DISEÑO E IMPLEMENTACIÓN DE UNA HOJA DE CÁLCULO PARA EFECTUAR LA COORDINACIÓN DE PROTECCIONES ELÉCTRICAS EN MEDIO VOLTAJE

Documentos relacionados
SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS

Tema: Análisis de corto circuito. I. OBJETIVOS.

7. CARACTERIZACIÓN DE SOBREVOLTAJES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS

Todos los sistemas eléctricos de distribución están

CONTENIDO PARTE I.- TEORÍA

Cálculo de cortocircuitos

Régimen de Conexión a Tierra. Ing. Braulio Alzate Duque SEGELECTRICA MÉXICO

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1

Nº PYTO: /08/2014 Para Revisión 0 28/04/2014 Para Revisión H.O.M. Preparó Revisó Aprobó Aprobó ENLASA ENLASA

Selectividad con interruptores automáticos en redes B.T. (1)

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA

3. FUSIBLES PARA PROTECCIÓN DE TRANSFORMADORES

I. OBJETIVOS. Facultad de Ingeniería. Escuela de Ingeniería Eléctrica. Asignatura Diseño de Instalaciones Eléctricas I. Tema: Subestación industrial.

Estudio de fallas asimétricas

UNIVERSIDAD NACIONAL DE TUCUMÁN

I. RESULTADOS DE APRENDIZAJE

INFORME DE MATERIA DE GRADUACION EVALUACION Y PREVENCION DE RIESGOS ELECTRICOS EN UNA SUBESTACIÓN. Presentado por: Patricio Arsenio Castillo Pincay

CURSO DE ELECTRICIDAD BÁSICA

ANEXO A RESULTADOS DE CÁLCULO DE LOCALIZACIÓN DE FALLA EN LÍNEAS DE TRANSMISIÓN

CARACTERISTICAS TECNICAS PARA COMPENSACIÓN CAPACITIVA DE 2MVAR, 36 kv, PARA EL SISITEMA ELECTRICO DE LA ELECTRIFICADORA DEL META S.A. E.S.P.

Interruptores Termomagneticos * CARACTERISTICAS * SELECCIÓN * AJUSTES

Tema: Fuente de Alimentación de Rayos X

Practico 1 - Calculo de Cortocircuito Instalaciones Eléctricas

La versión digital de esta tesis está protegida por la Ley de Derechos de Autor del Ecuador.

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica.

5.1.7 UNIDAD GENERADORA Nº 8 GENERAL ELECTRIC GE UNIDAD GENERADORA Nº 9 SOLAR TITÁN EQUIPOS DE TRANSFORMACIÓN

REPÚBLICA DE VENEZUELA MINISTERIO DE LA DEFENSA INSTITUTO UNIVERSITARIO POLITÉCNICO DE LAS FUERZAS ARMADAS NACIONALES I.U.P.F.A.N.

PROTECCIÓN DE SISTEMAS ELÉCTRICOS UNIDAD III

DIBUJO ELECTRÓNICO I ESQUEMAS Y DIAGRAMAS. Diagramas Esquemáticos: Esquema Elemental o de Principio: 1J3025. Docente: Ing. Jorge Luis R.

PROGRAMA DE CURSO. Personal

Análisis de circuitos trifásicos. Primera parte

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Protección y Coordinación de Sistemas de Potencia. Tema: Transformadores de Instrumento.

ANEXO 2 DEFINICIÓN DE CARACTERÍSTICAS A INSPECCIONAR DE LAS INSTALACIONES DE DISTRIBUCIÓN

Fundamentos de Seguridad Eléctrica

El objeto de este documento unitario es la justificación analítica de los elementos utilizados en la instalación eléctrica objeto de este proyecto.

PROGRAMA RESUMIDO DE CURSOS

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos,

Herramientas Informáticas para la Edición, Creación e Implementación del Modelo CIM Francisco Javier Arias Sánchez Universidad Nacional de Colombia

Entendiendo los ICFTs Desarrollado por Comité Técnico 5PP Protección personal de NEMA

INFORME CON LAS SIMULACIONES Y LOS RESULTADOS DEL DISEÑO DOCUMENTO IEB Revisión 0. Bogotá, octubre de 2011

TRANSFORMADOR ATERRIZADOR ZIG-ZAG

A6.- LOS SISTEMAS DE TENSIONES EN ESPAÑA

Curvas de limitación. Limitación de corrientes de cortocircuito Curvas de disparo y tablas de coordinación

CAPÍTULO VI APLICACIÓN DE FUSIBLES EN UN SISTEMA ELÉCTRICO DE POTENCIA.

Aplicando la identidad trigonometrica en la expresión anterior:

PROGRAMA PARA EL CURSO: (Diseño de Sistemas Eléctricos). I. DATOS GENERALES DE LA MATERIA. Clave: 853. No. de Créditos: 6.

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES

Análisis de la Curva de Daño de Transformadores para Varias Conexiones Usadas en Sistemas de Distribución

Osinergmin ANÁLISIS DE FALLAS. Ing. Leonidas Sayas Poma

Pregunta: Por qué necesita que el bombillo esté conectado a ambos terminales de la batería?

Protección de Falla a Tierra

ANEXO E-RDT REQUISITOS TECNICOS PARA LA INTERCONEXION

CURRICULUM VITAE. Ing. DANIEL E. ALARCON PERFIL GENERAL

Carrera : Ingeniería Eléctrica SATCA

GUÍA DE APRENDIZAJE N GTSMA /05/ IDENTIFICACIÓN DE LA GUÍA DE APRENDIZAJE

CIUDAD BOLÍVAR-VENEZUELA

13.- ANEXOS RECOMENDACIONES EN LA PROTECCIÓN SEGÚN IEE

Marzo 2012

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES

CURSO DE PROYECTO DE INSTALACIONES ELECTRICAS DE MT Y BT

Sistemas Trifásicos. Departamento de Ingeniería Eléctrica UNEFA Maracay Redes Eléctricas II Chrystian Roa

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos

ET008 Transformadores monofásicos auxiliares para equipos

GLOSARIO DE TERMINOS SISTEMA ELÉCTRICO ECUATORIANO

Protección de sobrecorriente y coordinación de la protección

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN

ÍNDICE 1. ANILLO DE DISTRIBUCIÓN DATOS DEL CABLE RED DE BAJA TENSIÓN... 3

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 01: CONCEPTOS Y PRUEBAS BASICAS DE TRANSFORMADORES

Se inicia con las especificaciones del módulo fotovoltaico.

Interrupción del servicio de energía eléctrica

I. OBJETIVOS ESPECIFICOS

RESISTENCIA DE PUESTA A TIERRA DE ALTO VALOR OHMICO y V

Metodología para el dimensionamiento y la selección del Interruptor de Potencia para Generadores (GCB) usando etap

CARTA DESCRIPTIVA (FORMATO MODELO EDUCATIVO UACJ VISIÓN 2020)

LEVANTAMIENTO DEL SISTEMA ELÉCTRICO DE POTENCIA DEL HOSPITAL DE ESPECIALIDADES DE LAS FUERZAS ARMADAS N 1. Elaborado por: Olander Tapia Julio Camas

ESTUDIOS DE CORTOCIRCUITOS. Departamento de Energía Eléctrica, Escuela Politécnica Nacional

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.

2 contactos, 6 A Reticulado 5 mm Montaje en circuito impreso o en zócalo serie 95

CORPORACIÓN CENACE CURSO DE POSGRADO: OPERACIÓN DE SISTEMAS ELÉCTRICOS DE POTENCIA MODULO II CALCULO DE CORTOCIRCUITOS

Reticulado 3.5 mm 1 contacto 12 A Montaje en circuito impreso o en zócalo serie 95

CIRCUITOS EN SERIE Y PARALELO

ET502 Interruptor automático termomagnético

Desclasifación por efectos de la altura. Switchgear Media Tensión AIS (Air Insulation Switchgear) Dany Huamán Ingeniero Especificador

3. BATERIAS DE SFA. TIPOS Y CARACTERÍSTICAS BÁSICAS. ΩJOVEA INGENIERIA

Seccionamiento comando y protección Parte 2: Dispositivos fusibles

Serie 55 - Relé industrial 7-10 A. Características Relé para aplicaciones generales con 2, 3 o 4 contactos

5. Protección de subestaciones de distribución. Subestación de distribución

ni.com Medidas Fundamentales con Sensores

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

SIMPOSIO IBEROAMERICANO SOBRE PROTECCIÓN DE SISTEMAS ELÉCTRICOS DE POTENCIA

SISTEMAS DE CONEXIÓN DEL NEUTRO Y DE LAS ITC-BT-08 MASAS EN REDES DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA Página 1 de 6 0. ÍNDICE...1

5.10. IMPEDANCIA DE LÍNEA y posible corriente de cortocircuito

Criterios de evaluación comunes (Ciclos Formativos)

Auditorias Técnicas al Sistema Eléctrico Una visión hacia la productividad. Pte 4 de 13

TERMOSTATO DIFERENCIAL EL2

Que es un supresor elevado en poste

RIESGOS ELÉCTRICOS EN BAJA TENSIÓN

Transcripción:

DISEÑO E IMPLEMENTACIÓN DE UNA HOJA DE CÁLCULO PARA EFECTUAR LA COORDINACIÓN DE PROTECCIONES ELÉCTRICAS EN MEDIO VOLTAJE Diego Ortiz Villalba, Washington Freire Llerena, Jorge Abraham Lara Sánchez Universidad de las Fuerzas Armadas ESPE, Latacunga, Ecuador RESUMEN: El problema de Protección de los Sistemas Eléctricos de Distribución ha venido adquiriendo cada vez mayor importancia ante el crecimiento acelerado de las redes eléctricas y la exigencia de un suministro de energía a los consumidores con una calidad de servicio cada vez mayor, a nivel de distribución con un interés especial en la selección, aplicación y coordinación. Al existir una herramienta de fácil manejo y accesibilidad, que cumpla el mismo objetivo que los demás programas. El proyecto consiste en desarrollar un programa sobre una Cálculo, donde permitirá al usuario interactuar en un ambiente amigable y comprensible con conocimientos de Coordinación de Protecciones Eléctricas bajo las Normas IEEE y IEC, que permita calcular las corrientes de cortocircuitos, validada con el software CYMDIST y, con elos errores obtenidos menores al 5%, lo que nos muestra que es una herramienta confiable. Palabras clave: Sistemas Eléctricos de Distribución, Protecciones eléctricas, Cortocircuitos,, criterios de coordinación. ABSTRACT: The Problem of Protection of Electrical Distribution Systems has acquired increasing importance with the rapid growth of electricity networks and the need for a power supply consumers with quality increasing service level distribution with a special interest in the selection, implementation and coordination. As there is a user-friendly tool and accessibility that meets the same objective as the other programs. The project is to develop a program on a spreadsheet, which allow the user to interact in a friendly and understandable environment with knowledge the Coordination of Electrical Protection under the IEEE and IEC standards, allowing calculation of short circuit currents, validated software CYMDIST and, elos errors obtained with less than 5%, which shows that it is a reliable tool. Keywords: Electrical Distribution Systems, Electrical protection, shorts, Spreadsheet, coordination criteria. I. INTRODUCCIÓN La mayoría de la averías en los sistemas eléctricos aéreos de distribución son temporales. Es decir, ocurren y luego que se desconecta el circuito, desaparecen. Muchas son las causas, una rama de un árbol que se conectar a un circuito y se quema, una animal que hizo contacto y se quema y cae, las descargas atmosféricas hacen rupturas superficiales de los aislamientos y luego que se desconecta la energía, se desaparece la falla. Este tipo de averías que son la gran mayoría no deben provocar desconexiones permanentes de la energía eléctrica en el circuito. Se debe permitir que la avería sea temporal y por tanto no provocar desconexiones permanentes. [1] Cuando la avería es permanente es cuando único la protección debe actuar y quedarse abierto el circuito. Una vez que esto suceda, solo la brigada de operadores y técnicos debe ir a normalizar el circuito, la protección no debe hacerlo por su cuenta. Si ya es necesario desconectar de forma permanente una zona del circuito que está averiada, esta zona debe ser solo la zona averiada, es decir, debe ser la menor porción del circuito posible, para que se vean afectados el menor número de consumidores. Estas reglas o leyes provocan que en las redes de distribución se empleen numerosos dispositivos de protección. Algunos para hacer conexiones permanentes y otros para hacer conexiones temporales del circuito [2] II. METODOLOGÍA La propuesta tiene como objetivo fundamental el diseño e implementación de una hoja de para efectuar la coordinación de protecciones eléctricas en medio voltaje, para realizar la coordinación de protecciones, se necesita conocer las corrientes de cortocircuito para saber 1

seleccionar los equipos adecuados para despejar la falla. Calculo de corrientes de cortocircuito: Para el de corrientes de cortocuitos en sistemas distribución de tipología radial, se basa en la norma ANSI, donde se deben conocer las componentes de secuencia positiva, negativa y cero, tanto para la subestación y los tramos que constituyen el alimentador. Los datos de impedancia de secuencia en la subestación es necesario conocer los datos de impedancia aguas arriba de la misma, o pedir este dato a la empresa de transmisión. Para el de las impedancias de secuencia para los tramos [3], en la Figura 01 se detallan los aspectos considerados: Cálculo de Impedancias de secuencia en líneas de Distribución Nombre o Código del Tramo Longitud del Tramo Configuración Figura 01: Aspectos considerados para el de impedancia de secuencia de tramo Una vez conocido las impedancias de secuencia hasta el nodo en donde se quiere conocer las corrientes de falla, aplicamos la ecuación (1) para una falla trifásica, ecuación (2) para una falla bifásica a tierra, ecuación (3) para la una falla bifásica y las ecuaciones (4) y 5) para la falla monofásica a tierra. [4] m Distancia entre Conductores Tipo de Conductor en el Neutro Tipo de Conductor en la Fase m (1) m (2) Secuencia (3) m m (4) m n m n (5) Aplica las reducción de Kron Impedancias de Secuencia (+) y en Ω/m ll Multiplicado por la Longitud Impedancias de Secuencia (+) y en Ω 2 Dónde: V= Voltaje nominal de pre falla línea a neutro. Z1= Impedancia de secuencia positiva Z0= Impedancia de secuencia cero ZF= Impedancia propia de la falla Kmáx y Kmin. = factor de seguridad Coordinación de protecciones eléctricas: Para el diseño de la hoja de para poder realizar aplicar los diferentes criterios para conseguir una adecuada coordinación entre los dispositivos de protección, es necesario modelar cada uno de los elementos que están presentes en un alimentador de distribución eléctrica como es. Transformadores, curva de daño térmico de cables, fusibles, reconectadores y fusibles. Para los transformadores se empleó la curvas de daño térmico según la norma ANSI/IEEE C57.12.00-1980 [5] y curva Inrush de magnetización que es representada como una curva lineal segmentada que atraviesa 5 puntos: (100s; 200%), (10s; 300%), (1s; 600%), (0.1s; 1200%) y (0.01s; 2500%). [6] Los fusibles son de la marca LUSHFSER, con los datos de las curvas tiempo corriente que son proporcionadas por el fabricante. Los reconectadores son hidráulicos monofásicos y trifásico de la marca COOPER con las curvas características de los que fueron cargados en este proyecto [4]; en los Reconectadores Electrónicos cargan curvas según sea esta ANSI, IEC o las del fabricante que para este proyecto es el modelo de ABB PC2000. [8] Los Relés de Sobrecorriente posee la capacidad de cargar relés de sobrecorriente según sea su tipo: 51 (Temporizado) o 50 (Instantáneo), según las normas sean IEC, ANSI/IEEE o TIPO CO, seleccionando el tipo constructivo ya sean: Electromecánico, estático, digital y numérico. [9] Para la curva de la capacidad térmica de los cables, cumple los requerimientos de la norma IEEE 242-986 ( Buff Book), p r conductores ACSR, ACAR, AAAC, Cobre desnudo y otros, considerando el tipo de aislamiento y el tipo de material. [5]

Todos estos elementos descritos, se van a una hoja logarítmica como se ve en la figura 02. Tabla 01: Corrientes de cortocircuito en la hoja de. Nodo CALCULADO LLL(A) LLT(A) LL(A) LT(A) S650 174397,01 174393,17 151032,24 174397,01 N632 9667,82 8668,86 8372,58 5689,54 N633 7185,86 6375,78 6223,14 4355,86 N646 5429,23 4737,20 4701,85 3489,79 N684 4353,93 3865,40 3770,61 2589,67 N680 3998,25 3578,54 3462,59 2320,54 Las mismas que se va a comparar con datos proporcionados por el programa CYMDIST de la empresa Cooper que se encuentran en la tabla 02. Tabla 02: Corrientes de cortocircuito en el programa CYMDIST Nodo CYMDIST LLL(A) LLT(A) LL(A) LT(A) Figura 02:, zona de grafica logarítmica. III. CASOS DE ESTUDIO A. Corriente de Cortocircuitos Para la validación del procedimiento general para el de fallos en sistemas de Distribución en medio voltaje, se tomó los datos de EEE Node est eeder [10], que se observa en la figura 03.. S650 172156 172153 149092 172147 N632 9579 8590 8296 5628 N633 7118 6394 6164 4309 N646 5378 4959 4658 3453 N684 4316 3861 3737 2560 N680 3963 3547 3432 2294 B. Coordinación de protecciones eléctricas en medio voltaje. Para demostrar la veracidad del correcto diseño y la adecuada implementación, se realizó una serie de coordinaciones entre diferentes dispositivos de protección, aplicando los criterios de coordinación [7], tomando el tiempo de intersección de dichos dispositivos, con la corriente de falla que debe despejar, y comparando los resultados que se obtiene para estas mismas coordinaciones en el programa. Para una coordinación entre fusibles del diagrama unifilar que se muestra la figura 04, la coordinación que se pueden realizar entre un fusible tipo T y un fusibles tipo K para una corriente de 1500 A. Figura 03: IEEE 13 Node Test Feeder El de las corrientes de cortocircuito, en los nodos de las líneas aéreas se ve en la tabla 01. 3

Figura 04 Diagrama unifilar para coordinación entre fusibles Los fusibles usados son de la marca LUFSHER y los tiempos obtenidos en el software comercial se observan en la tabla 03. Tabla 03 Porcentaje de error en una coordinación fusible-fusible 2-FUSE TIPO 25T (máx.) 0,0483 0,048 0,62 1-FUSE TIPO 100K(min) 0,1029 0,105 2,04 Para la coordinación reconectador-fusible en lado de la carga con un reconectador D, DV de la marca COOPER; con una bobina de puesta de trabajo de 100 A y un fusible 30T de la marca LUFSHER. Figura 06 Diagrama unifilar para el estudio de coordinación entre un fusible de expulsión en el primario y un restaurador en el secundario. A la curva rápida del reconectador se la multiplico por un factor K de 1.70 [7], los tiempos de intersección entre el reconectador y la corriente de falla de 1650 A, se muestra en la tabla 05. Tabla 05 Porcentaje de error para una coordinación reconectador-fusible en lado de la fuente 2-RECLOSER W (Phase Slow) 2-RECLOSER W (Phase Slow Coord) 0,5191 0,5 3,68 0,8824 0,85 3,67 En una coordinación fusible transformador, de la figura 07, se encuentra un trasformador de 500kVA con 4% de impedancia con un voltaje de 13,8 kv en el lado de alta y un fusible 25T de la marca LUFSHER, para una corriente de cortocircuito del transformador de 522 A, los datos de tiempo de la curva de Inrush del transformador y de los fusibles se muestra en la tabla 06. Figura 05 Reconectador monofásico tipo D, DV y un fusible 30T en lado de la carga A la curva rápida del reconectador se lo multiplico por un factor K de 1,25 [4], y los datos obtenidos para la comparación se muestra en la tabla 3.20. Tabla 04 Porcentaje de error para una coordinación reconectador-fusible en lado de la carga 1-RECLOSER D,DV 0,0516 0,0515 0,19 (Fast) 1-RECLOSER D,DV 0,0645 0,06473-0,36 (Fast Coord) 2-FUSE TIPO T(min) 0,1029 0,105-2,04 Para la coordinación reconectador-fusible en lado de la fuente de la figura 06, es un reconectador W, con una bobina de puesta de trabajo de 140 A. Figura 07 Diagrama unifilar para el estudio de protección de un transformador. Tabla 06 Porcentaje de error para una coordinación fusible-transformador 2-FUSE TIPO T (min) 2-FUSE TIPO T (max) 1-TRANSFORMER (Damage) 0,1413 0,145-2,62 0,2894 0,29-0,21 2,0074 2,00 0,37 De la figura 08, en un relé de sobrecorriente de la norma IEC LT, tiene una relación de TC`s de 300 a 5, con un TAP del temporizado de 5 y un TIME DIAL de 0,05 [11]. 4

Figura 08 Diagrama unifilar relé de sobrecorriente-reconectador El reconectador es de tipo WV, con una bobina de puesta de trabajo de 100 A. Para una corriente de falla de 550 A aguas abajo del reconectador se tiene los resultados de tiempo como se muestra la tabla 07. 2-RECLOSER WV (Phase Fast) 2-RECLOSER WV (Phase Slow) 0,0623 0,06 3,69 1,3416 1,34 0,12 1-RELAY IEC LT 7,2065 7,2 0,09 La coordinación entre relés de sobrecorriente, para la figura 09, tiene 4 relés de sobrecorriente VERY INVERSE de la norma ANSI/IEEE, con los datos del resumen de la tabla 08 [12]. Tabla 08 Resumen de los ajustes de los relés de sobrecorriente Relé asociado al interruptor Tabla 07 Porcentaje de error para una coordinación relé de sobrecorrientereconectador. Pickup (A) Time dial Instantáneo Instantáneo 1 4 1 39 2340 2 4 2 37 5920 3 8 2 - - 4 4 5 36 18818 Figura 09 Diagrama esquemático de coordinación entre relés de sobrecorriente. Con las corrientes de la unidad instantánea de cada relé y según el TAP calculado, se construye la tabla 09, calculando el porcentaje de error entre los tiempos de intersección entre la corriente de falla en cada punto y el relé de sobrecorriente instalado. Tabla 09 Porcentaje de error para una coordinación entre relés de sobrecorriente. Corriente (A) Cymtcc calculo 1.RELÉ ANSI/IEEE VI 0,1399 0,14-0,07 2340 2.RELÉ ANSI/IEEE VI 0,8318 0,835-0,38 2.RELÉ ANSI/IEEE VI 0,2895 0,289 0,17 5920 3.RELÉ ANSI/IEEE VI 0,958 0,93 2,92 3.RELÉ ANSI/IEEE VI 0,3107 0,31 0,23 14714,8 4.RELÉ ANSI/IEEE VI 0,8957 0,89 0,64 3.RELÉ ANSI/IEEE VI 0,2657 0,26 2,15 18818,2 4.RELÉ ANSI/IEEE VI 0,7368 0,736 0,11 IV. ANÁLISIS DE RESULTADOS Al realizar la comparación entre las corrientes de cortocircuito obtenidas y calculando el porcentaje de error, se obtuvo un error mínimo de menos 0,11%, como máximo de 4,47% y un valor promedio total de menos 0,72% en los nodos seleccionados como nuestra la tabla 09. 5

Tabla 09 Porcentaje de error la validación de las corrientes de cortocircuito Nodo ERROR % LLL LLT LL LT Promedio Sub650-1,3-1,3-1,3-1,31-1,30 N632-0,93-0,92-0,92-1,09-0,97 N633-0,95 0,28-0,96-1,09-0,68 N646-0,95 4,47-0,94-1,07 0,38 N684-0,88-0,11-0,9-1,16-0,76 N680-0,89-0,89-0,89-1,16-0,96 Promedio Total -0,72 Con los errores obtenidos en la tabla 08, se concluye que la hoja de de cortocircuitos en un sistema de distribución es una herramienta que se puede utilizar en otro tipo de circuito eléctrico en medio voltaje. De la validación de la coordinación de protecciones eléctricas entre el tiempo de intersección de la corriente y los dispositivos de protección, los porcentajes de error máximo y minino entre la hoja de de coordinación de protecciones y el software, se muestran en la tabla 10. Tabla 10 Porcentaje de error la validación de coordinación de protecciones eléctricas. Tipo de coordinación % Error máximo % Error mínimo Promedio V. CONCLUSIONES Al implementar el circuito de la EEE Node est eeder, en la hoja de de corrientes de cortocircuito y en el software CYMDIST, el porcentaje de error entre las corrientes de falla es: error mínimo -0,11% y máximo 4,47%, con lo que se concluye que el diseño y la implementación de la hoja de puede usarla para otro tipo de configuraciones de alimentadores radiales. Para las curvas de transformadores, relés de sobrecorriente y la capacidad térmica de conductores se usaron los modelos matemáticos expresado en las normas ANSI/IEEE y IEC. Al aplicar los criterios de coordinación y encontrar los datos de intersección de tiempo entre la corriente de falla con los dispositivos de protección de ejemplos propuestos por este proyecto, en la hoja de para coordinación de protecciones en medio voltaje y el software, se obtuvo un error máximo de 4,95% y un error mínimo de 0,09%, lo que lleva a la conclusión que el modelado de equipos de protección eléctrica en distribución como la curva de daño térmico e Inrush de los transformadores, capacidad térmica de los conductores, fusibles, reconectadores y relé de sobrecorriente son confiables. VI. REFERENCIAS Coordinación fusible - fusible Coordinación Reconectador-fusible en lado de la carga. Coordinación Reconectador-fusible en lado de la fuente. Coordinación fusible - transformador. Coordinación relé de sobrecorriente reconectador Coordinación entre relés de sobrecorriente 2,04 0,62 1,33 2,04 0,19 1,12 3,68 3,67 3,68-2,62 0,37-1,13 3,69 0,09 1,89 2,92-0,07 1,43 [1] Samuel Ramírez Castaño, Protección de Sistemas Eléctricos, Primera Edición. ed., Universidad Nacional de Colombia Manizales, Ed. Manizales, Colombia. [2] Orlys Ernesto Torres Breffe, Protecciones Eléctricas de las Redes de Distribución. [3] William H. Kersting, Distribution System Modeling and Analysis. New Mexico, United States: CRC Press, 2001. Promedio total 1,39 Con el porcentaje de error promedio total de 1,39%, los valores máximos y mínimos son menores al 5%, la hoja de para coordinación de protecciones eléctrica en medio voltaje es una herramienta validada donde se puede hacer estudios de protecciones eléctricas en medio voltaje. 6 [4] CYME 5.04, Análisis básicos de CYMDIST - Guía del Usuario. [5] American National Standards Institute, IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial PowerSystems. United

States, 2001. [6]. Transformador. Manual. [7] Systems, COOPER Power, Electrical Distribution System Protection. United States, 2005. [8] ABB. PCD2000 Power Control Device IB38-737-3. Manual. [9] "SOFTWARE MODEL FOR INVERSE TIME OVERCURRENT RELAYS INCORPORATING IEC AND IEEE STANDARD CURVES," in Canadian Conference on Electrical & Computer Engineering, Canada, 2002, pp. 37-41. [10] William H Kersting, "Radial Distribution Test Feeders,", 2000, pp. 908-912. [11] Corpor c ón CENACE, Protecc ón de sistemas eléctricos de potencia y automatismos, 2001.. [12] Juan Gers, Protection of Electricity Distribution Networks, segunda ed., The Institution of Electrical Engineers, Ed. London, United Kingdom, 2004. medio voltaje. Jorge Lara Ingeniero en electromecánica de la Universidad de las Fuerzas Arm d s ESPE, Áre s de interés, Sistemas eléctricos de distribución, protecciones eléctricas, Planificación de sistemas eléctricos en 7