dimensiones que agrupaba a todas las estrellas y nébulas visibles desde la Tierra y a millones más que quedan fuera de nuestro alcance. Este formidable sistema, de 200 mil millones de estrellas, tiene forma de espiral y da vueltas en torno a su núcleo una vez cada 220 millones de años. Visto desde la Tierra el disco se ve como una franja luminosa que cruza el firmamento y que los griegos antiguos denominaron Galaxia, "Camino de Leche", traducido como Vía Láctea por los romanos (*). Se estima que nuestra Galaxia se extiende a través de 949.000 billones de kilómetros o 120.000 años luz, con una masa de unas 1,7x10 11 Masas Solares. Está formada por un núcleo central casi esférico de 30.000 años luz de diámetro, poblado por estrellas rojas antiguas (Población II). Su disco tiene un espesor aproximado de unos 6.000 años luz y está formado por estrellas jóvenes y brillantes, ricas en elementos pesados (Población I). El Sistema Solar se encuentra 40 años luz al norte del Plano

Ecuatorial Galáctico, en uno de los brazos espirales, al que se ha bautizado como Brazo Local y dista del centro de la Galaxia, 28.000 años luz. El núcleo de la Galaxia, que tiene una gran densidad de estrellas, se encuentra en la dirección de Sagitario y Escorpión. Queda oculto por las densas nébulas de gases y polvo del disco de la galaxia. En el centro del núcleo se ha detectado una poderosa fuente de radiaciones de rayos X y gamma, que supera en potencia a otras similares dentro de la Galaxia, por lo que se supone que allí existiría un colosal Agujero Negro. La Vía Láctea pertenece a un pequeño cúmulo de unas 40 galaxias llamado Grupo Local. Las más cercanas son las dos Nubes de Magallanes, Grande y Pequeña (LMC y SMC, Large y Small Magallanic Cloud), a 163 mil y 200 mil años luz de distancia respectivamente. Son dos galaxias irregulares medianas, satélites de la Vía Láctea, aunque algunos astrónomos han reclasificado a la LMC como espiral barrada. Son visibles todo el año desde el hemisferio sur en la dirección del Polo Sur Celeste. Otra vecina cercana es la enorme galaxia espiral Andrómeda (M 31) distante 2,2 millones de años luz, que se puede ver durante los meses de Octubre a Enero en dirección al Norte. La franja de la Vía Láctea forma un ángulo de 60 con la Eclíptica. * Galaxia con G mayúscula se usa cuando se refiere a nuestra Vía Láctea. CUMULOS GALACTICOS Las galaxias se agrupan formando Cúmulos de Galaxias y estos forman a su vez Supercúmulos Galácticos, que están unidos gravitacionalmente y tienen como eje una o varias galaxias gigantes. Las galaxias dentro de los cúmulos, se encuentran más cerca entre sí, que las estrellas dentro de las galaxias. El hecho que las galaxias se muevan dentro de los supercúmulos como si tuvieran más materia que la que podemos ver, constituye otra evidencia de la existencia de la Materia Oscura. Estudiando la distribución de los Supercúmulos en el universo, se ha establecido que éstos forman gigantescas estructuras, con paredes de cientos de miles de años luz de largo, y grandes vacíos entre ellas, con forma de espuma y que conformarían las mayores estructuras del Universo.

LAS INTERACCIONES (FUERZAS) DE LA NATURALEZA De acuerdo a la fórmula de Einstein: E = mc 2, la masa es una forma de energía actuando a través de partículas que forman y dominan la infinitamente variada naturaleza. A pesar de la búsqueda de los físicos de una teoría que unifique la totalidad, las interacciones que actúan en la naturaleza deben ser explicadas aun por 4 tipos de interacciones: 1.- Interacción Nuclear Fuerte 2.- Interacción Electromagnética 3.- Interacción Débil 4.- Interacción de Gravedad Masa electrón = 1/1836 masa protón = 9,10939 x 10-28 g Masa protón = 1,6726 x 10-24 g Radio átomo = 1x10-10 m Radio núcleo = 1x10-15 m Diámetro átomo = 100.000 diámetro núcleo Masa electrón (me-) = 9,1x10-28 g Relación masa p+ y e-, mp+/me-: 1.838,68 1 átomo de Hidrógeno = 10-10 m = un diez mil millonésimo de metro Núcleo del átomo de H = 10-15 m = un mil billonésimo de m. Relación de tamaño entre el átomo de núcleo 1/100.000 En un átomo típico sólo la 10-72 docellonésima parte. ava parte es masa, la Masa electrón = 1/1836 masa protón = 9,10939 x 10-28 g Masa del Universo = 10 48 toneladas = 10 51 kg = mil octillones de kilos Masa de nuestra Galaxia = 2 x 10 42 kg Masa del Sol = 2 x 10 30 kg Cabeza de alfiler = 8 miligramos y 1 milímetro cúbico = 10 20 átomos de Fe = 100 millones de millones de millones, cien trillones de átomos de Fe.