Diseño y construcción de un monitor cardiaco sencillo y económico.



Documentos relacionados
SISTEMA ALARMA DOMESTICO MEMORIA

SOMI XVIII Congreso de Instrumentación MICROONDAS JRA1878 TRANSMISIÓN DE AUDIO Y VIDEO A TRAVÉS DE FIBRA ÓPTICA CON PREMODULACIÓN PCM

DISEÑO E IMPLEMENTACIÓN DE UNA TARJETA DE ADQUISICIÓN DE DATOS PARA EL LABORATORIO DE TELECOMUNICACIONES DE LA FIEC.

Unidad Orientativa (Electrónica) Amplificadores Operacionales

SOMI XVIII Congreso de Instrumentación Ingeniería Biomédica EHM1899

Nociones básicas sobre adquisición de señales

DISEÑO DE UN PLC DOMÉSTICO UTILIZANDO UN MICROCONTROLADOR PIC-18F4550

Sistema Automático de Monitoreo y Diagnóstico de Signos Vitales de Pacientes

Tema 07: Acondicionamiento

Barcelona, 4 junio de 2009.

Gestión digital sencilla de controladores de fuentes de alimentación analógicas

Comparadores de tensión

UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS

JUEGO DE CARRERA DE AUTOS EN LCD

Universidad Nacional de Piura APLICACIONES DE LOS AMPLIFICADORES OPERACIONALES: 1. MEDICION DE LA CORRIENTE DE UN FOTOREDUCTOR:

instrumento virtual que se realizó en LabVIEW 8.5, tomando en cuenta las consideraciones

Monitoreo de Temperatura Inalámbrico de Bajo Costo Utilizando Radio-Transmisor Comercial

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación

Hibridos Telefónicos Automáticos

CAPÍTULO III. ETAPA DE CONVERSIÓN Y FILTRADO. de la industria tienen algo en común, la utilización de electrónica de potencia dentro de

Nombre de la asignatura: Amplificadores Operacionales. Créditos: Aportación al perfil:

Monitor de Electrocardiografía a través de una Computadora Personal

Practica 2 Filtro Activo Butterworth Pasa-Banda de Segundo Orden

Control de la temperatura ambiente en un invernadero tipo venlo, mediante el uso del microcontrolador 8031

El acondicionamiento de una señal consiste en la manipulación electrónica de dicha señal,

VIBRACIONES MECANICAS Y ESTRUCTURALES. TITULAR: Ing. E. Alvarez Alumno: Germán Fuschetto

Estructura de los sistemas de distribución de radiodifusión sonora y de TV Objetivos

solecméxico Circuitos de disparo 1 CIRCUITOS DE DISPARO SCHMITT - TRIGER

Osciloscopios de Visualización de Dos Señales

UNIVERSIDAD DE SEVILLA

Apuntes para el diseño de un amplificador multietapas con TBJs

Procesamiento digital de señales y radios definidas en software

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

PRACTICA N 4 ASTABLES Y GENERADORES DE BARRIDO PREPARACIÓN TEÓRICA

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática Circuitos electrónicos Otoño 2000

MONITOREO DIGITAL DE LA RESPIRACION


Tema 11: Instrumentación virtual

Esta fuente se encarga de convertir una tensión de ca a una tensión de cd proporcionando la corriente necesaria para la carga.

EL PROGRAMA PROTEUS Análisis de Circuitos

PROYECTO DISEÑO Y CONSTRUCCIÓN DE UN MONITOR DE SIGNOS VITALES BASADO EN UN COMPUTADOR PORTÁTIL

ÍNDICE MEMÓRIA Capítulo 1: Introducción... 3 Capítulo 2: el osciloscopio... 5 Capítulo 3: el front-end analógico... 10

SIMULADOR BÁSICO DE ELECTRÓNICA ANALÓGICA

En el presente capítulo se describe el procedimiento seguido para obtener una señal de

Maqueta: Osciloscopio y generador

UNIVERSIDAD DE ESPECIALIDADES ESPIRITU SANTO FACULTAD DE SISTEMAS TELECOMUNICACIONES Y ELECTRONICA SYLLABUS

Usando los Codificadores Cuadráticos

Buscar conocimientos previos Comentar esta solicitudver PDFDescargar PDF

Fábrica Argentina de Equipamiento Hospitalario. Electrocardiografos Oxisensores reusables Monitores para signos vitales

SELECCION DE UN LCD. LCD es la sigla de Liquid Crystal Display (visualizador de cristal líquido).

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA

La Instrumentación Tradicional:

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO

APLICACIONES CON OPTOS

Preguntas teóricas de la Clase N 5

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3

CAPITULO 3. SENSOR DE TEMPERATURA

MÁXIMA TENSIÓN EN MODO COMÚN DE AMPLIFICADORES.

DISEÑO E IMPLEMENTACIÓN DE UN EKG CON SALIDA A PANTALLA DE TELEVISOR

Proyecto final "Sistema de instrumentación virtual"

Armónicas de todo tipo, solución: Active Filter

TITULO: DISEÑO Y CONSTRUCCIÓN DE UN INVERSOR TRIFASICO TIPO PUENTE CON TRANSISTORES

M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, Capítulos 6, 15 y 16. Introducción a la Electrónica

INSTRUMENTACIÓN AVANZADA Departamento de Ingeniería Eléctrica y Electromecánica Facultad de Ingeniería Universidad Nacional de Mar del Plata

Filtros pasa banda. Filtro pasa bajos. Filtro pasa medios Filtro pasa altos

UNIVERSIDAD TECNICA DEL NORTE

CONTROL DE TEMPERATURA

MEMORIAS SOMI XV TEL-19

CAPÍTULO 7 7. CONCLUSIONES

SISTEMA DE ADQUISICIÓN DE DATOS BASADO EN UN MICROCONTROLADOR COMO SERVIDOR WEB

HERRAMIENTA PARA EL APRENDIZAJE DE UN SISTEMA DE ADQUISICIÓN DE DATOS

Procesamiento Analógico de Señales

Usos de un Analizador de Respuesta en Frecuencia

CONTROL AUTOMATICO DE TEMPERATURA

CONVERTIDORES DIGITAL ANALÓGICO Y ANALÓGICO - DIGITAL

Conclusiones, aportaciones y sugerencias para futuros trabajos

UNIVERSIDAD DE ALCALÁ DEPARTAMENTO DE ELECTRÓNICA

FUENTES DE ALIMENTACION

CAPITULO VIII EL OSCILOSCOPIO

La forma de manejar esta controladora es mediante un ordenador utilizando algún lenguaje de programación (Por ejemplo.: C, Visual Basic, Logo,...).

CATEDRA de PROYECTO FINAL

Curso de Electricidad, Electrónica e Instrumentación Biomédica con Seguridad - CEEIBS -

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN

Usando un PIC para la Generación de Tonos de Audio

Tarjeta de aplicación para circuito de voz de 60 seg

ANÁLISIS BÁSICO DE CIRCUITOS CON AMPLIFICADORES OPERACIONALES

DISEÑO DEL SISTEMA DE CONTROL TÉRMICO PARA LAS UNIDADES DE GENERACIÓN DE LA CENTRAL HIDROELÉCTRICA PAUTE FASE A-B-C

MODULO Nº6 TIRISTORES UNIDIRECCIONALES

PRÁCTICA II: ADQUISICIÓN DE DATOS CON LABVIEW

PATENTES Y MARCAS. Strawinskylaan XX Amsterdam, NL

Gamatronic. Innovando en la. Tradición

PRACTICA N0.7 UTILIZACIÓN DE UN CONVERTIDOR A/D OBJETIVO ESPECÍFICO: APLICAR EL CONVERTIDOR ADC0804 EN UN CONTROL DE TEMPERATURA

RECTIFICADORES PARA PROTECCIÓN CATÓDICA DE TUBERÍAS, CON CAPACIDAD DE AUTORREGULACIÓN Y TELEGESTIÓN MODELOS LUMIDIM SPC-01 Y SPC-02

Diseño e implementación de un amplificador de audio de ganancia programable

CELERINET ENERO-JUNIO 2013 ESPECIAL

Ingeniería electrónica FOTOVOLTAICOS SISTEMA DE CARACTERIZACIÓN N DE PANELES. Autor: Nuria Porcel García

Osciloscopio TDS 220 Tektronix

DISEÑO DIDÁCTICO DE UN RECTIFICADOR CONTROLADO TRIFÁSICO

UNIVERSIDADA NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Ingeniería. Benítez García José Roberto. Patricia Hong Ciron. Circuitos eléctricos

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF

Transcripción:

Diseño y construcción de un monitor cardiaco sencillo y económico. Carlos Javier Castro Pachay, Pedro Rafael Sánchez Garcia, Miguel Yapur Auad Egresado en Ingeniería en Electricidad, especialización Electrónica Industrial y Automatización 00. Egresado en Ingeniería en Electricidad, especialización Electrónica 00. Director del Tópico de Graduación en Electrónica Médica. Ingeniero en Electricidad, especialización Electrónica, ESPOL, 9. M.Sc. en Ingeniería Biomédica. University of Texas, 9. Profesor de la ESPOL desde 9. Resumen Se trata de diseñar y construir un dispositivo portátil, sencillo y económico para el monitoreo de señales cardiacas. El sistema está compuesto por una etapa analógica que se encarga de acondicionar la señal presente en el paciente y una etapa digital, la cual está compuesta por un microcontrolador y una pantalla LCD inteligente de cristal líquido en la cual se mostrará la onda cardiaca. El sistema analógico se encarga de eliminar el ruido presente en el paciente, elevar el nivel de la señal de entrada a un nivel tal que permita el normal funcionamiento de la pantalla LCD gráfica, y por último detectar el pico más alto de la señal para su posterior conversión en pulsos de voltios que serán aprovechados por el microcontrolador para los cálculos de la frecuencia cardiaca. El sistema digital está desarrollado sobre una plataforma microcontroladora, la cual se encarga de adquirir la señal analógica, convertirla en digital, para luego presentarla a través de la pantalla LCD.

Summary It is to design and to build a portable, simple and economic device for the monitoring of heart signs. The system is compound for an analogical stage that takes charge of conditioning the present sign in the patient and a digital stage, which is composed by a microchip and a screen intelligent LCD of liquid glass in which the heart wave will be shown. The analogical system takes charge of eliminating the present noise in the patient, to elevate the level from the entrance sign to a such level that allows the normal operation of the screen LCD graph, and lastly to detect the highest pick in the sign for its later conversion in pulses of volts that will be taken advantage of by the microchip for the calculations of the heart frequency. The digital system is developed on a platform of two microchip, which takes charge of acquiring the analogical sign, to convert it in digital, it stops then to present it through the screen LCD. Introducción. El electrocardiógrafo nos permite visualizar la actividad eléctrica del corazón, la cual nos da información vital al momento de conocer el estado del músculo cardiaco. Para obtener dicha señal eléctrica es necesario emplear una interfaz física, la cual está compuesta por electrodos metálicos de Ag/AgCl (Plata / Cloruro de Plata). La señal obtenida debe ser amplificada y filtrada, ya que una característica de los potenciales bioeléctricos es su baja amplitud, que en este caso está entre 00uV y mv. Para amplificar dichos potenciales se deben emplear construcciones electrónicas especiales. Además es necesario que el equipo presente una elevada impedancia de entrada para disminuir las corrientes de fuga, las cuales pueden ocasionar que algún evento externo afecte el normal funcionamiento del corazón.

Contenido. Adquisición de la onda cardiaca (EKG). El electrocardiógrafo nos permite visualizar la actividad eléctrica del corazón, la cual nos da información vital al momento de conocer el estado del músculo cardiaco. Para obtener dicha señal eléctrica es necesario emplear una interfaz física, la cual está compuesta por electrodos metálicos de Ag/AgCl (Plata / Cloruro de Plata). Amplificador de Instrumentación La señal obtenida debe ser amplificada y filtrada, ya que una característica de los potenciales bioeléctricos es su baja amplitud, en este caso de 00uV a mv. Para elevar dichos potenciales se deben emplear construcciones electrónicas especiales. Además es necesario que el equipo presente una elevada impedancia de entrada para disminuir las corrientes de fuga, las cuales pueden ocasionar que algún evento externo afecte el normal funcionamiento del corazón. Por otro lado, además de la señal eléctrica que excita las células cardiacas, existen interferencias de todo tipo: la actividad muscular genera potenciales que no aportan nada al estudio y la red eléctrica induce sobre el cuerpo corrientes que distorsionan la verdadera actividad cardiaca. Por esos motivos la etapa de entrada está constituida por un amplificador de instrumentación, el cual debe ofrecer una elevada Relación al Modo Común (CMRR). Además, la configuración otorga una elevada impedancia de entrada y ganancia variable; estas características permiten obtener una señal con mayor amplitud y bajo nivel de ruido. El circuito de la fig.. nos muestra la forma como está estructurado el amplificador de instrumentación.

+9V U:A RA C R pf T L0 R -9 V RL R R k 9 0 U:C V R T L0 k R = R U:B R = R LA R R = R para simetría C pf T L0 R Fig..: Amplificador de Instrumentación. Descripción y construcción del filtro pasa banda. El propósito de usar este filtro es eliminar toda señal que no corresponda a la actividad cardiaca, la cual corresponde a las frecuencias en el rango entre 0.0 Hz y 00 Hz, por lo que, todas las señales por debajo de 0.0 Hz pueden ser causadas por los electrodos y la superficie de la piel que alcanza niveles de potenciales que pueden incluso llegar a saturar los circuitos del amplificador; y por arriba de los 00 Hz está comprobado que no son señales cardiacas; éstas pueden ser señales producidas por la actividad muscular. El circuito de la figura. nos muestra la construcción de un filtro pasa-banda.

C.nF R9 R0 0k V C.uF C 0.uF +9V R 0k -9 V U:D TL0 V Figura.: Filtro pasa-banda. Filtro Notch. En cuanto a la seguridad del paciente, es muy importante mantenerlo aislado de la línea de corriente eléctrica, para ello se emplea una configuración con alimentación aislada, seguida de una etapa de rechazo de toda señal de ruido de los 0 Hz, proveniente de las líneas de alimentación como se muestra en la fig.. R k R k C 0.uF +9V V U:A V C k RV C -9 V TL0 0.uF +9V 0.uF U:B TL0 RV -9 V

Figura.: NOTCH de 0 Hz. Construcción de la etapa de aislamiento eléctrico mediante un opto-aislador. Por otra parte, para disminuir el riesgo de shock eléctrico se utiliza un opto-aislador, para luego amplificar la señal cardiaca a un nivel de voltaje adecuado. V R k U OPTOCOUPLER-NPN R 0M V R9.k +V -V U:A TL0 V Leyenda: = Tierra flotante = Tierra física +V Figura.: Circuito de la etapa de aislamiento mediante un opto-acoplador. Construcción del detector de pico QRS para medir la frecuencia cardiaca. En cuanto a la frecuencia cardiaca, la señal esta es determinada por medio de un circuito electrónico llamado Detector de Complejo QRS que se encarga de convertir el complejo QRS en una señal rectangular para su posterior conteo.

+V R0 00k R.M D N D N R9 9 U:C +V D N D N D N D N 00k 0 T L0 U:A T L0 U:B R -V.M T L0 V C9 0.uF R.M +V -V U:A T L0 R k C0 0.0uF C 0.0uF R 0k R 0k R 0k U:B T L0 C uf R 0k R 0k +V R +V U NE Q VCC R DC CV S a lida TH GND TR hacia el PIC FA R.k C.uF C 0.0uF D LED Diagrama esquemático del bloque analógico

Descripción de la etapa Digital. La visualización de la señal cardiaca se puede realizar de diversas maneras: sobre papel (electrocardiograma) o sobre dispositivos de representación no permanente, como son las pantallas de cristal líquido inteligente LCD, el monitor de una PC o sobre un tubo de rayos catódicos. El proyecto realizado, utiliza una pantalla de cristal líquido inteligente LCD, la misma que se comunicará con la etapa analógica a través de un microcontrolador. Este microcontrolador tendrá incorporado en su interior un convertidor analógico /digital para su posterior procesamiento de datos. CONCLUSIONES: En el desarrollo de este proyecto hemos podido aprender a utilizar y a programar microcontroladores PIC FA y FA ambos de la familia de rango medio, cuyo fabricante es microchip y además manejar pantallas de cristal líquido LCD inteligentes (pantallas LCD gráficas) tanto para texto como para gráficos. Aprendimos a utilizar los conceptos de acondicionamiento de señal, los cuales son importantes cuando vamos a realizar una conversión de una señal analógica a digital. En el desarrollo de la etapa analógica aprendimos la importancia del amplificador de instrumentación, del filtrado de la señal cardiaca y del aislamiento eléctrico del paciente para evitar corrientes de fugas que pueden afectarlo a éste.

BIBLIOGRAFÍA:. Electrónica y Teoría de Circuitos por Boylestad R. y Nashelsky. Amplificadores operacionales y circuitos integrados lineales por Robert F. Coughlin y Frederick F. Driscoll.. Analog Integrated Circuit Applications por J. Michael Jacob. Manual de Programación de microchip.. Manual de instrucciones para la programación de LCD controlador KS00 Proporcionado por el fabricante.

Diagrama esquemático del circuito digital RA0/AN0 RA/AN RA/AN/VREF- RA/T0CKI RA/AN/SS RE0/AN/RD RE/AN/WR 9 RE/AN/CS 0 OSC/CLKIN OSC/CLKOUT RC/TOSI/CCP RC/CCP RC/SCK/SCL RD0/PSP0 9 RD/PSP 0 RB/PGD 0 RB/PGC 9 RB RB RB/PGM RB RB RB0/INT RD/PSP 0 RD/PSP 9 RD/PSP RD/PSP RD/PSP RD/PSP RC/RX/DT RC/TX/CK RC/SDO RC/SDI/SDA RA/AN/VREF+ RC0/T OSO/T CKI MCLR/Vpp/THV U PICF VDD=+V VSS=GND CS CS GND VCC V0 DI R/W E DB0 9 DB 0 DB DB DB DB DB DB RST -Vout LCD LGMBSR +V +V RV AM FM + - U:A TL0 +V -V R R R R k OSC/CLKIN RB0/INT RB RB RB 9 RB 0 RB RB RB RA0 RA RA RA RA/T0CKI OSC/CLKOUT MCLR U PICFA VDD=+V VSS=GND +V -.V LS SPEAKER D BRADICARDIA D TAQUICARDIA R 0 AM FM + - U:A TL0 +V R -9V +9V X CRYSTAL C nf