Capítulo 8 Seguridad en Redes: Integridad de Mensajes e seguro. Basado en: Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross.

Documentos relacionados
Capítulo 8: Seguridad en Redes - II

Tecnologías Grid Seguridad en entornos grid

Capítulo 8, Sección 8.6: IPsec

Capítulo 8 Seguridad en Redes Generalidades y Principios. Basado en: Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross Addison-Wesley

Seguridad Informática: Criptografía (II)

Capítulo 8 Seguridad en Redes Conexiones TCP Seguras: SSL

Conceptos sobre firma y certificados digitales

Introducción a las Redes de Computadoras. Capítulo 8 Seguridad en la Red. Capítulo 8: Seguridad en la Red. Capítulo 8: Agenda

Certificados e Infraestructura de Llave Pública

Capítulo 8 Seguridad en Redes WEP, FW, IDS. Basado en: Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross.

Capítulo 6: Capa Enlace de Datos y LANS

Capítulo 5: Capa Enlace de Datos - I

Capítulo 8 Seguridad en redes

UD 3:Implantación de técnicas de seguridad remoto. Seguridad perimetral

Introducción a la Seguridad en Sistemas Informáticos

Criptografía básica. (extracto de ponencia Administración Electrónica ) EUITIO Universidad de Oviedo. Alejandro Secades Gómez

Función HASH o Función Resumen: Es un algoritmo matemático que asocia a cada documento un valor numérico diferente. Son algoritmos de un solo

Matemáticas para proteger la Información

TEMA 3: SERVICIO SSH

Seguridad en Sistemas de Información

MÓDULO 2 NIVEL AVANZADO Las fuentes de información institucional Unidad didáctica 5: La seguridad en las operaciones telemáticas

- Firma digital y cifrado de mensajes. Luis Villalta Márquez

Islas de confianza. tecnología en su totalidad. IXP Ecuador con más del 80% de las asignaciones contenidas cubiertas por ROAs

Clave Pública y Clave Privada

Un Poco de Historia Criptografía, Criptografía Clásica

Criptografía Hash para Firma Electrónica. Dr. Luis A. Lizama Pérez

Punto 2 Seguridad en la conexión de redes públicas. Juan Luis Cano

Capítulo 8: Seguridad en Redes - III

Firma Electrónica Certificado Digital

1. Qué es la criptografía? Objetivos. Fuentes. Qué es la criptografía? Tipos de funciones criptográficas. Distribución de claves

Seguridad en la capa IP IPSec

Haga clic para modificar el estilo de título del patrón

Sistemas criptográficos modernos

LO QUE SE TRATA DE EVITAR

IPSec Internet Protocol Security

Firmas digitales 2. Tema 4: Firmas digitales. Tema 4: Firmas digitales

REDES PRIVADAS VIRTUALES VPN

Capa Enlace de Datos: Virtual LANs Point-to-point protocol PPP Multiprotocol Level Switching MPLS

IPSec: Seguridad IP. Fernando Cano Espinosa Mayo de Fundamentos de SR. Aplicaciones y Estándares (William Stallings)

RFCs que definen la arquitectura de servicios y protocolos específicos utilizados en IPsec

MANUAL SOBRE FIRMA ELECTRÓNICA

PGP (Pretty Good Privacy)

Seguridad y criptografía

3.Criptografía Orientada a Objetos

Introducción a la Seguridad en Sistemas Distribuidos

TEMA 4: SERVICIOS HTTP

La Firma Digital. Seguridad en Redes TCP/IP. Tabla de Contenidos

Capítulo 5: Capa Enlace de Datos II

Tema 2 Certificación digital y firma electrónica

Tema 2: Autenticación y

Capítulo 3: Capa Transporte - I

Redes de comunicación

UNIVERSIDAD AUTÓNOMA DE MADRID ESCUELA POLITÉCNICA SUPERIOR ANTEPROYECTO. Diseño y desarrollo de una aplicación Android para el

Criptografía Básica. Alberto Escudero Pascual

CRIPTOGRAFÍA 5º CURSO DE INGENIERÍA INFORMÁTICA

Las redes privadas virtuales

Criptografía Simétrica / Asimétrica. La mejor forma de que la información este segura es que no exista, que no se guarden los datos, Martin Hellman

Tema 10 Seguridad y criptografía

Los mensajes en BGP están expuestos a las siguientes amenazas: Fabricación: Una parte no autorizada genera mensajes de actualización falsas.

Criptografía y firma digital

SEGURIDAD Y ALTA DISPONIBILIDAD. Nombre: Adrián de la Torre López

Protocolo WEP (Wired Equivalent Privacy) El algoritmo WEP es el estándar opcional de seguridad utilizado en redes inalámbricas

TEMA 40: Criptografía: Sistemas de clave simétrica y asimétrica, certificados digitales. Legislación en materia de firma electrónica.

Introducción a las Tecnologías web. Luis Marco Giménez Madrid 2003

Criptografía. Diplomado- TI (2) Criptografía. Diplomado-TI (2) 9 de enero de 2012

Tema: Funciones Hash MD5 y SHA-1

Servicio de Sellado de documentos vía correo-e. Francisco Jesús Monserrat Coll

Semana 12: Encriptación. Criptografía

o Seguridad en el acceso a recursos: o Establecer identidad del solicitante (Autentificación). o Permitir o denegar el acceso (Autorizar).

Criptografía y Seguridad de Datos Seguridad en el correo electrónico

CAPITULO 14 FIRMA ELECTRÓNICA

Riesgos potenciales en los servicios de red. Vicente Sánchez Patón I.E.S Gregorio Prieto. Tema 2 SAD

6.4 Criptología Elementos de la criptología

Firma electrónica y certificados digitales. Daniel Sánchez Martínez Universidad de Murcia 13 de Mayo de 2010

Seguridad. Carrera: SDC SATCA 1

intechractive.com Funciones Hash: Aplicaciones en los Sistemas Computacionales Elaborado por: Gimer A. Cervera Evia, Ph.D.

Sistema criptográfico de llave publica RSA. Análisis y diseño de algoritmos Jose F. Torres M.

Lección 3: Sistemas de Cifra con Clave Pública

Capítulo 4: Capa Red - II

Capítulo 4: Capa Red - IV

ANÁLISIS DE SERVICIOS VPN

ARQUITECTURA DE REDES Ejercicios. Tema 2-L1.

Capítulo 2: Capa Aplicación - I

PROBLEMAS DE SERVICIOS Y TECNOLOGÍAS DE SEGURIDAD EN INTERNET

Firma Electrónica Avanzada

Certificados Digitales y Navegación segura

CAPÍTULO 7: CONCEPTOS DE SEGURIDAD

REALIZADO POR: MILA LEAL

FIRMA DIGITAL: Aspectos Técnicos y Legales

INTRODUCCIÓN A LA ADMINISTRACIÓN DE REDES I N G. M O I S É S A L V A R E Z H U A M Á N

FUNDAMENTOS DE REDES CONCEPTOS DE SEGURIDAD

NIVEL DE SEGURIDAD SSL (Secure Sockets Layer)

UNIVERSIDAD TECNOLÓGICA DE LA SIERRA HIDALGUENSE Registro Plan de Curso

Nivel de enlace. Teoría de la Comunicaciones. 27 de Marzo de 2013

SX - Seguridad en Redes

Transcripción:

Capítulo 8 Seguridad en Redes: Integridad de Mensajes e e-mail seguro Basado en: Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross.

Capítulo 8 contenidos 8.1 Qué es la seguridad en la red? 8.2 Principios de criptografía 8.3 Integridad de mensajes 8.4 Dando seguridad a e-mail 8.5 Conexiones TCP seguras: SSL 8.6 Seguridad en capa de Red: IPsec 8.7 Seguridad en redes locales inalámbricas 8.8 Cortafuegos y Sistemas de detección de intrusión (IDS) 2

Integridad de Mensajes Permite al Tx y Rx verificar que los mensajes son auténticos. El contenido no ha sido alterado La fuente del mensaje es quién o qué el Rx piensa que es. El mensaje no ha sido reproducido (es un duplicado de uno previo). La secuencia de mensajes es mantenida Consideremos primero el concepto de resumen de un mensaje (message digest). 3

Resumen de un mensaje (Message Digests) Una función H( ) toma como entrada un mensaje de largo arbitrario y genera un string de largo fijo: firma del mensaje Notar que H( ) es una función muchos es a 1; en otras palabra, hay más secuencias de entrada que de salida. H( ) es conocida como función hash Ejemplo: Códigos de redundancia cíclica (CRC) Mensaje m grande H(m) Propiedades deseables: Fácil de calcular H: función Hash Irreversible: No se pueda determinar m a partir de H(m) Resistencia a colisiones: que sea difícil generar m y m tal que H(m) = H(m ) Salida de apariencia aleatoria 4

Resumen de un mensaje (Message Digests) 5

La suma de chequeo en Internet es un resumen pobre del mensaje La suma de chequeo de Internet tiene algunas propiedades de función hash: Produce resumen de largo fijo (suma de 16-bit) Es del tipo muchos es a uno Pero dado un mensaje con un valor hash, es fácil encontrar otro con el mismo valor. Ejemplo: suma de chequeo simplificada: suma grupos de 4-byte a la vez: mensaje Formato ASCII mensaje Formato ASCII I O U 1 0 0. 9 9 B O B 49 4F 55 31 30 30 2E 39 39 42 4F 42 I O U 9 0 0. 1 9 B O B 49 4F 55 39 30 30 2E 31 39 42 4F 42 B2 C1 D2 AC Mensajes diferentes B2 C1 D2 AC Pero suma de chequeo idéntica! 6

Algoritmos de Función Hash MD5 es una función hash usada ampliamente (RFC 1321) Genera un resumen del mensaje de 128-bit en un proceso de 4 pasos. SHA-1 también es usado. Es un estándar en US Genera un resumen del mensaje de 160-bit 7

Código de Autenticación de Mensaje (MAC) Autentica al Tx. Verifica la integridad del mensaje No encripta! Notación: MD m = H(sm) ; enviamos mmd m Aquí es concatenación. 8

Ejemplo: OSPF Recordar que OSPF es un protocolo intra-sa (tipo Disjktra) Cada router crea un mapa del Sistema Autónomo entero y corre el algoritmo de ruta más corta sobre el mapa. Los routers reciben los avisos de estado de enlace desde otros routers en el SA. Ataques: Inserción de mensajes Borrado de mensajes Modificación de mensajes Cómo sabemos si un aviso OSPF es auténtico? 9

Autenticación en OSPF Dentro del sistema autónomo, router envían mensajes OSPF a otros. OSPF provee alternativas de autenticación: No autenticar Uso de hash Uso de hash con MD5 Campo de 64-bit de autenticación incluye 32 bits de número de secuencia. MD5 es corrido sobre la concatenación del paquete OSPF y la clave compartida. Luego el hash MD5 es agregado al paquete OSPF; el cual es encapsulado en un datagrama IP. 1

Firmas Digitales Técnica criptográfica análoga a las firmas a mano Rx (Bob) digitalmente firma un documento, establece así que él es su dueño/creador. Objetivo es similar a Message Authentication Code, excepto que ahora se usa el método de encriptación de clave pública verificable, no-repudiable: receptor (Alice) puede probar que Bob, y nadie más, debió haber firmado el documento. 1

Firma Digital:Motivación Firma digital simple para mensaje m: Bob firma m encriptándolo con su clave privada K - B, se crea un mensaje firmado, K - B(m) Problema: Cifrar y descifrar el mensaje completo es computacionalmente caro. 1

Firma digital = firmar sólo el resumen del mensaje Envío de un mensaje firmado: Alicia verifica firma e integridad del mensaje: large message m H: Hash function Clave privada de Bob - H(m) digital signature (encrypt) encrypted msg digest - (H(m)) large message m H: Hash function H(m) Clave pública de Bob iguales? encrypted msg digest - (H(m)) digital signature (decrypt) H(m) 1

Firma Digital (más) Supongamos que Alicia recibe mensaje m y su firma digital - (H(m)) Alicia verifica m aplicando la clave pública de Bob a - (H(m)) así chequea KB (KB - (H(m))) = H(m). Si (KB - (H(m))) = H(m), quien sea que firmó m debe haber usado la clave privada de Bob. Así Alicia verifica que: Bob firmó m, nadie más lo hizo. Bob firmó m y no m. No-repudiación: Alicia puede llevar m y la firma de m - (H(m)) a un juez y probar que Bob lo firmó. 1

Certificación de Clave Pública Motivación: Un intruso hace una broma a Bob Intruso hace una orden de pizza por mail: Estimado Negocio: Por favor envíeme 4 pizzas de peperoni. Gracias, Bob. Intruso firma la orden con su clave privada. Intruso envía al negocio su clave pública, pero dice que es la clave de bob. El negocio verifica la firma y envía las 4 pizzas a Bob. Qué haría usted? 1

Autoridad Certificadora Autoridad Certificadora (CA): Asocia la clave pública con un ente particular, E. E (persona, router) registra su clave pública con CA. E provee prueba de identidad a CA. CA crea un certificado asociando E a su clave pública. Certificado contiene la clave pública de E firmada digitalmente por CA CA afirma esta es la clave pública de E Identificación de Bob Clave pública de Bob digital signature (encrypt) Clave privada de CA K - CA Certificado de clave pública de Bob firmado por CA 1

Autoridad Certificadora Cuando Alicia necesita la clave pública de Bob: Obtiene el certificado de Bob (desde Bob u otro lugar). Aplica la clave pública de CA al certificado de Bob, así verifica la clave pública de Bob. Firma digital (descifra) Clave pública de Bob Calve pública de CA K CA 1

Certificados: resumen Estándar primario X.509 (RFC 2459) Cada certificado contiene: Nombre de quien lo emite Nombre de la entidad, dirección, nombre de dominio, etc. Clave pública de la Entidad Firma digital (firmado con la clave privada del emisor) Public-Key Infrastructure (PKI) Todo lo necesario: software, procedimientos, personas etc. para gestionar certificados digitales A menudo considerada pesada o excesiva 1

Autenticación del extremo Se trata de asegurar quién originó el mensaje. Si suponemos que Alicia y Bob tienen una clave secreta compartida, proveerá MAC (Código de autenticación de mensaje) autenticación en extremo? Sabemos que Alicia creó el mensaje. Pero lo habrá enviado ella? 1

Ataque de reproducción MAC = f(msg,s) Transfiera $1M de Bill a intruso MAC Transfiera $1M De Bill a intruso MAC 2

Derrota a ataques de reproducción: Número único Yo soy Alicia R MAC = f(msg,s,r) Transfiera $1M de Bill a intruso MAC Al generar un número único e incluir éste en la respuesta, el mensaje enviado por Alicia no puede ser usado nuevamente a futuro. El receptor debe asegurar que su número sea único cada vez. 2

Capítulo 8 contenidos 8.1 Qué es la seguridad en la red? 8.2 Principios de criptografía 8.3 Integridad de mensajes 8.4 Dando seguridad a e-mail 8.5 Conexiones TCP seguras: SSL 8.6 Seguridad en capa de Red: IPsec 8.7 Seguridad en redes locales inalámbricas 8.8 Cortafuegos y Sistemas de detección de intrusión (IDS) 2

E-mail seguros Alicia desea enviar un email confidencial, m, a Bob. K S m. K S ( ) K S (m ) K S (m ). K S ( ) m K S. ( ) (K S ) - Internet (K S ) - K S -. ( ) Alicia: Genera una clave simétrica privada, K S. Cifra mensaje m con K S (por eficiencia) También cifra K S con clave pública de Bob. Envía ambos K S (m) y (K S ) a Bob. 2

E-mail seguros Alicia desea enviar un email confidencial m a Bob. K S m K S. K S ( ). ( ) K S (m ) (K S ) - Internet K S (m ) (K S ) -. K S ( ) K S -. ( ) m Bob: Usa su clave privada para descifrar y recobrar K S usa K S para descifrar K S (m) y recuperar m 2

E-mail seguro (continuación) Alicia desea proveer autenticación de la fuente e integridad del mensaje. m. -. K A ( ) H( ) K Ā - K A (H(m)) - K A (H(m)) K A. K A ( ) H(m ) - Internet compare m m. H( ) H(m ) Alicia firma digitalmente el mensaje. Envía tanto el mensaje (en claro) como su firma digital. 2

E-mail seguro (continuación) Alicia desea proveer confidencialidad, autenticación de fuente, e integridad del mensaje. m. -. K A ( ) H( ) K Ā - K A (H(m)) K S. K S ( ) m K S. ( ) (K S ) Internet Alicia usa tres claves: su clave privada, la clave pública de Bob, una clave asimétrica nueva. 2

Capítulo 8 contenidos 8.1 Qué es la seguridad en la red? 8.2 Principios de criptografía 8.3 Integridad de mensajes 8.4 Dando seguridad a e-mail 8.5 Conexiones TCP seguras: SSL 8.6 Seguridad en capa de Red: IPsec 8.7 Seguridad en redes locales inalámbricas 8.8 Cortafuegos y Sistemas de detección de intrusión (IDS) 2