QUÍMICA ORGÁNICA I INTRODUCCIÓN A LOS MECANISMOS DE REACCIÓN EN QUÍMICA ORGÁNICA. Dra. M. Mercedes Blanco Clase teórica 24/08/16

Documentos relacionados
Termodinámica de las Reacciones, Propiedades Químicas y Adición Electrofílica a Carbono sp 2

Capítulo 4. Reacciones orgánicas.

Perspectiva de las reacciones orgánicas 25/06/2012

[ A ], [ B ]...: concentraciones molares de los reactivos en un momento dado.

SEGUNDO DE BACHILLERATO QUÍMICA. a A + b B c C + d D

TEMA 02 CONVERSIÓN, TERMODINÁMICA, CINÉTICA REACTIVIDAD

TEMA 8. MECANISMOS DE LAS REACCIONES ORGÁNICAS

IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Septiembre Fase específica OPCIÓN A

Reacciones químicas II

Unidad 6: Cinética química

Bioquímica Termodinámica y bioenergética.

CINÉTICA QUÍMICA. jose.profeblog.es

TEMA 6. LAS REACCIONES EN EL ENLACE COVALENTE

QUÍMICA FÍSICA II Grupo A. Tercer control, 10 de mayo de Escoged 2 de las 3 preguntas que os propongo, cada una de las preguntas vale 5 puntos.

Problemas de Química propuestos en las P.A.U. Cinética Química

Actividad: Cómo ocurren las reacciones químicas?

Estudia la velocidad a la que ocurren las reacciones químicas

CINÉTICA QUÍMICA. Dr. Hugo Cerecetto. Prof. Titular de Química

CINETICA QUÍMICA 28/03/2012. Reactivo A + Reactivo B. La Termodinámica. Espontaneidad de las reacciones. Si la reacción es factible

Disminución de velocidad reactivos con el tiempo, véase como disminuye la pte. t (s) [Sustancia] d[sustancia] v = lim = t dt

Lección 9: HALUROS DE ALQUILO I

Bloque I: Cinética. Profesor: Mª del Carmen Clemente Jul

IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Junio 2008 PRIMERA PARTE

Es el análisis cuantitativo de la forma en que los organismos adquieren y utilizan la energía.

1 0,1 0,1 5, ,2 0,1 2, ,1 0,3 1, ,1 0,6 3,3 10-5

Química 2º Bachillerato. Dº de Física y Química. IES Atenea. S. S. Reyes 1. Cinética química

1. Primer principio de la termodinámica.

CINÉTICA QUÍMICA. 1 0,1 0,1 5, ,2 0,1 2, ,1 0,3 1, ,1 0,6 3,3 10-5

Hibridación de orbitales.

EQUILIBRIO QUÍMICO. Concentración. C ó D. Tiempo. Las concentraciones no cambian mucho con el tiempo. El Equilibrio es estable A+B C + D

Energética y cinética química:

CINÉTICA QUÍMICA SOLUCIONES A LAS ACTIVIDADES DE FINAL DE UNIDAD

Velocidad de Reacción y Equilibrio Químico

Unidad I: Propiedades Periódicas: Masa y Enlace

3.- Cuál de las siguientes formulaciones es la correcta para la sal trioxoclorato (V) de litio (clorato de litio)?

Rama de la química que estudia la velocidad con que transcurren las reacciones químicas.

Tema 3. (Parte 1) Enlace químico y propiedades de las sustancias

Energía Interna (E): Expresa la energía total de un sistema. Es la capacidad que tiene un sistema de desarrollar algún tipo de trabajo.

CINETICA QUIMICA. ó M s s

CINÉTICA Y EQUILIBRIO QUÍMICO

REACCIONES EN QUÍMICA ORGÁNICA (I)

REACTIVIDAD DE LOS COMPUESTOS ORGÁNICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA QUÍMICA TEMA 3: ENLACES QUÍMICOS.

Parámetros de enlace. Jesús Gracia Mora

9. LA ENERGÍA RETICULAR

Bioenergética e introducción al metabolismo Departamento de Bioquímica Noviembre de 2005

IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Junio Fase general OPCIÓN A

2x = x = M. 100 = α = % NOCl eq K C =

Cinética y Equilibrio Químico

Colegio San Lorenzo - Copiapó - Región de Atacama Per Laborem ad Lucem

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

TEMA V. VELOCIDAD DE REACCIÓN. EQUILIBRIO QUÍMICO

Representa la cantidad de reactivo que desaparece por unidad de tiempo, o la cantidad de producto que aparece por unidad de tiempo.

Reacciones de Eliminación 26/06/2012

CINÉTICA QUÍMICA. Química General e Inorgánica Licenciatura en Ciencias Biológicas Profesorado en Biología Analista Biológico

DERIVADOS HALOGENADOS. Estructura

QUÍMICA de 2º de BACHILLERATO CINÉTICA QUÍMICA

ESTRUCTURA DE LA MATERIA. ENLACE QUÍMICO EJERCICIOS DE SELECTIVIDAD 96/97

CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Química (Reactividad y equilibrio químico Cinética Reactividad en química orgánica)

Tema 11. CONCEPTOS FUNDAMENTALES EN QUÍMICA ORGÁNICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

VARIACIONES PERIÓDICAS. Z = 53 Z = 53 Z = 53 Electrones = 54 Electrones = 53 Electrones = 52

Enlace Químico. Colegio San Esteban Diácono Departamento de Ciencias Química Iº Medio Prof. Juan Pastrián / Sofía Ponce de León

ENLACE QUÍMICO Y UNIONES INTRAMOLECULARES

Tema 6: Cinética química. Contenidos

1.- Reactividad de los compuestos orgánicos: Aspectos cinéticos y termodinámicos

5. Equilibrio químico

Tema 6. Termodinámica y cinética

Tarea. Sustitución Nucleofílica Alifática

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.

Enlace químico. 5. Dadas las siguientes sustancias: CS 2 (lineal), HCN (lineal), NH 3 (piramidal) y H 2 O (angular):

JUNIO FASE GENERAL QUÍMICA. OPCIÓN A

LA TABLA PERIÓDICA. 1

LA REACCIÓN QUÍMICA Tema 6

Los enlaces C F son polares pero la geometría tetraédrica

EJERCICIOS DE TERMOQUÍMICA

ENLACE QUIMICO. Q.F. Luis José Torres Santillán

Reacciones de Adición

Tema 12 Termoquímica. Desprende o absorbe calor? Cuánto calor? Criterio de espontaneidad En qué dirección se produce? Reacciones Químicas

Propiedades del carbono.

2/15/2013. Estructura ENLACE QUIMICO Y MOLÉCULAS. Tipos de enlace Enlace iónico Enlace metálico Enlace covalente CH 4 CH 3 OH.

CINÉTICA QUÍMICA. Unidad 6

METODO RPECV 1º BACHILLERATO

2

TEMARIO DE QUÍMICA GLOBALES

La Superficie de Energía Potencial (SEP) de una reacción

PROGRAMA DE ESTUDIO. Horas de Práctica

CINETICA QUÍMICA. 300 mol

Las dos reacciones indicadas previamente pueden describirse de la manera siguiente:

METODO DE LAS VELOCIDADES INICIALES. Consideremos la ley de velocidad [ A]

REACCIONES QUÍMICAS. Elementos. Compuestos. CuS

IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Septiembre 2006 PRIMERA PARTE

Reacciones de adición

Unidad 7: Equilibrio químico

CRISTALOQUÍMICA TEMA 9 POLIMORFISMO Y TRANSFORMACIONES POLIMÓRFICAS. TRANSFORMACIONES ORDEN - DESORDEN ÍNDICE

ESTRUCTURA DE LA MATERIA 3

UNIDAD 2. CINÉTICA QUÍMICA

Capacidad de combinación. Capacidad de combinación La última capa de electrones de un átomo, se le conoce como capa de electrones de valencia

Cinética química: Rama de la química que estudia las velocidades de reacción y los mecanismos.

ESTRUCTURA, VALORACIÓN Y CONTENIDOS DEL EXAMEN DE QUÍMICA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PARA MAYORES DE 25 AÑOS.

Transcripción:

QUÍMICA ORGÁNICA I INTRODUCCIÓN A LOS MECANISMOS DE REACCIÓN EN QUÍMICA ORGÁNICA Dra. M. Mercedes Blanco Clase teórica 24/08/16

TEMARIO Clasificación o tipos de reacciones orgánicas. Rupturas homolíticas y rupturas heterolíticas: reacciones radicalarias y reacciones polares. Descripción de una reacción: velocidad y equilibrio, energías de disociación de enlaces, clasificación de reactivos y diagramas de energía. Intermediarios reactivos. Problemas de ejercitación. BIBLIOGRAFIA RECOMENDADA Química Orgánica, Cap. 5, John McMurry, Grupo Editorial Iberoamérica. Química Orgánica, Cap. 6, D. Klein, Editorial Panamericana. Química Orgánica, L. G. Wade Jr., Ed. Pearson, Prentice all. Química Orgánica, P. Yurkanis Bruice, Ed. Pearson, Prentice all.

Cada transformación química implica un cambio en la conectividad de los átomos. Se rompen algunos enlaces y se forman otros nuevos. La química orgánica no se interesa sólo por los reactivos y los productos de una reacción sino también por los detalles, especialmente el orden de los procesos de ruptura y formación de enlaces. También se interesa por el estudio de las velocidades de reacción e investiga cómo varían la velocidad y los productos en función de las condiciones experimentales. Además explora los cambios estereoquímicos que ocurren durante la reacción. A partir de observaciones como éstas, se postulan los detalles del proceso o el camino que siguen los reactivos durante su transformación en productos. Este camino de reacción se llama mecanismo de la reacción

Clasificación de las reacciones orgánicas según el tipo de transformación Una reacción química se puede definir como un proceso de interacción entre especies químicas en el que, como consecuencia de la ruptura y formación de enlaces, se origina una nueva entidad química. Existen cuatro clases o tipos particularmente importantes de reacciones orgánicas: Adición Eliminación Sustitución A + B C A B + C A-B + C-D A-C + B-D Transposición (o reordenamiento) A B

Ejemplos Adición de bromuro de hidrógeno a un doble enlace C C Eteno (Etileno) Alqueno + Br C Br C Bromoetano alogenuro de alquilo Eliminación, un halogenuro de alquilo se escinde rindiendo una sal y un alqueno cuando se lo trata con una base. Es lo opuesto a la reacción de adición. C Br C Bromoetano alogenuro de alquilo KO alcohol C C Etileno Alqueno + K Br + 2 O

Sustitución, por ejemplo la reacción de un alcano con cloro en presencia de luz UV para producir un halogenuro de alquilo C + Cl Cl luz C Cl + Cl Metano Alcano Clorometano alogenuro de alquilo Reordenamiento, un reactivo único experimenta reorganización de enlaces y átomos para dar un solo producto isomérico 3 C 2 C C C catalizador 3 C C C C 3 1-buteno Alqueno 2-buteno Alqueno

Clasificación de las reacciones por la forma en la que se rompen y forman los enlaces Las reacciones orgánicas también se pueden clasificar en dos grandes grupos atendiendo a la forma en la que se rompen los enlaces químicos: omolíticas, electrónicamente simétricas radicales reacciones radicalarias eterolíticas, electrónicamente asimétricas electrófilo nucleófilo reacciones polares

En una reacción se rompen (rupturas homolítica y heterolítica) y se forman enlaces. Teniendo en cuenta los dos modos de formación de un enlace covalente podemos decir que se trata de reacciones: omogénicas, electrónicamente simétricas radicales A. +. B A : B reacciones radicalarias eterogénicas, electrónicamente asimétricas nucleófilo electrófilo A + : B reacciones polares A : B

Cómo ocurren las reacciones orgánicas? Un mecanismo es la descripción detallada del proceso de reacción, es decir, responde a las siguientes preguntas: qué enlaces se rompen? qué enlaces se forman? en qué orden lo hacen? en cuántas etapas? cuál es la velocidad de cada etapa? qué intermedios se forman? qué productos se forman? qué cantidad de cada producto de forma?

Para poder entender la naturaleza de las reacciones orgánicas hay que comprender tres aspectos de la reacción: el mecanismo, la termodinámica y la cinética. a) El mecanismo es, como ya se mencionó, la descripción completa del proceso de formación y ruptura de enlaces que ocurren en la reacción. El mecanismo de la reacción permite explicar la transformación de los reactivos en los productos. b) La termodinámica es el estudio de los cambios de energía que acompañan a la reacción. Permite comparar la estabilidad de los reactivos y los productos y por tanto saber qué compuestos estarán favorecidos en el equilibrio. c) La cinética es el estudio de la velocidad de la reacción.

REACCIONES RADICALARIAS: Son importantes en procesos industriales. Los radicales son usualmente muy reactivos debido a que contienen un número impar de electrones en su capa más externa. producto de sustitución Rad. + A : B Rad : A +. B Reacción de sustitución por radicales radical producto Rad Rad. + C C C C. radical producto de adición Reacción de adición por radicales

Mecanismo de una reacción radicalaria: cloración del metano C + Cl Cl luz C Cl + Cl Esta reacción involucra tres etapas: Iniciación Propagación Terminación El proceso global es una reacción en cadena Etapa de iniciación Luz 2 Etapa de propagación los pasos a) y b) se repiten

Etapa de terminación La reacción puede continuar generando el producto diclorado, el triclorado e incluso el producto tetraclorado: luz luz luz

REACCIONES POLARES: estas reacciones ocurren debido a la atracción entre cargas positivas parciales ( + ) y cargas negativas parciales ( - ) presentes en las moléculas. I Y C 3 Cl

M + C - C 3 Li

Polarizabilidad: A medida que el campo eléctrico que rodea a un átomo o molécula se modifica como consecuencia de interacciones cambiantes con los solventes o con otros reactivos polares, la distribución electrónica alrededor de ese átomo o molécula también cambia. Esta respuesta a una influencia externa se conoce como polarizabilidad. Metanol (enlace C-O polar) Metanol (enlace C-O fuertemente polar) Pero Cómo influyen la polaridad y la polarizabilidad de los grupos funcionales en la reactividad química?

En las reacciones polares intervienen las especies llamadas nucleófilos (Nu - ) y electrófilos (E + ) Nucleófilo: reactivo o especie que tiene afinidad por los núcleos Electrófilo: reactivo o especie que tiene afinidad por los electrones Electrófilo (pobre en electrones) A + + :B - A B Nucleófilo (rico en electrones) enlace covalente nuevo Los electrófilos pueden ser neutros o tener carga positiva Los nucleófilos pueden ser neutros o tener carga negativa

ELECTRÓFILOS + NO 2 + NO + BF 3, AlCl 3 cationes metálicos R 3 C + SO 3 C 3 Cl, C 3 C 2 Cl halógenos: Cl 2, Br 2 NUCLEÓFILOS R O R O 2 O R N 2 R C N R COO N 3 O halogenuros: Cl, Br Cl Cl Al Cl tricloruro de aluminio Br Br Fe Br tribromuro de hierro

Mecanismo de una reacción polar: adición de Br(g) al propeno Paso 1: los electrones p atacan al Br, se forma un enlace C- Paso 2: el Br- cede un par de electrones al C y se forma un enlace C-Br Carbocatión intermediario Producto de adición neutro

Descripción de una reacción: velocidad de reacción y posición de equilibrio Y Z Termodinámica cuánto producto se forma? Cinética con qué velocidad o rapidez? aa + bb cc + dd constante de equilibrio Las concentraciones relativas de reactivos y productos en el equilibrio dependen de sus estabilidades relativas así, mientras más estable sea un compuesto mayor será su concentración en el equilibrio. Keq > 1: mayor concentración de productos en el equilibrio (los productos son más estables) Keq < 1: mayor concentración de reactivos en el equilibrio (los reactivos son más estables)

La reacción procede en el sentido en el que está escrita Los productos son más estables, se libera energía Los reactivos son más estables, se requiere energía DGº = - RT ln K eq

Energía libre reactivos productos productos reactivos Avance de la reacción Reacción exergónica DG es negativa Keq > 1 Avance de la reacción Reacción endergónica DG es positiva Keq < 1 La diferencia entre la energía libre de los productos y la energía libre de los reactivos bajo condiciones normales se denomina cambio de energía libre de Gibbs, DG. El símbolo indica condiciones normales o estándar, todas las especies a una concentración 1M (las soluciones), 1 atm de presión (los gases) y a 25 C. DG = energía libre de los productos energía libre de los reactivos

C C Enlaces que se rompen + Br C Br C Enlaces que se forman Keq = [C 3C 2 Br] [Br] [C 2 =C 2 ] = 7,5 x 10 7 DGº = - RT ln K eq Donde: R = 1,987 cal/( K x mol); 8,314 J/( K x mol) T = temperatura en Kelvin (25 C = 298 K) ln K eq = logaritmo natural de K eq = 18,1 DGº = - ( 1,987 cal / K x mol) x (298 K) x (18,1) = -10.717 cal/mol Dº y DSº DGº = Dº - TDSº

D : el término entalpía se refiere al calor consumido o liberado durante el curso de una reacción Enlace p del eteno D= 62 Kcal/mol C- D= 99 Kcal/mol Enlace -Br D= 87 Kcal/mol C-Br D= 68 Kcal/mol D total por rupturas= 149 Kcal/mol D total de formación= 167 Kcal/mol Dº = (enlaces que se rompen) (enlaces que se forman) = -18 Kcal/mol DS : la entropía es una medida de la libertad de movimiento de un sistema. A veces el término TDS es pequeño y DGº = Dº (en fase gaseosa). En el caso de la adición de Br (DS o = -31.5 cal/k.mol) se restringen los grados de libertad. Además, cuando se trata de reacciones en solución las moléculas del disolvente interactúan con los reactivos y los productos dando lugar a fenómenos de solvatación que influyen o modifican ambos valores: DSº y Dº Esquema mostrando la solvatación de un anión y un catión

Diagrama de energía de la reacción del etileno con Br E pot estado complejo de transición activado (ET 1 ) ET 2 reactivos intermediario E act 1 E act 2 E act 1 : energía de activación de la etapa 1 E act 2 : energía de activación de la etapa 2 E pot : energía potencial D: entalpía de la reacción E act 1 >> E act 2 por lo tanto, la etapa 1 es la que determina la velocidad de reacción. D productos coordenada de reacción

Considerando todos los factores que determinan la variación de energía libre en la reacción de adición de Br al eteno, graficamos:

Con qué rapidez se forma el producto? CINÉTICA Reacción exergónica rápida Reacción exergónica lenta Reacción endergónica rápida Reacción endergónica lenta Mientras más alta sea la barrera de energía (DG ) más lenta será la reacción

DG = energía libre del estado de transición energía libre de los reactivos Rapidez de una reacción Cantidad de choques por unidad de tiempo Fracción de choques con la energía suficiente Fracción de choques con la orientación correcta - Al aumentar la concentración de reactivos aumenta la la rapidez de la reacción porque aumenta el número de choques para un determinado tiempo. - Al aumentar la temperatura, aumenta la energía cinética de las moléculas y con esta también aumenta el número de choques y el número de choques que tienen la energía suficiente para superar la barrera energética (DG ). A B Rapidez [A] Rapidez= k [A] Reacción de 1 er orden A + B C + D Rapidez= k [A][B] Reacción de 2 do orden 2A B Rapidez= k [A] 2 Reacción de 2 do orden

k = constante de rapidez, establece la facilidad con la que se supera la barrera energética Barreras energéticas altas se asocian con constantes k pequeñas. Cuando se comparan dos reacciones para saber cuál sucede con mayor facilidad, deben compararse sus constantes de rapidez k. La ecuación de Arrhenius relaciona la constante de rapidez k con la energía de activación experimental (es decir con una energía aproximada Ea que es diferente de DG ) y con la temperatura T a la que se efectúa la reacción. k= Ae -Ea/RT Donde: A= es el factor de frecuencia, representa la fracción de colisiones que suceden con la orientación adecuada R = 1,987x10-3 kcal/( K x mol); 8,314x10-3 kj/( K x mol) T = temperatura absoluta en Kelvin (25 C = 298 K) e -Ea/RT = fracción de choques con la energía mínima (Ea) necesaria para reaccionar

lnk= lna-ea/rt k 1 A B K -1 En el equilibrio rapidez directa = rapidez inversa k 1 [A] = k -1 [B] K eq= k 1 /k -1 = [A]/[B] Control cinético vs control termodinámico La reacción A+B C+D está favorecida tanto por control cinético como termodinámico La formación de E+F está favorecida por control cinético mientras que la formación de C+ D, por control termodinámico, aquí la temperatura jugará un rol importante

Comparación de energías de activación con catalizador La reacción se lleva a cabo en una etapa La reacción se lleva a cabo en dos etapas

Intermediarios de reacción

PROBLEMAS 1.-A) Con qué tipo de reacción se asociaría cada una de las siguientes ecuaciones? a) b) c) A+B A A-B + C-D C B+C A-C + B-D A d) B) Relacione las ecuaciones generales de la parte A) con cada uno de los siguientes ejemplos: a) 2 C C 3 Cl B KO/ol 2 C C 2 + Cl b) c) d) 2 C C 3 Cl + NaO 2 C C 3 O + NaCl 2 C C C C 3 2 C C C C 3 Cl Cl 2 C C 2 + Cl 2 C C 3 Cl

2.- Las rupturas de enlaces químicos se clasifican en homolíticas y heterolíticas. a) Indique a partir de la estructura A:B como ocurrirían las rupturas y el movimiento de electrones en cada caso. Emplee las flechas adecuadas. b) Indique qué tipo de especies se originan en cada caso. 3.- El mecanismo de una reacción es la descripción detallada, paso a paso, de una reacción química. a) Según esta definición enumere todas las cuestiones que debería tener en cuenta al formular un mecanismo de reacción. b) Teniendo en cuenta las distintas formas de ruptura de las uniones, indicar qué tipo de especies pueden formarse intermediariamente en un reacción. c) Formule los intermediarios posibles de un átomo de carbono indicando hibridación, ángulos de enlace y estructura orbital.

4.- Sabiendo que los cambios energéticos que suceden durante una reacción se pueden representar en un diagrama de energía asocie cada uno de los diagramas (A-D) con los siguientes tipos de reacción: a) Reacción exotérmica lenta b) Reacción endotérmica rápida c) Reacción exotérmica rápida d) Reacción endotérmica lenta

5.- El diagrama representa la variación de energía a lo largo de una reacción en la que el reactivo A se convierte en el producto B a través de un intermediario I. Señale sobre el diagrama: a) La etapa rápida (R) y la lenta (L). b) El estado de transición de la etapa rápida (ET R ) y el de la lenta (ET L ) c) DG 1 #, DG 2#, DG º. d) El proceso es endergónico o exergónico? e) El intermediario (I)

6.- Clasifique los siguientes reactivos como nucleófilos o electrófilos. 2 O N 3 RO I - Cl 3 Al R-C=C-R SO 2 O - CN - - Ph 3 P 3 O + + RN 2 RO - C C - Na +