Eliminación del foaming filamentoso en una EDAR mediante un selector aerobio

Documentos relacionados
Emilio Serrano & Josep Xavier Sensada

MICROORGANISMOS DE PLANTAS DEPURADORAS

Qué es realmente la Respirometría de los fangos activos? mide el consumo de oxígeno de . Cómo podemos evaluar en las medidas de la Respirometría?

Determinación de los parámetros cinéticos de las bacterias autótrofas del modelo ASM1 para una PTAR en Chiapas por respirometría.

1. Proceso de Fangos Activados.

Afectaciones en los parámetros que caracterizan el consumo de oxígeno en el proceso de lodos activados por la presencia de iones cloruros

PROCESOS AVANZADOS DE BIOMASA FIJA SOBRE LECHO MÓVIL

ELIMINACIÓN DE EPISODIOS DE DESARROLLO MASIVO DE FILAMENTOS EN LA EDAR DE PUENTE GENIL

Existen muchos tipos de reactores. Pero, en general, podemos distinguir dos tipos fundamentales:

ANEXO III: CONTROL OPERACIONAL DE MICROTHRIX PARVICELLA

Estudio del control de Microthrix parvicella en las estaciones depuradoras de aguas residuales. artículostécnicos

Tlamati Sabiduría, Volumen 7 Número Especial 2 (2016)

INFLUENCIA DE LA PRESENCIA DE IONES CLORURO EN UN SISTEMA DE LODO ACTIVADO

Infilco Española, S.A. Avda. Burgos, Madrid Tel.: Web: 1.

SERVICIO DE RESPIROMETRÍA. Estudio de la capacidad de nitrificación & desnitrificación en un proceso de fangos activos

CONTROL DEL CRECIMIENTO FILAMENTOSO EN PLANTAS CON INFLUENTES PROCEDENTES DE LA INDUSTRIA DEL PROCESADO DE HARINAS Y FRITURAS

Determinación de la fracción de Nutrientes por Respirometría

1. Modelo del proceso de Fangos Activados.

Es el V30, sin duda alguna el ensayo

En el conjunto de una EDAR,

CONSTRUCCIÓN, ARRANQUE Y

Adecuación de la planta de tratamiento de aguas residuales de una empresa productora de materiales químicos para la construcción

RESUMEN DE DATOS DE LA MUESTRA INDUSTRIAL. Tipo de material facilitado: frotis bacterianos de la muestra.

ELIMINACIÓN BIOLÓGICA DE FÓSFORO EN FANGOS ACTIVOS

Introducción Las medidas solamente relacionadas con la naturaleza del agua o comportamiento físico no combinan suficientes datos decisivos para una co

MÓDULO: PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES

Instituto Mexicano de Tecnología del Agua Maestría en Ciencias y Tecnología del Agua Programa Orientado a la Investigación

Ampliación de la capacidad de los tratamientos biológicos de fangos activos empleando soportes móviles para eliminación de nutrientes

INFLUENCIA DE LOS AGV EN LA SEDIMENTACIÓN DE LOS LODOS DURANTE LA ELIMINACIÓN BIOLÓGICA DE NUTRIENTES EN UN SBR RESUMEN

Virtual del Agua en usal.es. Programa

V. MODELACION MATEMATICA DE PROCESOS DE TRATAMIENTO DE AGUA RESIDUAL

DISEÑO DE SISTEMAS DE FANGOS ACTIVADOS PARA LA ELIMINACIÓN BIOLÓGICA DE NUTRIENTES

LOS BIORREACTORES DE MEMBRANAS (MBR)

Ampliación de la capacidad de los tratamientos biológicos de fangos activos empleando soportes móviles para eliminación de nutrientes

HIGIENE, SEGURIDAD Y MEDIO AMBIENTE PLANTAS DE TRATAMIENTO DE EFLUENTES

UNIVERSIDAD DEL NORTE

Fundamentos para el manejo de aguas residuales

Universidad Autónoma de Chiapas

PROCESOS BIOLÓGICOS AEROBIOS. Nombre: Dr. Julián Carrera Muyo Institución: Universitat Autònoma de Barcelona (España)

CASOS DE ESTUDIO DE INHIBICIÓN TOXICIDAD EN PROCESOS DE FANGOS ACTIVOS. Respirometría

TRATAMIENTO QUÍMICO DE LAS AGUAS RESIDUALES Y REDUCCIÓN SIMULTÁNEA DE LOS VERTIDOS ATMOSFÉRICOS DE DIOXIDO DE CARBONO

ESTUDIOS RESPIROMETRICOS Y BIOINDICACIÓN PARA LA GESTIÓN DE LAS AGUAS EN LA INDUSTRIA

Diplomado en Diseño de Sistemas de Tratamiento de Aguas Residuales.

PRODUCCIÓN Y CARACTERÍSTICAS DE LOS FANGOS

CO-TRATAMIENTO AEROBIO DE AGUAS RESIDUALES INDUSTRIALES Y DOMESTICAS

Emilio Serrano & Josep Xavier Sensada

PLANTAS DE TRATAMIENTO MBR. Revalorizando el agua residual

EFECTO Y CONTROL DE ESPONJAMIENTO DE LODOS EN UNA TRATADORA DE AGUAS RESIDUALES INDUSTRIALES

Sabías que los microbios ayudan a limpiar las aguas residuales? Oscar Monroy Universidad Autónoma Metropolitana

Por: Josep Miquel Carceller Rosa, doctor en Farmacia y jefe de Proyectos Medioambientales del Grupo Damm

El bulking en sistemas de fangos activados

DISEÑO DE PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES. PROCESOS BIOLÓGICOS DE LICOR MEZCLADO Y BIOPELÍCULA. Parte 1 de 10 M. I.

Arranque de un reactor anaerobio

Planta depuradora de aguas residuales AZUD WATERTECH WW

DISEÑO DE PLANTAS DISEÑO O DE PLANTAS DE TRATAMIENTO DE AGUAS Y DESAGÜES 3.2 TRATAMIENTO SECUNDARIO CAPITULO III: DISEÑO O PTAR SESIÓN 3.

REINGENIERÍA DE UNA PLANTA DE TRATAMIENTO DE LODOS ACTIVADOS PARA ABATIR EL FENÓMENO DEL ESPONJAMIENTO

CONTROL DEL CRECIMIENTO DE ORGANISMOS FILAMENTOSOS EN UNA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES INDUSTRIALES

Pretratamiento de agua residual urbana mediante reactores anaerobios

CONSIDERACIONES GENERALES

MÁSTER EN GESTIÓN Y TECNOLOGÍA AMBIENTAL UNIVERSIDAD DE VALLADOLID TRABAJO FIN DE MÁSTER. Análisis de la calidad de las aguas residuales

TRATAMIENTO DE LAS AGUAS RESIDUALES DOMESTICAS POR OXIDACION TOTAL

EDAR de La Reguera. El ciclo integral del agua. Saneamiento

FORMATO CONTENIDO DE CURSO O SÍLABO

Simulación de un sistema de fangos activados en discontinuo para la eliminación de materia orgánica y nutrientes*

TRATAMIENTO DE AGUAS DIGESTIÓN ANAEROBIA

COMPORTAMIENTO DE CONSTANTES CINÉTICAS DURANTE LA FERMENTACIÓN DE AGUA RESIDUAL

TRATAMIENTO DE EFLUENTES INDUSTRIALES

Proyecto Life Memory: Hacia la depuradora del siglo XXI

PRÁCTICAS DE EMPRESA. EDAR DE BENIDORM

Titulación(es) Titulación Centro Curso Periodo Grado de Ingeniería Química ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA

ÍNDICE. Anexo 3 1. MECANISMO HIDRÓLISIS ACIDOGÉNESIS ACETOGÉNESIS METANOGÉNESIS...3

MEMORIA DE CÁLCULO DISEÑO DEL PROCESO

ARRANQUE Y ESTABILIZACIÓN DE UN REACTOR DISCONTINUO QUE UTILIZA BIOMASA SUSPENDIDA PARA LA ELIMINACIÓN DE FÓSFORO.

Gradientes de estabilización de lodos de acuerdo a los regímenes de procesos de fangos activos. Teoría y practica

Sistema MBR trabajando en condiciones extremas. Caso de estudio: EDAR Condado de Alhama (Murcia) 14 de Junio de 2017 Rubén Romero Noguera

Sector Harinas. Fichas Sectoriales

Horas de práctica por semana

CAPÍTULO 8 CONCLUSIONES FINALES

2. Respirometría BM. Key words Respirometry, Bioindication, slowly biodegradable, recalcitrant, activated sludge,

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLAN ÓRGANO INTERNO QUE COORDINA EL PROGRAMA DE LA ASIGNATURA:

UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA

USO DE HUMEDALES ARTIFICIALES DE FLUJO SUBSUPERFICIAL Y VERTICALES PARA POSTRATAMIENTO DE AGUAS RESIDUALES EN UNIDAD ESCOLAR DE LA DICIVA

Efecto del número de ciclos anóxicos/aerobios sobre la eliminación biológica de nitrógeno en un sistema de fangos activados en discontinuo (SBR)*

TOMANDO EL PULSO A LA ACTIVIDAD BIOLÓGICA DE UN FANGO ACTIVO POR RESPIROMETRÍA

lndice general Prólogo XIX

Publicado en Tecnologia del agua en septiembre de 2001.

Respirometría BM en los procesos de fangos activos. (básico)

Nombre de la asignatura: TRATAMIENTO DE AGUAS RESIDUALES, DISPOSICIÓN Y REUSO. Ciclo Formativo: Básico ( ) Profesional ( ) Especializado ( x )

INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS INGENIERÍA EN SISTEMAS AMBIENTALES

TRATAMIENTO DE LOS LIXIVIADOS DE PRADOS DE LA MONTAÑA EN UN SISTEMA DE LODOS ACTIVADOS. Simón González Martínez y Cruz Alberto Valdivia Soto

INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS INGENIERÍA EN SISTEMAS AMBIENTALES

CONTENIDOS (Unidades, Temas y Subtemas)

Modelos matemáticos de sistemas acuáticos dinámicos \5\

SST-0275/2009 NUEVA TECNOLOGÍA DE CONTAMINANTES EMERGENTES EN AGUAS RESIDUALES

SEGUIMIENTO MICROBIOLÓGICO

Universidad de San Carlos de Guatemala Facultad de Agronomia Computo I CALIDAD DE AGUA SUPERFICIAL EN LATINOAMERICA

OPTIMIZACIÓN DE UNA PLANTA DE TRATAMIENTO DE PURINES DE CERDO MEDIANTE UN SISTEMA DE FANGOS ACTIVOS

Transcripción:

Resumen Se describe la experiencia realizada en una EDAR de fangos activados para la eliminación del foaming producido en dos temporadas diferentes y ocasionado principalmente por Nocardia sp. y Microthrix parvicela. Se instala un selector previo al reactor biológico, mediante la conversión del desarenador presente en la EDAR, en un selector óxico y se realiza un control analítico en el selector observando el porcentaje de reducción de DQO que tiene lugar en él. Se realizan respirometrías que aportan más datos a la experiencia y se observa como radicalmente el DSVI en el fango biológico disminuye y como la desaparición total de espumas en reactores y decantadores, tiene lugar al cabo de 35-40 días de haber puesto en servicio el selector. Esta experiencia ha sido realizada por Infilco, en una de las plantas de tratamiento de aguas residuales que actualmente está explotando. Palabras clave: Espumas, selector, microorganismos filamentosos, índice volumétrico de fangos diluido, carga másica. Eliminación del foaming filamentoso en una EDAR mediante un selector aerobio Por: María Dolores López Carrasco, Joserra Jordá Llona, Pedro Polo Cañas Infilco Española, S.A. Avenida de Burgos 29 28036 Madrid Tel.: 917 663 400 E-mail: infilco@infilco.es Web: www.infilco.es 30 Abstract Elimination of filamentous foaming by means of an aerobic selector in a waste water treatment plant Description of the experience realized in an activated sludge WWTP for the elimination of foaming produced in two different seasons and caused mainly by Nocardia sp. and Microthrix parvicela. Previously to the biological reactor, a selector is installed by means of converting the WWTP grit chamber into an oxic selector and analytical control in the selector is done observing the percentage of COD reduction which occurs in it. Respirometries are realized which provide more data to the experience and it is observed how radically DSVI decreases in activated sludge and the total disappearance of foaming in reactors and settling tanks after 35-40 days of selector operation. This experience has been realized by Infilco, in a wastewater treatment plant which is being operated at present. Keywords: Foaming, selector, filamentous microorganisms, diluted sludge volume index DSVI, food ratio. 1. Introducción La aparición de espumas filamentosas en esta EDAR tuvo su inicio de forma intermitente y con diferente grado de importancia desde el año 2001. La causa principal es el hecho de que el agua influente presenta las características de un agua muy poco cargada en diferentes épocas del año. Esto, junto a la entrada de vertidos de grasa y el trabajar a edades de fango altas, para garantizar la estabilización del fango, crea las condiciones idóneas para la aparición de este tipo de microorganismos (Nocardia sp. y M.parvicela) causantes de una gran cantidad de espumas en la superficie de las unidades de tratamiento (Jenkins, et al., 1993). En un principio se intentó controlar mediante la utilización de hipoclorito sódico instalando un sistema de aspersión en la salida del reactor biológico, consiguiendo resultados en los niveles de espumas, pero en ningún caso la eliminación del problema, pues la realimentación es continua y el sistema no acaba con ninguna de las condiciones que favorecen la aparición de las citadas poblaciones de organismos filamentosos. En vista de que, entre los objetivos de un selector está la de elevar la carga másica y esto haría cambiar las condiciones habituales en la planta, se planteó la posibilidad de convertir el desarenador en un selector aerobio y estudiar su comportamiento e influencia sobre las poblaciones de bacterias filamentosas causantes del foaming en la EDAR. Ya es sabido que la utilización de selectores previos al reactor biológico es una de las formas de controlar y eliminar los efectos producidos por algunas de las especies de bacterias filamentosas que aparecen habitualmente en las plantas de tratamiento de aguas residuales. Un selector del tipo que nos ocupa, básicamente es un reactor donde se crean las condiciones necesarias para promover un mayor crecimiento de los microorganismos formadores de flóculo, frente a los micro-

Figura 1. Variación de la velocidad de crecimiento frente a la concentración del sustrato en el medio. organismos formadores de filamentos. Este tipo de reactor se caracteriza por su alta carga másica y su corto período de retención hidráulico. La principal finalidad del selector es el de mantener un equilibrio entre las poblaciones de bacterias formadoras de flóculo y filamentosas del sistema. Existen dos tipos de comportamiento de los microorganismos (Wanner, J., 1994): K-Strategy: son aquellos microorganismos que presentan constantes de semisaturación (Ks) bajas. R-Strategy: son aquellos microorganismos que presentan constantes altas de semisaturación. Se basa en combatir el problema estableciendo una competencia entre poblaciones de microorganismos que presentan estos dos tipos de comportamiento. Esta competencia se fundamenta en mecanismos de selección cinética y/o metabólica y pretende dar ventaja a los formadores de floculo y que sean estos los que tengan acceso al sustrato, de esta manera se reproducirán en mayor proporción que los filamentosos. En los mecanismos de selección cinética, las condiciones de desarrollo en el selector son controladas para favorecer un tipo específico de microorganismo, mientras que la selección metabólica esta basado en la habilidad de los microorganismos para utilizar el carbono y las fuentes de energía bajo diferentes condiciones de cultivo. Las bacterias no filamentosos tienen una alta velocidad máxima de crecimiento (_m), pero baja afinidad por el sustrato (KS). Sin embargo las bacterias formadoras de filamentos tienen una menor velocidad máxima de crecimiento pero mayor afinidad por el sustrato (Figura 1). Así pues en el reactor de la EDAR, La baja concentración de sustrato que se encuentra en el licor mezcla, favorece el crecimiento de los organismos filamentosos. Los selectores pueden trabajar en condiciones óxicas, anóxicas o anaerobias dependiendo de los tipos filamentosos predominantes (Wanner, J. 1994). Estos diferentes tipos de selector presentan diferentes condiciones de diseño pudiéndose comparar de la siguiente forma (Water Environment Federation, 1994). Según las características del selector se distinguen en: Selector aerobio. Proceso sencillo, requiere recirculación externa, y un sistema de aporte de aeración que proporcione el oxígeno necesario. Selector anaerobio. Sólo requiere recirculación externa. Es el más simple de operar. Puede no ser compatible con SRT altas. Requiere cuidados en el diseño para minimizar la introducción de nitratos y oxígeno en el sistema. La incorporación de materia orgánica por las PAO favorece el crecimiento de los formadores de flóculo. La selección metabólica de los microorganismos, alternando condiciones anaerobias-aerobias esta relacionado con la eliminación de fósforo. Las bacterias fermentativas y las PAO contribuyen a una mejor floculación en los fangos activos. Selector anóxico. Requiere una recirculación con nitratos, por lo que no es factible en procesos que no tengan nitrificación. Tiende a equilibrar la alcalinidad consumida en la nitrificación, requiere cuidados en el diseño y operación para minimizar la introducción de oxígeno en la zona anóxica. 2. Descripción de la experiencia La planta donde se desarrolla la experiencia está diseñada para la eliminación de materia carbonosa, nitrógeno y estabilización del fango. La EDAR no dispone de ningún tipo de selector de los descritos anteriormente, por lo que se planteó la posibilidad de utilizar los canales desarenadores, recirculando fango procedente del reactor biológico, esta configuración nos permitirá estudiar el comportamiento e influencia sobre las poblaciones de bacterias filamentosas causantes del foaming en la EDAR (principalmente Nocardia sp. y M.parvicella). Según la bibliografía las cargas másicas recomendadas son entre 9 y 11 kg de DQO/MLVSS d y los tiempos de retención hidráulico variaron entre 15-30 minutos (Neil K. Mackey, 1998). 3. Materiales y métodos La experiencia se implementó una primera vez en abril del 2003 y una segunda en mayo del 2004. En ambas se realizaron observaciones microbiológicas del fango y las espumas presentes a lo largo del período de funcionamiento del selector, para así conocer exactamente que tipo de bacterias son las que estaban originando el problema y su evolución (Salvado, H., 1990 ). Posteriormente se llevó a cabo un control analítico en los puntos de entrada y salida del selector tomando muestras puntuales a la misma hora y teniendo en cuenta el tiempo de retención hidráulico del selector. Se analizaron los siguientes parámetros según el Standard Methods (For the Examination of Water and Wastewater. 17 Ed.): demanda química de oxígeno total (DQOt), demanda química de oxígeno filtrada (DQOf), demanda química de oxígeno soluble (DQOsoluble), oxígeno disuelto, temperatura y sólidos suspendidos totales y volátiles en el selector. Para analizar la DQOt de entrada y salida del selector se dejó decantar 31

32 previamente la muestra, la DQOf se analizó a partir de la muestra filtrada previamente con un filtro de 0,45 micras, para determinar la DQO soluble se sometió a la muestra a una coagulación con sulfato de zinc (Melcer, H. et al. 2003). El índice volumétrico de fangos diluido (DSVI) fue el parámetro a controlar en el fango biológico. Los detalles del método del DSVI se encuentran en Ekama, G.A., et al., 1997. Por último también se realizaron respirometrías (Oxigen Uptake Rate) de las muestras de entrada y salida del selector mediante un equipo de medición de consumo de oxígeno en continuo (Melcer, H. Dold, P.L., Jones, R.M., Bye, C.M., Takacs, I., Stensel, H.D., Wilson, A.W., Sun, P., Bury, S. 2003, Klaus Dircks et al., 2003). 4. Resultados 4.1. Caso 1 Tras analizar microscópicamente la muestra se pudo constatar que el organismo más abundante causante del foaming en el licor mezcla es Nocardia sp. Se puso en servicio como selector el desarenador con la recirculación de fangos adecuada para conseguir las condiciones de funcionamiento descritas anteriormente, obteniéndose los siguientes resultados. Analizando el agua de entrada y salida del selector y trabajando a distintas cargas másicas en el selector se pudo observar que: La reducción de la DQO filtrada varía entre el 4 y el 20%. Hay que tener en cuenta las reacciones de hidrólisis que se están produciendo simultáneamente en el selector, por lo que el resultado final de DQOf puede enmascarar la reducción de DQO fácilmente biodegradable esperada: Disminución considerable del DSVI a valores menores de 100 (Figura 2). Recordemos que se considera que un fango comienza Figura 2. Evolución del DSVI durante el funcionamiento del selector. Los microorganismos causantes del Foaming eran Nocardia sp. y M. Parvicella a tener problemas de sedimentabilidad cuando supera un DSVI de 150 (Lee et al., 1983). Desaparición total de espumas al cabo de los 40 días del inicio de la experiencia (Figura 3 y 4). 4.2. Caso 2 Tras analizar al microscopio la muestra se pudo determinar que los microorganismos predominantes causantes del foaming eran Nocardia sp. y M. Parvicella en proporciones similares. El inicio de la experiencia tuvo lugar en el mes de mayo 2004, utilizando de nuevo el selector según las características descritas anteriormente. Disminución del DSVI a valores < 100. La reducción de la DQO filtrada varió entre 15 y un 36 %. Disminución de los microorganismos filamentosos presentes en el sistema. Según los resultados obtenidos, como se puede observar en la Tabla 1, el porcentaje de reducción de m/ml de microorganismos filamentosos al cabo de los 36 días de haber iniciado la experiencia era de 77%. La bibliografía indica que el nivel crítico a partir del cual podemos considerar que nos encontramos ante un proceso de bulking o foaming es de 200 metros de filamentos por mililitro (Salvado, H., Figuras 3 y 4. Aspecto del decantador secundario al inicio y al final de la prueba.

Mayo 2004 Junio 2004 Reducción Licor Espumas Licor Espumas Licor Espumas mezcla mezcla mezcla metros/ml metros/ml TOTAL Microorg. 300 10305 67.2-77.6% 100% Filamentosos Act. nocardiformes 81 8010 15.6-80% 100% M.parvicella 114 1665 6.0-94.7% 100% N.limicola III 6.0 0 0-100% 100% Tipo 0041 24.0 157.5 14.4-40% 100% Tipo 1851 75.0 472.5 30-60% 100% Tabla 1 Tabla 1. Niveles de los distintos microorganismos filamentosos al comienzo y al final de la experiencia del caso 2 y sus porcentajes de reducción. 1990). La reducción del 77% en metros de filamentos totales por ml, desde la puesta en marcha del selector hasta su parada, ha conseguido dejar esta cifra en 67 m/ml en el licor mezcla y la eliminación total de las espumas, por ello en la Tabla 1 no aparece analítica de las mismas. La disminución de M.parvicella es de un 94% y de Actinomicetos nocardiformes es de un 80%, llegando a desaparecer algunas especies que aparecían de forma incipiente al principio de la experiencia como es el caso de Nostocoida limicola III. Como resultado de las respirometrías realizadas podemos ver en la Figura 5 que el porcentaje de reducción de la DQO fácilmente biodegradable es de un 45%. El agua filtrada de entrada y salida del selector en estudio se sometió a ensayos de respirometría, determinando el consumo de oxígeno (OUR mg/l h) frente al tiempo. Estos ensayos se realizan mediante un equipo diseñado especialmente para ello y conectado a un ordenador que almacena toda la información. De las curvas presentadas en la Figura 5 nos interesa analizar especialmente la primera parte de las dos curvas, es decir, hasta el punto que marca el segundo 1.200, que corresponde al oxígeno consumido para la oxidación de la DQO fácilmente biodegradable. Figura 5. Curvas resultantes de los ensayos de OUR del agua de entrada y salida del selector aerobio. Podemos apreciar que el área que delimita la curva correspondiente al agua de entrada al selector es mayor que la delimitada por la respirometría del agua de salida. Esta área corresponde a los mg/l de oxígeno consumidos por el fango activo para oxidar la muestra, así pues la diferencia del área que delimitan las dos curvas resultará ser la DQO consumida en el selector. Si nos centramos en la primera parte de las dos curvas, hasta el punto de inflexión sobre el segundo 1.200, veremos que esta diferencia se encuentra entorno al 45%. En las condiciones de funcionamiento del selector de alta carga másica, esta DQO rápidamente biodegradable consumida, como ya se explicó anteriormente, favorece el crecimiento de las bacterias formadoras de flóculo frente a las filamentosas, haciendo que la composición de poblaciones en el fango activo vaya cambiando. 5. Conclusiones Tanto en el caso 1 como en el caso 2, al cabo de los 35-40 días de funcionamiento del selector las espumas causadas por los microorganismos filamentosos desaparecen totalmente del sistema. La asimilación de la DQO en el selector en condiciones de muy alta carga másica, como ya contempla la bibliografía, favorece a las poblaciones de bacterias formadoras de flóculo, que se van imponiendo en la comunidad bacteriana, como evidencia el seguimiento de las observaciones en el microscopio. Se consiguió una reducción elevada de los organismos filamentosos, causantes de los problemas de espumas y sedimentabilidad del fango, concretamente una reducción del 94,7% de M.parvicela, 80% de Actinomicetos nocardiformes. En ambas experiencias se consigue mejorar la característica de sedimentabilidad del fango, evidenciada en una disminución considerable del DSVI, a valores inferiores a 100. 33

La utilización del selector como forma de control de este tipo de microorganismos resulta más ventajoso económicamente, frente a la dosificación de hipoclorito. Así mismo, ofrece ventajas de seguridad, tanto para la biomasa activa como para el personal encargado de manipular el producto. El sistema de control mediante selector puede convertirse en una herramienta muy eficaz de control preventivo frente a la aparición de un foaming o un bulking filamentoso causado por el desarrollo masivo de microorganismos filamentosos del tipo M.parvicela y Actinomicetos nocardiformes. Una vez más, se pone de manifiesto la utilidad del selector como de elemento de control en las EDARs, y debería estar presente en todo nuevo proyecto de construcción de plantas de fangos activos. 6. Bibliografía [1] APHA-AWWA-WPCF. Métodos Normalizados para el análisis de aguas potables y residuales. (1992) Ed. Díaz de Santos. [2] Ekama, G.A. Barnard, J.L., Günthert, F.W., Krebs, P., McCorquodale, J.A., Parker, D.S. and Wahlberg, E.J. (1997) Secondary Settling Tanks: Theory, Modeling, Design and Operation. IAWQ Scientific and Technical Report, nº 6, (3), 41-65. [3] Jenkins D., Richard M.G. & Daigger G.T. (1993). Manual on the causes and control of activated sludge bulking and foaming. 2ªEd. ISBN-B-87371-873-9. [4] Klans Discks, Meter F.Pind, Haus Mosbaek an Mogens Hense. Yield determination by respiremetry. The possible influence of storage under aerobic conditions in activated sludge. ISSN 0378-4738. Water SA Vol.25 Nº 1 January 1999. [5] Lee, S.E., Koopman, B.L., Bode, H and Jenkins,D., (1983) Evaluation of alternative sludge settleability indices. Wat. Res. 17 (10) 1427-1431. [6] Melcer, H. Dold, P.L., Jones, R.M., Bye, C.M., Takacs, I., Stensel, H.D., Wilson,A.W., Sun, P., Bury, S. (2003). Methods for wastewater characterization in activated sludge modeling. Copublished by Water Environment Federation and IWA. [7] Neil K. Mackey. (1998). Controlling filaments in a high-strength industrial wastewater treatement using the selector process. Faculty of the Cchool of Civil Engineering of Purdue University. [8] Salvado, H. (1990). Método rápido para el control del bulking: técnica simple y rápida de contaje de microorganismos filamentosos. Tecnología del agua Vol. 67: 60-3. [9] Wanner, J. (1994). Activated Sludge Bulking and Foaming Control. Technomic Publishing co.ins. Lancaster, Basel. [10] Water Environtment Federation (1992). Design of Municipal Wastewater Treatement Plants. Volume I: Chapters 1-12. 34 SECTORES Agua Construcción Distribución/Alimentación Electrónica Envase y Embalaje Hospitalario Hostelería/Catering Industrial Madera Metal Piedra Natural Seguros Soldadura Veterinaria Visite nuestra web www.rbi.es Reed Business Information S.A., una de las editoriales españolas de mayor prestigio y que ofrece publicaciones y servicios dirigidos a diferentes sectores profesionales