Profesor: José Angel Garcia. PRACTICA No. 1 INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Profesor: José Angel Garcia. PRACTICA No. 1 INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES"

Transcripción

1 Profesor: José Angel Garcia PRACTICA No. 1 INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES 1.- OBJETIVO. Familiarizar al alumno con los Instrumentos para Medición de Variables eléctricas, que usara frecuentemente en el laboratorio: Voltímetro, Amperímetro, Ohmímetro. Multímetros. 2.- EQUIPO NECESARIO. Fuente de Alimentación: Baterías, Fuentes DC. Multímetros Digitales. Resistencia de Carbón. Tabla de Pruebas. Cables de conexión. 3.- FUNDAMENTO TEÓRICO. Conceptos teóricos y fundamento de la Fuentes de Alimentación CONCEPTOS PRELIMINARES Se definirán algunos conceptos como son: Carga Eléctrica, Corriente Eléctrica, Resistencia Eléctrica y Diferencia de Potencial o Voltaje Carga Eléctrica. Es una propiedad física de la materia mediante el cual un cuerpo puede atraer o repeler eléctricamente a otro Corriente Eléctrica. Se define como la cantidad de carga que pasa por una sección transversal de un conductor en la unidad de tiempo Resistencia Eléctrica. La resistencia eléctrica de un conductor, se define como la razón de la Diferencia de Potencial entre sus extremos a la Intensidad de corriente que circula por él. 1

2 Diferencia de Potencial o Voltaje. Sea una región del espacio en la que existe un campo electrostático E, siendo A y B dos puntos fijos de esa región. Si se traslada una carga de prueba q o del punto A al punto B, a lo largo de una trayectoria C. Se define la Diferencia de Potencial (V B V A ) como el trabajo que se debe realizar, por unidad de carga, para llevar la carga de prueba desde A hasta B FUENTES DE ALIMENTACIÓN. Las fuentes de alimentación sirven para suministrar los voltajes necesarios para realizar los experimentos. De acuerdo al tipo de corriente que son capaces de suministrar se dividen en: fuentes de corriente continua y fuentes de corriente alterna Fuentes de Corriente Continua (DC). Para pequeñas Diferencias de Potencial o Voltajes pequeños, la fuente más común es la pila seca de 1,5 V o de 9 V, o un acumulador de vehículo de 12 V. En estos dispositivos las cargas eléctricas circulan en un solo sentido. Cuando se requieren potenciales variables, se construyen fuentes alimentadas con la red domiciliaria de 110 V y compuestas de: A) Un transformador con determinada relación, B) Un rectificador, C) Un filtro y D) Un potenciómetro. El rango de salida depende del diseño del fabricante. La figura 1, muestra el diagrama de bloques de este tipo de fuente, con una salida de 0-30 voltios no regulados, es decir, que el voltaje de salida cambia al ritmo como cambia la corriente de carga. 110 V AC B C D Salida Figura 1. Diagrama de Bloques de una fuente de alimentación DC. Cuando se requieren potenciales muy estables se utiliza una fuente regulada electrónicamente, la cual entrega un voltaje constante, a pesar de la variación de la corriente de carga, dentro de las especificaciones dadas por el fabricante. Así, 2

3 si un fabricante declara que su fuente entregará una salida de 0-30 voltios en 500 ma, esto significa que la tensión de salida se puede fijar en cualquier valor entre 0-30 V y el voltaje permanecerá constante, siempre y cuando la corriente drenada no sea mayor de 500 miliamperios (ma). Recordemos que 1 ma es igual a 1 x 10-3 amperios. El diagrama en bloques de ésta fuente sería similar al de la figura 1, lo adicional es un circuito regulador entre el filtro (C) y el potenciómetro (D). En el caso descrito, la fuente trabaja en la modalidad de voltaje constante. También podría trabajar en la modalidad de corriente constante, en este caso la corriente se puede fijar en cualquier valor entre ma y ese valor permanecerá constante siempre y cuando el voltaje no exceda los 30 V Fuentes de Corriente Alterna (AC). Figura 2. Fuente de alimentación DC. Cualquier fuente de corriente alterna se puede obtener de la alimentación domiciliaria de 110 V, que como se sabe oscila a la frecuencia de 60 Hertz. Si se requieren voltajes mayores o menores de 110 V, se utilizan transformadores de relación variable para aumentar o disminuir dicho voltaje, como se muestra en la figura 3. Para frecuencias superiores o inferiores a 60 Hertz deben emplearse osciladores electrónicamente controlados. 3

4 30 V AC 110 V AC 60 V AC Figura 3. Transformador de relación variable. Figura 4. Fuente de alimentación AC. 4.- DESCRIPCIÓN Y FUNCIONAMIENTO DE LOS APARATOS RESISTENCIAS. Un componente eléctrico muy frecuentemente empleado en los circuitos electrónicos es la resistencia, que no es sino un elemento de circuito de valor resistivo especificado, su unidad es el ohmio que identificamos con la letra omega (Ω). Existen resistencias fijas y variables Resistencias Fijas. 4

5 Las resistencias fijas se fabrican de diferentes formas, tamaños y valores, Los valores van desde pocos ohmios hasta miles de ohmios (KΩ) e incluso millones de ohmios (MΩ). El símbolo convencional para representar una resistencia en el esquema de circuito es una línea quebrada como se indica en la figura Código de Colores. Figura 5. Símbolo empleado para representar una resistencia. Los fabricantes han adoptado un sistema de código de colores normalizado (estándar) E.I.A. (Electronic Industries Association) para determinar los valores óhmicos y sus respectivas tolerancias de las resistencias de baja potencia (1/4 W, 1/2 W, 3 W), las resistencias de mayor potencia suelen tener el valor óhmico y tolerancia impreso en su cuerpo. Este código implica el uso de bandas o franjas de colores sobre el cuerpo de las resistencias. Los colores y sus respectivos valores numéricos se dan en la tabla No. 1. Figura 6. Tabla No. 1. Código de Colores de Resistencias. 5

6 Figura 7. Resistencia con su Código de Colores. La resistencia básica está representada en la Figura 7, obsérvese las franjas de colores. El color de la primer franja indica la primera cifra significativa (se escribe). El color de la segunda franja indica la segunda cifra significativa (se escribe seguidamente a la primera). El color de la tercera franja indica el multiplicador (número de ceros que hay que añadir a las dos primeras cifras significativas o posición de la coma decimal). Se emplea una cuarta franja para indicar la tolerancia. La ausencia de la cuarta franja de color significa una tolerancia de un 20%. En la figura 7 la resistencia está codificada con los colores negro, amarillo, rojo y dorado. Su valor será: 04x10 2 Ω con una tolerancia del 5 %, es decir 400 Ω ± 20 Ω (20 Ω es el 5 % de 400 Ω). También se puede expresar como: 0,4 KΩ Resistencias Variables. Además de las resistencias de valor fijo se emplean ampliamente las resistencias variables. Se describirán dos (02) tipos de ellas: El reóstato y el potenciómetro. 6

7 Un reóstato tiene un valor máximo especificado por el fabricante y un valor mínimo, ordinariamente cero ohmios. La punta de flecha indica un medio mecánico de ajuste del reóstato para que la resistencia medida entre los puntos A y B, se pueda ajustar a un valor intermedio dentro del margen de variación. A B Figura 8. Resistencia de un reóstato. Los reóstatos de alambre se fabrican en intervalos de valores muy variados, desde unos pocos ohmios y una capacidad de corriente de más de 10 amperios, hasta valores de ohmios y corrientes de 0,25 amperios. Antes de usar un reóstato debe verificarse que la corriente no exceda la capacidad máxima especificada, la figura 9 muestra un reóstato comercial. Figura 9. Imagen de reóstato comercial. 7

8 La figura 10 muestra la conexión de un reóstato en un circuito. A V B Carga Conectada El Potenciómetro. Figura 10. Utilización de un reóstato en un circuito. El símbolo de un potenciómetro se representa en la figura 11 y su aspecto físico se muestra en figura 12. El símbolo indica que es un dispositivo de tres terminales, la resistencia entre los puntos A y D es fija. El punto C es el brazo variable, el brazo es un contacto o cursor metálico que se desplaza sobre la superficie no aislada del elemento de resistencia, seleccionando diferentes longitudes de su superficie resistiva. Así cuanto mayor es el área de la superficie comprendida entre los puntos A y C, mayor es la resistencia entre estos dos puntos. Análogamente, la resistencia entre los puntos D y C varía proporcionalmente a la longitud de elemento incluido entre los puntos D y C. C A Figura 11. Símbolo de un Potenciómetro. D 8

9 Figura 12. Aspecto físico de un Potenciómetro. Figura 13. Imagen de un Potenciómetro. El axioma que anuncia que todo es igual a la suma de sus partes se aplica a un potenciómetro, lo mismo que a las figuras geométricas. En este caso es evidente que las resistencias R AC desde A hasta C, mas la resistencia R DC desde C hasta D, constituye la resistencia fija del potenciómetro. El efecto del brazo es pues aumentar la resistencia entre C y uno de los terminales fijos, y a la vez disminuir la resistencia entre C y el otro terminal, mientras la suma de las dos resistencias R AC y R DC permanece constante e igual al valor dado por el fabricante. Se puede utilizar un potenciómetro como reóstato si el brazo central y uno de los terminales extremos son conectados en el circuito y el otro terminal queda sin conectar. Otro método de convertir un potenciómetro en reóstato es conectar un cable entre el brazo y uno de los terminales, por ejemplo C conectado al 9

10 punto A. Los puntos D y C sirven ahora como terminales del reóstato. La figura 14 indica la utilización de un potenciómetro en un circuito. A V D C Carga Conectada Figura 14. Imagen de un Potenciómetro Diferencias entre el Reóstato y el Potenciómetro. En teoría es lo mismo pero la diferencia estriba en que el reóstato está diseñado para soportar tensiones y corrientes mucho mayores, por ejemplo para controlar un encendido de bombilla y el potenciómetro para niveles mucho mas pequeños, por ejemplo para el volumen de audio de un equipo de sonido. Un reóstato es un resistor de resistencia variable. Es por tanto un tipo constructivo concreto de potenciómetro (resistencia variable) que recibe comúnmente este nombre en vez del de potenciómetro al tratarse de un dispositivo capaz de soportar tensiones y corrientes muchísimo mayores, y de disipar potencias muy grandes. Los reóstatos son usados en Ingeniería Eléctrica en tareas tales como el arranque de motores o cualquier tipo de tarea que requiera variación de resistencia en condiciones de elevada tensión o corriente. Un potenciómetro es un resistor al que le puede variar el valor de su resistencia. De esta manera, indirectamente se puede controlar la intensidad de corriente que hay por una línea si se conecta en paralelo, o la diferencia de potencial de hacerlo en serie. Normalmente, los potenciómetros se utilizan en circuitos con poca corriente, para controlar su paso, pues no disipan casi potencia, en cambio en los 10

11 reóstatos, que son de mayor tamaño, circula más corriente y disipan más potencia. Un Potenciómetro es un divisor resistivo variable, ajustable por medio de un cursor. Basicamente es una resistencia formada por una delgada pista de carbón de cuyos extremos salen dos terminales; a dicha pista la recorre un cursor que está vinculado a un tercer terminal. Figura 15. Imagen de un Potenciómetro de Laboratorio MULTÍMETRO DÍGITAL. El Multímetro digital es un instrumento de medición que se utiliza para medir voltaje, intensidad de corriente y resistencias a través de una visualización numérica directa, por lo que basta leer los números que aparecen en pantalla. Cuando se utiliza para medir voltajes se llama voltímetro, para medir corrientes amperímetro y para medir resistencia óhmetro. Figura 16. Imagen de un Multímetro Digital. 11

12 2.- Botón de encendido ON/OFF 1.- Pantalla 3.- Botón para congelar lectura 4.- Perillas para seleccionar la escala y tipo de medición 5.- Terminales para medir: Voltios, Resistencias, etc. 8.- Puntas de Medición 6.- Terminal para medir Corrientes 7.- Terminal común Figura 17. Partes de un Multímetro Digital. El aparato consta de las siguientes partes: 1.- Pantalla Digital de 3 o 4 dígitos. 2.- Botón de encendido o apagado. 3.- Botón para congelar la lectura. 4.- Perilla giratoria: Escogen el tipo de corriente o voltaje que se va a medir, es decir AC o DC. Así mismo selecciona también otras cantidades a medir: resistencia, capacitancia, frecuencia, y en algunos otros tipos, temperatura, transistores, diodos, etc. 5.- Terminal para medir Voltajes, Resistencias y otras variables. 6.- Terminales para medición de corrientes. 7.- Terminal común. 8.- Puntas de Medición. 12

13 Figura 18. Imagen de un Multímetro Digital que prueba Transistores y Diodos. Los errores asociados a los Multímetros analógicos como son: paralaje, histéresis del mecanismo, efecto de carga, entre otros, son eliminados con el Multímetro digital, por ello este último Multímetro es más exacto que el analógico. Figura 19. Imagen de una Pinza Amperimétrica y Multímetro Digital. 13

14 Medición de Voltaje DC y AC. Para medir voltaje el aparato debe conectarse en paralelo como se muestra en la figura 20. Debe girarse la perilla hasta donde la parte marcada de la misma se encuentre en la escala de Voltaje, que se indica con una V y con una línea recta debajo indicando que es V DC o con una señal sinusoidal indicando V AC. Figura 20. Forma de conectar el Multímetro para medir en ese caso Voltaje AC. Una característica importante de un voltímetro es su resistencia de entrada, la cual debe ser lo más alta posible para evitar que actúe como carga en el circuito a medir. Según el Fabricante, los Multímetros tienen diferentes rangos de medición, desde milivoltios (mv) hasta kilovoltios (kv). Cuando no se conoce la magnitud del voltaje a medir, siempre se coloca en la mayor escala y luego se va disminuyendo. Cuando se realiza una medición y se pulsa el botón HOLD, el equipo congela la última medida realizada, así se retiren las puntas del lugar donde se realiza la medida. Se debe estar pendiente de conectar los cables de medición en los terminales donde indica la letra V. 14

15 Medición de Corriente A. Para medir intensidad de corriente continua o alterna, el amperímetro se conecta en serie como se muestra en la figura 21. Debe girarse la perilla hasta donde la parte marcada de la misma se encuentre en la escala de Corriente, que se indica con una A y con una línea recta debajo indicando que es Corriente Continua o con una señal sinusoidal indicando Corriente Alterna. Figura 21. Forma de conectar el Multímetro para medir en ese caso Corriente Continua. Una característica importante de un amperímetro es su resistencia interna, mientras más baja ésta sea, mejor es la calidad del aparato. Puesto que la mayor dificultad para el estudiante se presenta en la medición de corriente, se dará una regla práctica para ello. a.- Identifique el Cable por donde circula la corriente que se desea medir. b.- Corte el cable (es decir, desconectarlo). c.- Del corte o desconexión quedan dos puntas, conecte las puntas de prueba del aparato a las puntas desconectadas del circuito, de esta manera queda el amperímetro en serie. d.- Si no hace el corte o desconexión el amperímetro puede quedar conectado en paralelo, quemando el fusible de protección del aparato o quemar el multímetro. 15

16 Medición de Resistencia (Ω). Para medir resistencia debe tenerse cuidado de quitar la fuente de suministro de energía al circuito y desconectar el elemento que se quiere medir del resto del circuito, como se muestra en la figura 22. Figura 22. Forma de conectar el Multímetro para medir Resistencias. Debe girarse la perilla hasta donde la parte marcada de la misma se encuentre en la escala de Resistencia, que se indica con el símbolo Ω. La lectura puede ser desde micro ohmios (µω), mili ohmios (mω), Kilo ohmios (KΩ) y Mega ohmios (MΩ). 16

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TEMA: MEDICIONDE RESISTENCIAS Y USO DEL MULTIMETRO.

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TEMA: MEDICIONDE RESISTENCIAS Y USO DEL MULTIMETRO. UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TEMA: MEDICIONDE RESISTENCIAS Y USO DEL MULTIMETRO. OBJETIVOS: 1. Hacer mediciones del valor de la resistencia de varios resistores

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO PRÁCTICA 4 ASOCIACIÓN

Más detalles

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS CONCEPTOS BASICOS El aparato de medida más utilizado en electricidad y electrónica es el denominado POLÍMETRO, también denominado a veces multímetro o texter. El

Más detalles

MEDIDAS ELÉCTRICAS: POLÍMETROS

MEDIDAS ELÉCTRICAS: POLÍMETROS MEDIDAS ELÉCTRICAS: POLÍMETROS Objetivos: Medir V, I y R en un circuito elemental, utilizando el polímetro analógico y el polímetro digital. Deducir el valor de la resistencia a partir del código de colores.

Más detalles

Práctica 2. Ley de Ohm. 2.1 Objetivo. 2.2 Material. 2.3 Fundamento

Práctica 2. Ley de Ohm. 2.1 Objetivo. 2.2 Material. 2.3 Fundamento Práctica 2 Ley de Ohm 2.1 Objetivo En esta práctica se estudia el comportamiento de los resistores, componentes electrónicos empleados para fijar la resistencia eléctrica entre dos puntos de un circuito.

Más detalles

RESISTENCIA Y LEY DE OHM

RESISTENCIA Y LEY DE OHM RESISTENCIA Y LEY DE OHM Objetivos: - Aprender a utilizar el código de colores de la E.I.A. (Electronics Industries Association ) - Aprender a armar algunos circuitos simples en el tablero de pruebas (Protoboard).

Más detalles

INSTRUMENTACION. Objetivo Conocer instrumentación, equipos y herramientas Familiarizarse con la instrumentación, equipos y herramientas

INSTRUMENTACION. Objetivo Conocer instrumentación, equipos y herramientas Familiarizarse con la instrumentación, equipos y herramientas Laboratorio electrónico Nº 1 INSTRUMENTACION Objetivo Conocer instrumentación, equipos y herramientas Familiarizarse con la instrumentación, equipos y herramientas Objetivo específico Instalar la instrumentación

Más detalles

Nombre: 1. ACCIONES ENTRE CARGAS ELÉCTRICAS

Nombre: 1. ACCIONES ENTRE CARGAS ELÉCTRICAS / / UDI 2 - ELECTRICIDAD - FICHAS DE RECUPERACIÓN 3º ESO Nombre: 1. ACCIONES ENTRE CARGAS ELÉCTRICAS 2. CORRIENTE ELÉCTRICA Es un movimiento de electrones a través de un material conductor (cobre, aluminio,

Más detalles

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM UNIDAD 1: LEY DE OHM - TEORÍA En esta unidad usted aprenderá a aplicar la Ley de Ohm, a conocer las unidades eléctricas en la medición de las resistencias,

Más detalles

QUÉ ES LA RESISTENCIA ELÉCTRICA

QUÉ ES LA RESISTENCIA ELÉCTRICA QUÉ ES LA RESISTENCIA ELÉCTRICA Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las

Más detalles

CONCEPTOS BÁSICOS. INTRODUCCIÓN AL USO DE LOS EQUIPOS

CONCEPTOS BÁSICOS. INTRODUCCIÓN AL USO DE LOS EQUIPOS Tema 1: CONCEPTOS BÁSICOS. INTRODUCCIÓN AL USO DE LOS EQUIPOS Introducción Conceptos básicos Conexión entre los distintos elementos Cables Placa de inserción La fuente de alimentación El multímetro Código

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO: 01-2013 GUIA DE LABORATORIO # 1 Nombre de la Práctica: Uso del óhmetro Parte I. Lugar de Ejecución: Laboratorio

Más detalles

MANEJO DE INSTRUMENTOS PARA DC

MANEJO DE INSTRUMENTOS PARA DC MANEJO DE INSTRUMENTOS PARA DC 2.1. Fuente de alimentación FAC-363B El modelo FAC-363B contiene tres fuentes de alimentación estabilizadas totalmente independientes. La primera suministra una tensión ajustable

Más detalles

PRACTICA 1: Instrumentación en corriente continua. Manejo del polímetro digital.

PRACTICA 1: Instrumentación en corriente continua. Manejo del polímetro digital. PRACTICA 1: Instrumentación en corriente continua. Manejo del polímetro digital. ESTUDIO PREVIO El propósito de esta práctica consiste en familiarizarse con el manejo de los instrumentos de medida de magnitudes

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CIRCUITOS ELÉCTRICOS 1.- CONCEPTOS FUNDAMENTALES 2.-MAGNITUDES ELÉCTRICAS. LEY DE OHM 3.- ANÁLISIS DE CIRCUITOS 3.1.- CIRCUITO SERIE 3.2.- CIRCUITO PARALELO 3.3.- CIRCUITO MIXTO 4.- INSTRUMENTOS DE MEDIDA

Más detalles

FÍSICA II Guía de laboratorio 03: Mediciones de resistencia y voltaje

FÍSICA II Guía de laboratorio 03: Mediciones de resistencia y voltaje FÍSICA II Guía de laboratorio 03: Mediciones de resistencia y voltaje I. OBJETIVOS a) Calcula la resistencia equivalente de resistores conectados en serie y en paralelo, utilizando los valores nominales

Más detalles

AMBITO PRÁCTICO: 4º ESO CURSO

AMBITO PRÁCTICO: 4º ESO CURSO AMBITO PRÁCTICO: 4º ESO CURSO 2.010-2.011 CONOCIMIENTOS PRELIMINARES Y DE REPASO: ELECTRICIDAD-ELECTRÓNICA IES EMILIO PEREZ PIÑERO Profesor: Alfonso-Cruz Reina Fernández ELECTRICIDAD-ELECTRÓNICA BÁSICA

Más detalles

EL POLÍMETRO. Medidas de magnitudes eléctricas I. E. S. A N D R É S D E V A N D E L V I R A

EL POLÍMETRO. Medidas de magnitudes eléctricas I. E. S. A N D R É S D E V A N D E L V I R A EL POLÍMETRO Medidas de magnitudes eléctricas I. E. S. A N D R É S D E V A N D E L V I R A J. G a r r i g ó s S I S T E M A S A U T O M Á T I C O S D E L A P R O D U C C I Ó N S A P. D E P A R T A M E

Más detalles

PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC

PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC Se inician las prácticas de laboratorio con dos sesiones dedicadas al análisis de algunos circuitos DC con un doble propósito: comprobar algunos de los circuitos

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de

Más detalles

Laboratorio Física II Práctica Nº 3 LEY DE OHM Y CIRCUITOS ELÉCTRICOS

Laboratorio Física II Práctica Nº 3 LEY DE OHM Y CIRCUITOS ELÉCTRICOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA MUNICIPALIZACIÓN TOCÓPERO ÁREA DE TECNOLOGÍA COORDINACIÓN DE LABORATORIOS DE FÍSICA Laboratorio Física II LEY DE OHM Y CIRCUITOS ELÉCTRICOS Adaptado

Más detalles

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA I - Finalidades 1.- Estudiar el código de color de las resistencias. 2.- Utilización del multímetro

Más detalles

Universidad de los Andes Táchira. Dr. Pedro Rincón Gutiérrez. Departamento de Ciencias. Área: Laboratorio de Física. San Cristóbal Estado Táchira

Universidad de los Andes Táchira. Dr. Pedro Rincón Gutiérrez. Departamento de Ciencias. Área: Laboratorio de Física. San Cristóbal Estado Táchira Universidad de los Andes Táchira Dr. Pedro Rincón Gutiérrez Departamento de Ciencias Área: Laboratorio de Física San Cristóbal Estado Táchira Realizado por: Espinel P., Luzdey C.C.I García C., Sonia Del

Más detalles

Práctica 2. Introducción a la instrumentación de laboratorio I. Fuentes de tensión y polímetro

Práctica 2. Introducción a la instrumentación de laboratorio I. Fuentes de tensión y polímetro Práctica 2 Introducción a la instrumentación de laboratorio I Fuentes de tensión y polímetro 1 Objetivos El objetivo principal de esta práctica es familiarizarse con el funcionamiento de parte del instrumental

Más detalles

PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro.

PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro. PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro. NOMBRE y APELLIDOS: 1.- CÓDIGO DE COLORES DE RESISTENCIAS. Completa la siguiente tabla: Nº COLOR % 0 NEGRO 1 MARRÓN 1% 2 ROJO 2% 3 NARANJA

Más detalles

FÍSICA III - CARACTERÍSTICAS TÉCNICAS USO DEL TESTER EN EL LABORATORIO Nº 1. TESTER DIGITAL UNI,modeloUT 50 A y modelo

FÍSICA III - CARACTERÍSTICAS TÉCNICAS USO DEL TESTER EN EL LABORATORIO Nº 1. TESTER DIGITAL UNI,modeloUT 50 A y modelo FÍSICA III - CARACTERÍSTICAS TÉCNICAS USO DEL TESTER EN EL LABORATORIO Nº 1 TESTER DIGITAL UNI,modeloUT 50 A y modelo UT 50 C (Medición de temperatura) FIGURA 1 1) Display, visor digital donde se presenta

Más detalles

19/08/2016 CODIFICACION DE RESISTORES. denotan con anillos de colores pintados en RESISTORES. Universidad Nacional de Misiones

19/08/2016 CODIFICACION DE RESISTORES. denotan con anillos de colores pintados en RESISTORES. Universidad Nacional de Misiones Indicación del Valor EL RESISTOR COMO COMPONENTE ELECTRÓNICO Universidad Nacional de Misiones Código de Colores de Resistores El valor de la resistencia, de la mayoría de los resistores utilizados en electrónica,

Más detalles

U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD

U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD INSTITUTO DE ENSEÑANZA SECUNDARIA VILLA DE MAZO CONSEJERÍA DE EDUCACIÓN CULTURA DEPORTE GOBIERNO DE CANARIAS DEPARTAMENTO DE TECNOLOGÍA. U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD Definición Se

Más detalles

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA Joaquín Agulló Roca 3º ESO CIRCUITOS ELECTRICOS MAGNITUDES ELECTRICAS La carga eléctrica (q) de un cuerpo expresa el exceso o defecto

Más detalles

MANEJO DEL MULTIMETRO

MANEJO DEL MULTIMETRO MANEJO DEL MULTIMETRO Multímetro: Se denomina multímetro o téster a un instrumento capaz de medir diversas magnitudes eléctricas con distintos alcances. Estas magnitudes son tensión, corriente y resistencia.

Más detalles

ELECTRÓNICA NIVEL I - GUÍA 4 CONTENIDO

ELECTRÓNICA NIVEL I - GUÍA 4 CONTENIDO ELECTRÓNICA NIVEL I - GUÍA 4 CONTENIDO 5. RESISTENCIAS... 2 5.. TIPOS DE RESISTENCIAS... 2 5... Bobinadas... 2 5..2. Aglomeradas... 2 5..3. Resistores Variables... 2 5..4. Resistores Especiales... 3 5.2.

Más detalles

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA Laboratorio de Circuitos/ Electrotecnia PRÁCTICA 2 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Analizar el funcionamiento de circuitos resistivos conectados

Más detalles

PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES

PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES Laboratorio de Circuitos/Electrotecnia I PRÁCTICA 1 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES OBJETIVO Enseñar a usar y en lo posible, familiarizar

Más detalles

Taller de electrónica para usos creativos: Conceptos básicos

Taller de electrónica para usos creativos: Conceptos básicos Taller de electrónica para usos creativos: Conceptos básicos 8 al 11 de Mayo de 2008 1 Sistema electrónico SISTEMA ELECTRÓNICO SISTEMA FÍSICO sensores procesamiento y control actuadores SISTEMA FÍSICO

Más detalles

COMPONENTES ELECTRÓNICOS

COMPONENTES ELECTRÓNICOS UD 5.- COMPONENTES ELECTRÓNICOS 1. RESISTENCIA FIJA O RESISTOR 2. RESISTENCIAS VARIABLES 3. EL RELÉ 4. EL CONDENSADOR 5. EL DIODO 6. EL TRANSISTOR 7. MEDICIÓN CON POLÍMETRO 1. RESISTENCIA FIJA O RESISTOR

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 02-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 01 NOMBRE DE LA PRÁCTICA: Generalidades y Fundamentos de Electrónica.

Más detalles

CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA

CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA CUSO TALLE ACTIIDAD 3 POTOBOAD MULTÍMETO MEDICIÓN DE OLTAJES Y COIENTES DE COIENTE DIECTA FUENTE DE OLTAJE DE COIENTE DIECTA Como su nombre lo dice, una fuente de voltaje de corriente directa (C.D) es

Más detalles

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A Nombres y apellidos: Curso:. Fecha:.. Firma: PRÁCTICA 1: RESISTENCIAS OBJETIVO: Conocer los tipos y características de las resistencias, así

Más detalles

TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos

TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos TEMA 6 ELECTROACÚSTICA Sonorización industrial y de espectáculos Ley de Ohm La intensidad de corriente que circula en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional

Más detalles

RESUMEN PLANTEAMIENTO DEL PROBLEMA OBJETIVO GENERAL

RESUMEN PLANTEAMIENTO DEL PROBLEMA OBJETIVO GENERAL I.4. ESTUDIO DEL COMPORTAMIENTO DE LA RESISTENCIA, CORRIENTE Y VOLTAJE EN CIRCUITOS MIXTOS RESUMEN En este proyecto de investigación se estudiará las diferentes configuraciones de los circuitos eléctricos,

Más detalles

LAB ORATORIO DE CIRCUITOS ELECTRIC OS

LAB ORATORIO DE CIRCUITOS ELECTRIC OS REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE EDUCACIÓN SUPERIOR UNIVERSIDAD POLITÉCNICA TERRITORIAL DE ARAGUA LA VICTORIA ESTADO ARAGUA DEPARTAMENTO DE ELECTRICIDAD LABORATORIO DE CIRCUITOS ELECTRICOS

Más detalles

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos.

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 11. Sobre los esquemas dibujados en el ejercicio anterior indica mediante flechas el sentido de la corriente eléctrica: (considera que los

Más detalles

CENTRO DE CIENCIA BÁSICA Curso: Fundamentos de Electromagnetismo Docente: M. Sc Luz Aída Sabogal Tamayo 1

CENTRO DE CIENCIA BÁSICA Curso: Fundamentos de Electromagnetismo Docente: M. Sc Luz Aída Sabogal Tamayo 1 Docente: M. Sc Luz Aída Sabogal Tamayo 1 PRÁCTICA 2: CIRCUITOS RESISTIVOS EN CORRIENTE DIRECTA PRÓPOSITO: Conocer las características de circuitos resistivos de corriente directa, determinando las características

Más detalles

Desarrollo. De cualquier forma, la clasificación de los instrumentos de medición las detallaremos en el siguiente esquema:

Desarrollo. De cualquier forma, la clasificación de los instrumentos de medición las detallaremos en el siguiente esquema: Desarrollo Las mediciones eléctricas se realizan con aparatos especialmente diseñados según la naturaleza de la corriente; es decir, si es alterna, continua o pulsante. Los instrumentos se clasifican por

Más detalles

FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO

FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO El circuito eléctrico es la unión de varios aparatos por los que se mueven los electrones, este

Más detalles

PRÁCTICA NÚMERO 10 LEY DE OHM

PRÁCTICA NÚMERO 10 LEY DE OHM PRÁCTICA NÚMERO 10 LEY DE OHM I. Objetivos. Investigar si los siguientes elementos eléctricos son óhmicos: a) Una resistencia comercial. b) Un diodo rectificador. II. Material. 1. Dos multímetros. 2. Dos

Más detalles

MEDIDAS BÁSICAS CON EL POLÍMETRO

MEDIDAS BÁSICAS CON EL POLÍMETRO Es el instrumento que emplearemos para medir las magnitudes eléctricas. En la figura se muestra uno de los tipos de que disponemos en el aula. Nosotros usaremos el polímetro básicamente para comprobar

Más detalles

1 Indica las unidades de medida de la potencia y de la energía eléctrica. 2 Explica la diferencia ente voltaje y tensión eléctrica.

1 Indica las unidades de medida de la potencia y de la energía eléctrica. 2 Explica la diferencia ente voltaje y tensión eléctrica. 1 Indica las unidades de medida de la potencia y de la energía eléctrica. 2 Explica la diferencia ente voltaje y tensión eléctrica. 3 Formula la ley de Ohm. 4 Utilizando tres bombillas y una pila dibuja

Más detalles

Pregunta: Por qué necesita que el bombillo esté conectado a ambos terminales de la batería?

Pregunta: Por qué necesita que el bombillo esté conectado a ambos terminales de la batería? José hizo este dibujo de una batería y un bombillo para la clase de ciencias. Si él hubiera armado ese experimento en la realidad, el bombillo no funcionaría. El problema es el cable suelto de la izquierda,

Más detalles

MANEJO DEL MULTIMETO ANÁLOGO Y DIGITAL

MANEJO DEL MULTIMETO ANÁLOGO Y DIGITAL Página 1 de 5 MANEJO DEL MULTIMETO ANÁLOGO Y DIGITAL 1.0 EL MULTIMETRO ANALOGO El multímetro análogo es un instrumento de medida que entrega los valores de las mediciones sobre una escala litografiada.

Más detalles

Características Específicas de los Mini Multímetros Digitales, MultiPort. Ciclo de Trabajo % mv/v µa/a Ω/MΩ nf/µf Hz/MHz C C %

Características Específicas de los Mini Multímetros Digitales, MultiPort. Ciclo de Trabajo % mv/v µa/a Ω/MΩ nf/µf Hz/MHz C C % Características Generales de los Mini Multímetros Digitales, MultiPort Los Mini Multímetros Digitales MultiPort VentDepot, poseen pantalla LCD doble retroiluminada con dígitos de fácil lectura. Protección

Más detalles

:: OBJETIVOS [6.1] :: PREINFORME [6.2]

:: OBJETIVOS [6.1] :: PREINFORME [6.2] :: OBJETIVOS [6.1] Estudiar la influencia que ejerce la resistencia interna de una pila sobre la diferencia de potencial existente entre sus bornes y medir dicha resistencia interna. :: PREINFORME [6.2]

Más detalles

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 3º ESO Tecnología, programación y robótica Tema Electricidad página 1 de 12 3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3

Más detalles

LABORATORIO DE ELECTROMAGNETISMO N 5 LEY DE OHM

LABORATORIO DE ELECTROMAGNETISMO N 5 LEY DE OHM LABORATORIO DE ELECTROMAGNETISMO N 5 LEY DE OHM FABIAN CAMPO QUINTERO ANDREA DIAZ ZULETA DIANA ESCOBAR PAVAJEAU EMMA HERRERA GRANADOS YUREIDIS NIÑO BALLESTERO Trabajo presentado como requisito de evaluación

Más detalles

EL ÁTOMO. Quiénes componen el átomo? El ion. Circulación de la corriente eléctrica

EL ÁTOMO. Quiénes componen el átomo? El ion. Circulación de la corriente eléctrica EL ÁTOMO Quiénes componen el átomo? El ion Circulación de la corriente eléctrica EL CIRCUITO ELÉCTRICO (1) Por qué se enciende la bombilla? Definición de circuito eléctrico Corriente eléctrica EL CIRCUITO

Más detalles

MANUAL DE INSTRUCCIONES MULTÍMETRO DIGITAL CON BÚSQUEDA AUTOMÁTICA CO-7146

MANUAL DE INSTRUCCIONES MULTÍMETRO DIGITAL CON BÚSQUEDA AUTOMÁTICA CO-7146 MANUAL DE INSTRUCCIONES MULTÍMETRO DIGITAL CON BÚSQUEDA AUTOMÁTICA CO-7146 1 SEGURIDAD Este multímetro ha sido diseñado según la norma EN61010 sobre instrumentos de medición electrónica con un test de

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 MEDICIONES ELECTRICAS 1.- EL MULTIMETRO 2.- MULTIMETRO ANALOGICOS

Más detalles

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias

Más detalles

LEY DE OHM. Voltímetro y amperímetro.

LEY DE OHM. Voltímetro y amperímetro. Alumno: Página 1 1.- Medida de tensión continua (DC) o alterna (AC). PARA LA MEDIDA DE TENSIONES EL MULTÍMETRO SE COLOCARÁ EN PARALELO CON LA CARGA. Se conectan las clavijas de las puntas de prueba, situando

Más detalles

Laboratorio de Circuitos Eléctricos I Practica #1

Laboratorio de Circuitos Eléctricos I Practica #1 Laboratorio de Circuitos Eléctricos I Practica #1 Instructor: Rafael H. Fonseca Departamento de Ingeniería Eléctrica Facultad Ingeniería Universidad Nacional Autónoma de Honduras Blog: rafaelfonseca52.wordpress.com

Más detalles

Unidad didáctica: "Electrónica Analógica"

Unidad didáctica: Electrónica Analógica Unidad didáctica: "Electrónica Analógica" 1.- Introducción. 2.- La resistencia. 3.- El condensador. 4.- El diodo. 5.- El transistor. 1.- Introducción. La electrónica se encarga de controlar la circulación

Más detalles

CURSO TALLER ACTIVIDAD 4 MULTÍMETRO BANCO DE LÁMPARAS MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE ALTERNA

CURSO TALLER ACTIVIDAD 4 MULTÍMETRO BANCO DE LÁMPARAS MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE ALTERNA CURSO TALLER ACTIVIDAD 4 MULTÍMETRO BANCO DE LÁMPARAS MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE ALTERNA FUENTE DE VOLTAJE DE CORRIENTE ALTERNA En nuestro medio la principal fuente de voltaje de corriente

Más detalles

Instrumentos y sistemas de medida TUTORIAL DE ELECTRÓNICA

Instrumentos y sistemas de medida TUTORIAL DE ELECTRÓNICA Instrumentos y sistemas de medida TUTORIAL DE ELECTRÓNICA Introducción Una importante actividad dentro de la electrónica es el manejo y uso de los diferentes instrumentos de medida utilizados habitualmente.

Más detalles

FISICA III. Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES

FISICA III. Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES FISICA III Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES PRÁCTICO DE LABORATORIO Nº FÍSICA III Comisión laboratorio: Docente: Fecha

Más detalles

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo.

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. Guía de ejercicios supletorio 2do BGU 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. a P A Parámetro Valor Unidad q a -6 µc q b +2 µc q c +1 µc a 50

Más detalles

b) Qué ocurre si se colocan próximos los átomos A y B? c) Qué ocurre si se colocan próximos los átomos B y C?

b) Qué ocurre si se colocan próximos los átomos A y B? c) Qué ocurre si se colocan próximos los átomos B y C? Departamento Tecnología I.E.S. Drago Cádiz PÁG. 1 # ACTIVIDADES 1.- Investiga y averigua cuál es el origen de la palabra electricidad. 2.- Observa estos esquemas atómicos y responde: a) Qué carga tienen

Más detalles

MANEJO BÁSICO DEL MULTÍMETRO MANEJO BÁSICO DEL MULTÍMETRO

MANEJO BÁSICO DEL MULTÍMETRO MANEJO BÁSICO DEL MULTÍMETRO En el mercado podemos encontrar una gran cantidad de de multímetros, más o menos completos, digitales o analógicos. Para su correcta utilización se debe leer atentamente el manual que proporciona el fabricante,

Más detalles

Multímetro Digital HM de HAMEG

Multímetro Digital HM de HAMEG Multímetro Digital HM8011-3 de HAMEG Figura 1. Multímetro HM8011-3 de Hameg. Este instrumento es un multímetro digital robusto, de manejo sencillo y alta precisión. Dispone de 28 diferentes rangos de medida

Más detalles

Universidad de Guadalajara Centro Universitario de Ciencias Exactas e Ingeniería Departamento de Física Laboratorio de Física

Universidad de Guadalajara Centro Universitario de Ciencias Exactas e Ingeniería Departamento de Física Laboratorio de Física Universidad de Guadalajara Centro Universitario de Ciencias Exactas e Ingeniería Departamento de Física Laboratorio de Física 1 Guía Rápida para uso del Multímetro Analógico y Digital en sus funciones

Más detalles

Fig. 1: Símbolos utilizados en teoría de circuitos para designar un amperímetro (a) y un voltímetro (b).

Fig. 1: Símbolos utilizados en teoría de circuitos para designar un amperímetro (a) y un voltímetro (b). Uso de polímetros 1.- ntroducción Polímetros Para medir intensidades y voltajes en circuitos de corriente continua se utilizan normalmente unos instrumentos denominados polímetros. En teoría de redes,

Más detalles

ELECTRÓNICA. Diferencia entre electrónica y electricidad. Electrónica analógica y electrónica digital

ELECTRÓNICA. Diferencia entre electrónica y electricidad. Electrónica analógica y electrónica digital ELECTRÓNICA Diferencia entre electrónica y electricidad Electrónica analógica y electrónica digital Componentes electrónicos Resistores o Fijos o Variables Potenciómetros LDR Termistores Diodo o LED Interruptores

Más detalles

Medición directa de magnitudes eléctricas

Medición directa de magnitudes eléctricas Instituto Politécnico Superior Gral. San Martín UNR Física 4 to Año Circuitos de Corriente Continua Medición directa de magnitudes eléctricas Autores: Matías Cadierno, Ignacio Evangelista, Gabriel D. Roldán

Más detalles

TECNOLOGÍA 4º ESO IES PANDO

TECNOLOGÍA 4º ESO IES PANDO Componentes Electrónicos TECNOLOGÍA 4º ESO IES PANDO Resistencias Fijas Son componentes que presentan una oposición al paso de la corriente eléctrica. Sus principales características son: Valor Nominal:

Más detalles

UNIVERSIDAD INDUSTRIAL DE SANTANDER LABORATORIO MEDIDAS ELÉCTRICAS Introducción a la Ingeniería Profesora: Mónica Andrea Botero Londoño

UNIVERSIDAD INDUSTRIAL DE SANTANDER LABORATORIO MEDIDAS ELÉCTRICAS Introducción a la Ingeniería Profesora: Mónica Andrea Botero Londoño UNIVERSIDAD INDUSTRIAL DE SANTANDER LABORATORIO MEDIDAS ELÉCTRICAS Introducción a la Ingeniería Profesora: Mónica Andrea Botero Londoño 1. OBJETIVOS 1.1 Utilizar adecuadamente el multímetro para medir

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular Para La Educación U.E.P. Instituto Educacional Aragua Maracay-Edo.

República Bolivariana de Venezuela Ministerio del Poder Popular Para La Educación U.E.P. Instituto Educacional Aragua Maracay-Edo. República Bolivariana de Venezuela Ministerio del Poder Popular Para La Educación U.E.P. Instituto Educacional Aragua Maracay-Edo. Aragua I A B V Prof. Rafael Girón T PRE-LABORATORIO: Introducción: Esta

Más detalles

índice DEFINICIÓN DE ELECTRICIDAD ORIGEN DE LOS FENÓMENOS ELÉCTRICOS CONCEPTO DE CARGA ELÉCTRICA

índice DEFINICIÓN DE ELECTRICIDAD ORIGEN DE LOS FENÓMENOS ELÉCTRICOS CONCEPTO DE CARGA ELÉCTRICA índice Efectos de la energía eléctrica. Conversión y aplicaciones. Magnitudes eléctricas básicas. Ley de Ohm. Elementos de un circuito eléctrico. Simbología. Tipos de circuitos eléctricos. Potencia y energía

Más detalles

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

MÉTODOS DE MEDIDA DE RESISTENCIAS

MÉTODOS DE MEDIDA DE RESISTENCIAS MÉTODOS DE MEDIDA DE RESISTENCIAS OBJETIVO Se trata de que el alumno se familiarice con cuatro métodos diferentes de medida de resistencias: Voltímetro - Amperímetro, Puente de Wheatstone, Puente de hilo

Más detalles

TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO. Samuel Escudero Melendo

TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO. Samuel Escudero Melendo TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO Samuel Escudero Melendo QUÉ VEREMOS? CONCEPTOS BÁSICOS ELECTRICIDAD y ELECTRÓNICA CANTIDAD DE CARGA, INTENSIDAD, VOLTAJE, RESISTENCIA LEY DE OHM ELEMENTOS DE CIRCUITOS

Más detalles

FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009

FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009 FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009 Los circuitos eléctricos instalados en automóviles, casas, fábricas conducen uno de los dos tipos de corriente: Corriente directa

Más detalles

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA 17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar

Más detalles

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA 17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CIRCUITOS ELÉCTRICOS 1.- CONCEPTOS FUNDAMENTALES 2.-MAGNITUDES ELÉCTRICAS. LEY DE OHM 3.- ANÁLISIS DE CIRCUITOS 3.1.- CIRCUITO SERIE 3.2.- CIRCUITO PARALELO 3.3.- CIRCUITO MIXTO 4.- INSTRUMENTOS DE MEDIDA

Más detalles

Cuaderno de Actividades

Cuaderno de Actividades Cuaderno de Actividades Pendientes Tecnología 3-ESO NOMBRE DEL ALUMNO: CURSO [Entregar a Jaume Castaño, Jefe del Dpto de Tecnología, el día del examen. La nota final será: Cuaderno: 40% + Examen: 60%]

Más detalles

MULTIMETRO DIGITAL MANUAL DE USUARIO

MULTIMETRO DIGITAL MANUAL DE USUARIO MULTIMETRO DIGITAL MANUAL DE USUARIO ! ADVERTENCIAS PRECAUCIONES Lea detenidamente estas instrucciones antes de su primer uso y guárdelas para usos posteriores.! Si aparece este símbolo en el multímetro

Más detalles

Características Específicas del Multímetro Industrial, MultiTherm Precisión Básica. Capacitancia Frecuencia Temperatura (Tipo K)

Características Específicas del Multímetro Industrial, MultiTherm Precisión Básica. Capacitancia Frecuencia Temperatura (Tipo K) Características Generales del Multímetro Industrial, MultiTherm Nuestro Multímetro tiene termómetro integrado para identificar rápidamente motores a altas temperaturas o ubicar puntos calientes en paneles

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 4 LABORATORIO DE NOMBRE DE LA

Más detalles

EJERCICIOS 3ºESO CON SIMULADOR DE CIRCUITOS COCODRILE. Pag 1 de 13

EJERCICIOS 3ºESO CON SIMULADOR DE CIRCUITOS COCODRILE. Pag 1 de 13 EJERCICIOS 3ºESO CON SIMULADOR DE CIRCUITOS COCODRILE Pag 1 de 13 Los ejercicios consisten en realizar una serie de circuitos y simulaciones con el programa Crocodile (acceso directo disponible en el escritorio)y

Más detalles

Son componentes que ofrecen cierta oposición al paso de la corriente, y produce una caída de tensión entre sus terminales.

Son componentes que ofrecen cierta oposición al paso de la corriente, y produce una caída de tensión entre sus terminales. 8. COMPONENTES ELECTRÓNICOS 8.1 Resistencias. Son componentes que ofrecen cierta oposición al paso de la corriente, y produce una caída de tensión entre sus terminales. Una característica muy importante

Más detalles

KPAW-01A. Código: Pinza vatimétrica con armónicos CARATERÍSTICAS

KPAW-01A. Código: Pinza vatimétrica con armónicos CARATERÍSTICAS Código: 0767401 La serie KPAW-01A es la continuación de la serie de pinzas de potencia KPAW pero adquiere el más moderno diseño de la familia KOBAN KPA-01T. Esta nueva pinza amperimétrica permite no sólo

Más detalles

PRÁCTICA NÚMERO 5 LEY DE OHM

PRÁCTICA NÚMERO 5 LEY DE OHM PRÁCTICA NÚMERO 5 LEY DE OHM I. Objetivos. 1. Investigar si los siguientes elementos eléctricos son óhmicos o no: - Una resistencia comercial. - Un diodo rectificador. II. Material. 1. Dos multímetros.

Más detalles

PRACTICAS DE ELECTRÓNICA ANALÓGIA MÓDULO Nº1

PRACTICAS DE ELECTRÓNICA ANALÓGIA MÓDULO Nº1 PRACTICAS DE ELECTRÓNICA ANALÓGIA MÓDULO Nº1 PRÁCTICAS DE ELECTRÓNICA ANALÓGICA Nombres y apellidos: Curso:. Fecha:.. PRÁCTICA 1: RESISTENCIAS OBJETIVO: Conocer los tipos y características de las resistencias,

Más detalles

MUL016 Minipinza Multimétrica Digital 3 1/2, 2 A

MUL016 Minipinza Multimétrica Digital 3 1/2, 2 A MUL016 Minipinza Multimétrica Digital 3 1/2, 2 A Manual de usuario 1º Edición, 2010 2010 Copy Right de Prokit s Industries Co., Ltd. INSTRUCCIONES La minipinza multimétrica digital 3 1/2 2 A es un multímetro

Más detalles

INSTRUMENTOS DE LABORATORIO

INSTRUMENTOS DE LABORATORIO INSTRUMENTOS DE LABORATORIO Escuela de Física UCR Realizado por Marco A. Umaña, Ing. En las Ciencias Exactas, la piedra angular son los datos obtenidos a través del proceso de medición. Con la información

Más detalles

Entrega Nº 2 Conceptos de Electricidad Básica (2ª Parte) QUÉ ES LA CORRIENTE ELÉCTRICA?

Entrega Nº 2 Conceptos de Electricidad Básica (2ª Parte) QUÉ ES LA CORRIENTE ELÉCTRICA? Entrega Nº 2 Conceptos de Electricidad Básica (2ª Parte) QUÉ ES LA CORRIENTE ELÉCTRICA? Los electrones de las órbitas exteriores de un átomo pueden ser fácilmente obligados a salir de ellas, porque están

Más detalles