FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica"

Transcripción

1 FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 1 INTRODUCCION AL USO DE HARDWARE Y SOFTWARE PARA CIRCUITOS DE ELECTRONICA DE POTENCIA 2. OBJETIVOS 2.1. Conocer las características del software de programación de microcontroladores en la plataforma ARDUINO Conocer la importancia del aislamiento de las señales de control con el circuito de potencia Analizar las razones de la utilización de aislamiento entre las etapas de control y potencia. 3. MARCO TEÓRICO Durante el desarrollo del Laboratorio de Electrónica de Potencia, se hará uso de la plataforma ARDUINO, la cual permite implementar en un sistema microprocesado un conjunto de elementos con un fin específico. La bibliografía acerca del uso de ARDUINO es muy amplia en la web del fabricante: y también se pueden observar un sinnúmero de ejemplos en páginas especializadas en electrónica o distintos foros en internet. Para este curso, el objetivo será conocer las instrucciones básicas con las cuales se pueden generar señales de disparo par semiconductores de potencia y la adquisición de señales analógicas provenientes de potenciómetros, para variar el ancho de pulso en las señales de disparo.

2 La segunda parte de la presente práctica consiste en lograr que el estudiante desarrolle las habilidades necesarias para acoplar de una manera adecuada la etapa que contiene las señales de control con la etapa de potencia de un circuito. Para la generación de las señales de control se usará utilizará la plataforma ARDUINO, la cual permite implementar en un sistema microprocesado una lógica dada que genera señales encargadas de controlar los semiconductores (funcionando como interruptores de estado sólido) a usarse en un circuito electrónico que administra el flujo de potencia hacia una carga dada. Dichas señales de control deben ser debidamente aisladas de la etapa de potencia, ya que, de no ser así, frente a fluctuaciones no deseadas en la etapa de potencia, la etapa de control sufrirá daños que en el peor de los casos serán irreparables. Por lo tanto, se realizará una breve explicación sobre las definiciones básicas de señales de control y adquisición de señales analógicas para posteriormente, mostrar un ejemplo de cómo generar una señal PWM y cómo adquirir voltaje en los puertos de la plataforma ARDUINO (Figura 1). Figura 1. Plataforma ARDUINO UNO 3.1. Generación de señal PWM Una señal de modulación de ancho de pulso (Figura 2) o Pulse Width Modulation en inglés, es una señal periódica de tren de pulsos que a menudo se utiliza para el disparo de semiconductores de potencia.

3 Figura 2. Señal PWM El diseñador del circuito electrónico escogerá la amplitud y frecuencia que demande la aplicación en cuestión y lo más importante es que de acuerdo a la variación del tiempo en alto o duty cycle se pueden cambiar las condiciones de trabajo del circuito de potencia como por ejemplo: la velocidad en un motor o la intensidad de brillo en una lámpara incandescente Adquisición de señal analógica Una señal analógica es una señal eléctrica que cambia en un conjunto de valores a través del tiempo. Para este ejemplo, se generará la señal analógica a través de la conexión de un potenciómetro es una de las entradas analógicas del ARDUINO, el cual también provee la señal de 5V para que el potenciómetro pueda variar el voltaje a través de su terminal variable como se aprecia en la Figura 3: Figura 3. Conexión de un potenciómetro en ARDUINO

4 A continuación se muestra el código para la toma de datos de voltaje desde el potenciómetro a través del pin analógico 0 de ARDUINO y la visualización de este valor a través del cambio de la luminosidad de un LED conectado en el pin digital 9 con los comentarios respectivos en letras azules. Es importante que el LED se conecte en conjunto con una resistencia de 330Ω para limitar la corriente que entrega el pin del microcontrolador. int ledpin = 9; // Conexión del LED en el pin 9 int analogpin = 0; // Conexión del potenciómetro en el pin 0 int val = 0; // Variable en donde se guardará el valor analógico leído void setup() { pinmode(ledpin, OUTPUT); // Se configure el pin del LED como salida } void loop() { val = analogread(analogpin); // Lee el valor analógico del potenciómetro analogwrite(ledpin, val / 4); // Se escala el valor a un rango entre 0-255* } *El escalamiento se produce porque la lectura analógica se realiza a través de un registro de 10 bits que en equivalente decimal muestra un rango de operación de valores entre 0 y En cambio, el registro de escritura analógica posee solo 8 bits y su equivalente en sistema decimal son valores entre 0 y 255, por lo cual es necesario dividir el valor para 4 para que el valor del pin de la entrada pueda ser reflejado en el pin de salida Necesidad de Aislamiento Eléctrico y sus tipos Con mucha frecuencia existe la necesidad del aislamiento eléctrico entre las señales de control de nivel lógico y los circuitos excitadores (circuitos que se encargan de activar los semiconductores que están funcionando como interruptores) con el fin de precautelar el funcionamiento de la etapa de control frente a eventuales problemas en la etapa de potencia. Las señales de control de nivel lógico suelen determinarse en función de la tierra lógica, que está en el mismo potencial que el neutro de potencia, pues los circuitos lógicos están conectados al neutro por medio de un hilo de tierra de seguridad.

5 Las maneras básicas para proporcionar el aislamiento eléctrico son por medio de: optoacopladores, transformadores de pulsos y relés Circuitos excitadores aislador por optoacopladores El optoacoplador más sencillo consiste en un diodo emisor de luz (LED), y un transistor de salida. Una señal positiva de la lógica de control causa que el LED emita luz enfocada a la zona de base ópticamente sensible de un transistor fotosensible. La luz que cae en la zona de base causa que se encienda el transistor fotosensible. La salida del optoacoplador y sirve como entrada de control al circuito excitador aislado. La capacitancia entre el LED y la base del transistor receptor dentro del optoacoplador, debe ser lo más pequeña posible para evitar un disparo adicional tanto en el encendido como en el apagado del transistor de potencia debido al salto en el potencial entre el punto de referencia del emisor del transistor de potencia y la tierra de los elementos electrónicos de control. Para reducir este problema se deben usar optoacopladores con blindajes eléctricos entre el LED y el transistor receptor. Se usan cables de fibra óptica a fin de eliminar de tajo el problema de disparos adicionales y de proporcionar un aislamiento eléctrico. Cuando se usan cables de fibra óptica, el LED se mantiene en la tarjeta del circuito impreso de la electrónica de control, y la fibra óptica transmite la señal al transistor receptor que se coloca sobre la tarjeta impresa del circuito excitador. En este tipo de circuitos, el propio optoacoplador es la interconexión entre la salida del circuito de control y la entrada del circuito excitador aislado. El lado de entrada del optoacoplador se acopla directamente al circuito de control y el lado de salida del optoacoplador se acopla directamente al circuito excitador aislado. La topología del circuito excitador aislado entre la salida del optoacoplador y la terminal de control del interruptor de energía puede tener diferentes formas. También se pueden usar circuitos excitadores aislados por optoacopladores con TIRISTORES, MOSFET e IGBT de potencia [1].

6 Figura 4. Ejemplo del disparo de un BJT usando un optotransistor. Figura 5. Ejemplo del disparo de un MOSFET usando un optotransistor NOTA: Para altas frecuencias de conmutación se sugiere usar optonands Detección de cruces por cero usando un optoacoplador Los optoacopladores también pueden ser usados en circuitos de detección de cruces por cero de la red eléctrica. En la siguiente figura notar que los resistores de 10KΩ del lado izquierdo deben ser capaces de disipar 5 W. Figura 6. Circuito de detección de cruces por cero.

7 3.6. Circuitos excitadores aislados por transformadores de pulsos. La señal de control se acopla al circuito excitador eléctricamente aislado por medio de un transformador. Si la frecuencia de conmutación es alta (varias decenas de khz o más) y la relación de trabajo D varía sólo un poco alrededor de 0.5, se aplica una señal de control de banda base de magnitud correspondiente directamente al primario de un transformador relativamente pequeño y de peso ligero, y la salida secundaria se usa para excitar de modo directo al interruptor de energía o como entrada a un circuito excitador aislado. Conforme disminuye la frecuencia de conmutación por debajo del rango de decenas de khz una señal de control de banda base aplicada al primario del transformador deja de ser práctica porque el tamaño y peso del transformador aumentan cada vez más. La modulación de un portador de alta frecuencia por medio de una señal de control de baja frecuencia permite el uso de un pequeño transformador de pulsos de alta frecuencia incluso para señales de control de baja frecuencia. 4. TRABAJO PREPARATORIO 4.1. Leer, analizar y asimilar la información proporcionada en el marco teórico de la presente hoja guía. Se evaluarán mediante coloquio los tópicos allí tratados Consultar el procedimiento para compilar y cargar un programa en la plataforma ARDUINO. Enfatizar el procedimiento en cuanto a la elección de la plataforma de ARDUINO antes de la carga del programa a través de capturas de pantalla Dibujar la forma de onda esperada en el terminal Detection signal, Hacia el uc en la señal de detección de la Figura 6 Circuito de Detección de cruces por cero. La forma de onda requerida deberá estar superpuesta en un período de la señal sinusoidal correspondiente al voltaje de la red eléctrica Traer implementado el circuito de la Figura Traer armado el circuito de la Figura 7, usando el optotransistor 4N25 y como señal de control se usará la señal generada mediante Arduino en uno de sus pines. La fuente que alimenta la salida del optoacoplador tiene una referencia diferente de la

8 alimentación de Arduino. Es importante notar que la salida del circuito de la Figura 7 únicamente nos permite observar la señal de control aislada, mas no realizar el disparo de un semiconductor de potencia, la forma de disparo depende del semiconductor ver Figuras 4 y 5, cuando se trate de alimentar el circuito de disparo a la salida del optoacoplador se pueden utilizar +12V las fuentes disponibles en el laboratorio. Figura 7. Circuito de aislamiento de una señal de control. 5. EQUIPO Y MATERIALES Computador con el software de programación en microcontroladores, ARDUINO. Placa de ARDUINO Fuentes de poder. Osciloscopio Puntas de prueba de Voltaje 1 led 1 optotransistor Juego de resistencias de diferentes valores NOTA: Cada grupo debe traer las puntas de prueba para el osciloscopio con terminales lagarto y la placa de ARDUINO. 6. PROCEDIMIENTO 6.1. Se realizará a implementación de un programa base que se usará a lo largo de las prácticas de Electrónica de Potencia en el entorno de programación de ARDUINO. El instructor explicará cómo realizar el programa y el objetivo de implementar cada línea de código.

9 6.2. Se procederá a poner en funcionamiento el circuito implementado de detección de cruce por cero y se capturará mediante el osciloscopio la forma de onda correspondiente a la señal de detección tomando en cuenta que, de estar funcionando correctamente el circuito, el valor de la frecuencia de ésta señal debe ser 60 Hz Se procederá a poner en funcionamiento el circuito de aislamiento de una señal de control usando una señal PWM generada en la plataforma Arduino mediante un optotransistor 4N25. Se capturará mediante el uso del osciloscopio primero la señal de control directamente desde el pin de Arduino y luego (NO SIMULTÁNEAMENTE porque las referencias son distintas) la señal de control aislada mediante el optotransistor.. 7. INFORME 7.1. Consultar y presentar el esquemático del circuito de disparo para un SCR mediante el uso de un optotriac Consultar y presentar el esquemático del circuito de disparo para un TRIAC mediante el uso de un optotriac Presentar las formas de onda obtenidas para el circuito de detección de cruces por cero y comentar la razón por la cuál describe esa forma y frecuencia Presentar las formas de onda obtenidas para el circuito de aislamiento con optotransistor y comentar las razones (mínimo 3) por las cuales es recomendable aislar la etapa de control de la etapa de potencia Consultar la razón por la cual se recomienda usar optonands para aislar señales de control que cambian de estado a frecuencias elevadas. Consultar además un circuito de aislamiento de una señal de control usando un optoacoplador optonand para el disparo de un Mosfet o IGBT Mediante el uso de Arduino generar en uno de sus pines una señal PWM de frecuencia 490 Hz con una relación de trabajo que vaya de 0.1 a Realizar el esquema de conexiones en ARDUINO (se sugiere usar el programa Fritzing para el esquema) y la programación para una señal PWM de frecuencia fija

10 (consultar e indicar mediante comentario en el programa el valor de la frecuencia del PWM generada), la señal deberá tener ancho de pulso variable en los rangos especificados a continuación. Para la variación del ancho de pulso usar un potenciómetro y mediante software acotar los valores de ancho de pulso (Se sugiere consultar y usar la función If). Tomar en cuenta las consideraciones que se expresan en la Tabla 1: Tabla 1. Requerimientos para la elaboración del informe Grupo Pin de Entrada analógica Ancho de pulso Pin de Salida PWM GR GR GR GR GR GR GR GR GR GR Realizar un diagrama de flujo en el cual se evidencie el funcionamiento del programa y traer el circuito implementado para que sea revisado en la siguiente sesión de laboratorio Conclusiones y recomendaciones Referencias. 8. REFERENCIAS [1] Electrónica de Potencia, Mohan, 3ra edición. Elaborado por: Revisado por: Ing. Nataly Pozo Viera, M.Sc. Dr. Alberto Sanchez / Dr.-Ing. Marcelo Pozo

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 2

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 2 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica 1. TEMA

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 1

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 1 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 3 ANÁLISIS E IMPLEMENTACIÓN DE CIRCUITOS DE DISPARO

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 3 ANÁLISIS E IMPLEMENTACIÓN DE CIRCUITOS DE DISPARO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 3 2. OBJETIVOS ANÁLISIS E IMPLEMENTACIÓN DE CIRCUITOS

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 3

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 3 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 9 RECTIFICADOR MONOFÁSICO

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 6 CARACTERIZACIÓN DEL

Más detalles

LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 6

LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 6 FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE CONVERSORES ESTÁTICOS 1. TEMA PRÁCTICA N 6 CONVERSORES DC-DC CONFIGURACIONES BÁSICAS: REDUCTOR

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica INGENIERÍA CIVIL EN MECÁNICA PLAN 2012 GUÍA DE LABORATORIO ASIGNATURA Automatización y Robótica CÓDIGO 15179 NIVEL 10 EXPERIENCIA C04 Automatización de un sistema de Iluminación Automatización de un sistema

Más detalles

Puente H: cambio de giro y velocidad de motores DC.

Puente H: cambio de giro y velocidad de motores DC. Puente H: cambio de giro y velocidad de motores DC. Por William David Galvis 1 26 Marzo del 2014 Puente H: El puente en H lleva su nombre gracias al aspecto físico del esquema básico de los interruptores

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 2 2. OBJETIVOS CARACTERIZACIÓN

Más detalles

Qué es y por qué usarlo

Qué es y por qué usarlo ARDUINO * El proyecto Arduino: Qué es y por qué usarlo Arduino es un sistema electrónico de prototipado abierto (opensource ) basada en hardware y software flexibles y fáciles de usar. Con conceptos básicos

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 5 CARACTERIZACIÓN DEL

Más detalles

MODULO Nº13 PROPULSORES DE CC

MODULO Nº13 PROPULSORES DE CC MODULO Nº13 PROPULSORES DE CC UNIDAD: CONVERTIDORES CC - CC TEMAS: Propulsores de CC. Conceptos Básicos de los Motores CC. Técnica PWM. Propulsores Pulsantes. OBJETIVOS: Explicar las características principales

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 8

LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 8 FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE CONVERSORES ESTÁTICOS 1. TEMA PRÁCTICA N 8 CONVERTIDORES DC-DC EN DOS CUADRANTES 2. OBJETIVOS 2.1.

Más detalles

Anexo III. Programas

Anexo III. Programas Anexo III Programas 1 Programa de control de Disparo para el controlador de velocidad Para poder controlar el ángulo de disparo de los SCR s, es necesario que el Microcontrolador que en este caso un arduino

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA INSTITUTO DE INVESTIGACIÓN DE LA FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA INFORME FINAL DEL TEXTO TEXTO: LABORATORIOS

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 5

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 5 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

Generador Solar de Energía Eléctrica a 200W CAPÍTULO VII. Implementaciones y resultados Implementación de los convertidores elevadores

Generador Solar de Energía Eléctrica a 200W CAPÍTULO VII. Implementaciones y resultados Implementación de los convertidores elevadores CAPÍTULO VII Implementaciones y resultados 7.1.- Implementación de los convertidores elevadores Al finalizar con las simulaciones se prosiguió a la construcción de los convertidores de potencia. Se implementó

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN ELECTRICIDAD Y COMPUTACIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN ELECTRICIDAD Y COMPUTACIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN ELECTRICIDAD Y COMPUTACIÓN TESIS DE GRADO Previo a la obtención del Título de: INGENIERO EN ELECTRICIDAD ESPECIALIZACIÓN ELECTRÓNICA Y

Más detalles

OBJETIVOS QUÉ VAMOS A REALIZAR? CONOCIMIENTOS PREVIOS

OBJETIVOS QUÉ VAMOS A REALIZAR? CONOCIMIENTOS PREVIOS Las computadoras no son entes inteligentes que toman decisiones por sí mismas. Sin nuestra intervención, no serían capaces realizar todas las tareas que hoy en día tienen a su cargo. Debido a esto es sumamente

Más detalles

IM : ARDUINO NANO OEM

IM : ARDUINO NANO OEM IM130615004: ARDUINO NANO OEM NIVEL DE ENTRADA Básico Estas placas y módulos son los mejores para iniciar a programar un micro-controlador Descripción Arduino Nano es una pequeña placa basada en el ATmega328

Más detalles

CAPITULO 3 IMPLEMENTACIÓN DEL INVERSOR ELEVADOR. En el presente capítulo se muestran, de manera general, la etapa de potencia y de

CAPITULO 3 IMPLEMENTACIÓN DEL INVERSOR ELEVADOR. En el presente capítulo se muestran, de manera general, la etapa de potencia y de CAPITULO 3 IMPLEMENTACIÓN DEL INVERSOR ELEVADOR MONO - ETAPA 3.1 Introducción En el presente capítulo se muestran, de manera general, la etapa de potencia y de control de conmutación implementadas. Se

Más detalles

OBJETIVOS QUÉ VAMOS A REALIZAR? CONOCIMIENTOS PREVIOS

OBJETIVOS QUÉ VAMOS A REALIZAR? CONOCIMIENTOS PREVIOS Para iniciarnos en el mundo de la programación usualmente se utiliza el famoso ejemplo de Hola Mundo!. Este programa se encarga de imprimir dicho texto en pantalla, es caracterizado por su sencillez y

Más detalles

DIODOS Y TRANSISTORES.

DIODOS Y TRANSISTORES. INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 1.0.0. DIODOS Y TRANSISTORES. Caracterización de el diodo. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del 2015 Practica:

Más detalles

Tecnología robótica. Tema 7.- Tarjeta controladora Arduino

Tecnología robótica. Tema 7.- Tarjeta controladora Arduino 1. Elementos electrónicos. 2. Placa Arduino. Sus componentes. 3. Software de Arduino. 4. Características de programación en Arduino. 5. Proyectos con la tarjeta controladora Arduino. 1. Elementos electrónicos.

Más detalles

Tecnológico Nacional de México

Tecnológico Nacional de México Tecnológico Nacional de México Instituto Tecnológico de Ensenada Introduccio n a la tecnologí a arduino Instructor: M. E. Oscar Martin Tirado Ochoa Ensenada, B. C. Junio del 2015 Contenido Hola mundo...

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 5

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 5 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Adquisición de datos

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Adquisición de datos TEMA: Adquisición de datos Ejercicio: Recibir señales mediante el modulo NI USB 6009 Objetivo: Recibir señales analógicas y digitales mediante modulo NI USB 6009. Teoría: El modulo NI USB 6009, es un dispositivo

Más detalles

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS.

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS. Tema: Circuito cicloconvertidor. Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. I. OBJETIVOS. Implementar diferentes circuitos de inversores utilizando SCR S de potencia.

Más detalles

Capítulo V. Implementación del corrector del factor de potencia

Capítulo V. Implementación del corrector del factor de potencia 5.1 Introducción En este capítulo se aborda la implementación circuito, la etapa de potencia, la etapa de disparo, así como el aislamiento entre éstas. También se fundamenta la elección de los componentes

Más detalles

TEMPORIZADOR Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica

TEMPORIZADOR Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica Electrónica II. Guía 6 1 / 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). TEMPORIZADOR - 555. Objetivos

Más detalles

AR 3 T. Tutorial 3: Voltajes analógicos y PMW, Potenciómetro + LED. Objetivo General.

AR 3 T. Tutorial 3: Voltajes analógicos y PMW, Potenciómetro + LED. Objetivo General. Tutorial 3: Voltajes analógicos y PMW, AR 3 T Potenciómetro + LED Objetivo General. En este proyecto vamos a controlar el brillo de un led utilizando un potenciómetro. Tomaremos los valores analógicos

Más detalles

INGENIERÍA MECATRÓNICA EN COMPETENCIAS PROFESIONALES

INGENIERÍA MECATRÓNICA EN COMPETENCIAS PROFESIONALES INGENIERÍA MECATRÓNICA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE SISTEMAS ELECTRÓNICOS DE INTERFAZ PROPÓSITO DE APRENDIZAJE DE LA ASIGNATURA CUATRIMESTRE El alumno integrará circuitos de interfaz empleando

Más detalles

Experimento 5: Transistores BJT como interruptores

Experimento 5: Transistores BJT como interruptores I Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Dr.-Ing. Pablo Alvarado M., Dipl.-Ing. Eduardo Interiano S. Laboratorio de Elementos Activos I Semestre 2005 Objectivo

Más detalles

CURSO: ROBÓTICA. CONECTANDO CON EL MUNDO FÍSICO. ÍÑIGO MARTÍN MIMBELA.

CURSO: ROBÓTICA. CONECTANDO CON EL MUNDO FÍSICO. ÍÑIGO MARTÍN MIMBELA. CURSO: ROBÓTICA. CONECTANDO CON EL MUNDO FÍSICO 1 Nombre, apellidos y correo electrónico de EducaMadrid del participante ÍÑIGO MARTÍN MIMBELA. inigo.martin@educa.madrid.org 2 Título de la Unidad Didáctica

Más detalles

PRACTICA N 3 ADQUISICIÓN DE DATOS DE TEMPERATURA Y VELOCIDAD

PRACTICA N 3 ADQUISICIÓN DE DATOS DE TEMPERATURA Y VELOCIDAD PRACTICA N 3 ADQUISICIÓN DE DATOS DE TEMPERATURA Y VELOCIDAD Fecha de entrega: 28 de septiembre Durante la realización de esta práctica el estudiante debe familiarizarse con el uso de dos tipos de sensores:

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 7 ANÁLISIS DE CIRCUITOS

Más detalles

LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA N 8 SIMULACIÓN: RESPUESTA EN CIRCUITOS DE PRIMER Y SEGUNDO ORDEN

LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA N 8 SIMULACIÓN: RESPUESTA EN CIRCUITOS DE PRIMER Y SEGUNDO ORDEN FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones Carrera de Ingeniería Electrónica y Redes de Información

Más detalles

Actuadores eléctricos - Motores

Actuadores eléctricos - Motores Servomotores Un servomotor es básicamente un actuador mecánico que contine un motor eléctrico y un conjunto de engranajes que permiten multiplicar el torque del sistema final y tiene la capacidad de ser

Más detalles

Laboratorio de Electrónica Industrial. Controladores de Voltaje de Corriente Alterna

Laboratorio de Electrónica Industrial. Controladores de Voltaje de Corriente Alterna ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 6 Controladores de Voltaje de Corriente Alterna Objetivos Particulares Conocer el principio de funcionamiento

Más detalles

LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 12 RECTIFICACIÓN DE VOLTAJE CON SCR

LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 12 RECTIFICACIÓN DE VOLTAJE CON SCR LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS 1. TEMA 2. OBJETIVOS PRÁCTICA N 12 RECTIFICACIÓN DE VOLTAJE CON SCR 2.1. Familiarizar al Estudiante con el comportamiento y funcionamiento básico del dispositivo

Más detalles

PARAMETROS DEL CIRCUITO DE CRUCE POR CERO PARA CIRCUITOS DE POTENCIA

PARAMETROS DEL CIRCUITO DE CRUCE POR CERO PARA CIRCUITOS DE POTENCIA PARAMETROS DEL CIRCUITO DE CRUCE POR CERO PARA CIRCUITOS DE POTENCIA En este documento se dará a conocer las bases suficientes que se deben tener en cuenta para el manejo del cruce por cero en los diferentes

Más detalles

Departamento de Ingeniería Eléctrica y Electrónica. Guía de Prácticas de Laboratorio. Materia: Diseño Digital. Laboratorio de Ingeniería Electrónica

Departamento de Ingeniería Eléctrica y Electrónica. Guía de Prácticas de Laboratorio. Materia: Diseño Digital. Laboratorio de Ingeniería Electrónica Instituto Tecnológico de Querétaro Departamento de Ingeniería Eléctrica y Electrónica Guía de Prácticas de Laboratorio Materia: Diseño Digital Laboratorio de Ingeniería Electrónica Santiago de Querétaro,

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica 1. TEMA

Más detalles

ESPECIFICACIONES MATERIALES UTILIZADOS

ESPECIFICACIONES MATERIALES UTILIZADOS Contenido Capítulo 1 INTRODUCCIÓN... 17 1.1 Introducción general... 17 1.2 Hipótesis de trabajo... 18 1.3 Objetivos... 18 1.3.1 Objetivo general... 18 1.3.2 Objetivos específicos... 18 1.4 Área de estudio

Más detalles

Programa de Asignatura

Programa de Asignatura Departamento de Ingeniería Industrial Programa: Ingeniería Mecatrónica, Plan 007- Asignatura: Electrónica Industrial Clave: 995 Semestre: VII Tipo: Obligatoria H. Teoría: H Práctica: H. Lab: 0 HSM: Créditos:

Más detalles

Laboratorio 4: Circuito de control de potencia con Triac

Laboratorio 4: Circuito de control de potencia con Triac Electrónica y Automatización 05 Laboratorio 4: Circuito de control de potencia con Triac En este laboratorio se analizará un circuito capaz de excitar un Triac mediante pulsos de ancho variable sincronizados

Más detalles

Programación Arduino Con Visualino

Programación Arduino Con Visualino Programación Arduino Con Visualino Ponente: Ing. Patricio Tisalema ROBOTS FAMOSOS Y NO TAN FAMOSOS PERO SÍ CERCANOS QUÉ ES ROBOT? Es un sistema electro-mecánico que por su apariencia de movimientos, ofrece

Más detalles

UNIVERSIDAD TECNOLÓGICA DE MÉXICO ELECTRÓNICA DE POTENCIA PRÁCTICA 1. MODULACIÓN POR ANCHO DE PULSO.

UNIVERSIDAD TECNOLÓGICA DE MÉXICO ELECTRÓNICA DE POTENCIA PRÁCTICA 1. MODULACIÓN POR ANCHO DE PULSO. UNIVERSIDAD TECNOLÓGICA DE MÉXICO ELECTRÓNICA DE POTENCIA PRÁCTICA 1. MODULACIÓN POR ANCHO DE PULSO. Objetivo: el alumno construirá con un amplificador operacional un sistema que varía el ancho de pulso

Más detalles

Ilustración 76 Fuente de Alimentación para Iluminación

Ilustración 76 Fuente de Alimentación para Iluminación Capítulo 4 4 101 IMPLEMENTACIÓN DEL CONTROL DE ILUMINACIÓN. 4.1 Implementación. Para efectuar la implementación se tiene el conjunto de diseños descritos anteriormente, una fuente de alimentación de tensión

Más detalles

CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS

CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS COMBINACIONALES INTEGRADOS CIRCUITOS INTEGRADOS SECUENCIALES: FLIP-FLOPS, REGISTROS Y CONTADORES CONSEJOS PARA LA ELABORACIÓN DE DIAGRAMAS LÓGICOS DE CIRCUITOS

Más detalles

PRACTICAS CON ARDUINO

PRACTICAS CON ARDUINO PRACTICAS CON ARDUINO 1º DE BACHILLERATO PROYECTO INTEGRADO: TALLER DE ROBÓTICA Materiales: Placa Protoboard Microcontroladora Arduino Cable de conexión 1 LED 1 resistencia 120 Ω Cables PRÁCTICA Nº 1:

Más detalles

AUTORES: RICAURTE CORREA NÉSTOR ANDRÉS SARZOSA ANTE DAVID DE JESÚS

AUTORES: RICAURTE CORREA NÉSTOR ANDRÉS SARZOSA ANTE DAVID DE JESÚS DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DIDÁCTICO DE INVERSOR MULTINIVEL EN CASCADA, MONOFÁSICO DE TRES ETAPAS PARA EL LABORATORIO DE CONTROL ELÉCTRICO ESPE LATACUNGA AUTORES: RICAURTE CORREA NÉSTOR ANDRÉS

Más detalles

CAPITULO 2. Métodos para llevar a cabo la variación voltaje/frecuencia. De acuerdo al método para variar la velocidad sincrónica de un motor

CAPITULO 2. Métodos para llevar a cabo la variación voltaje/frecuencia. De acuerdo al método para variar la velocidad sincrónica de un motor CAPITULO 2 Métodos para llevar a cabo la variación voltaje/frecuencia De acuerdo al método para variar la velocidad sincrónica de un motor trifásico de corriente alterna, debemos alimentar el motor con

Más detalles

INSTRUMENTACIÓN AVANZADA Departamento de Ingeniería Eléctrica y Electromecánica Facultad de Ingeniería Universidad Nacional de Mar del Plata

INSTRUMENTACIÓN AVANZADA Departamento de Ingeniería Eléctrica y Electromecánica Facultad de Ingeniería Universidad Nacional de Mar del Plata Ing. Guillermo Murcia Ing. Jorge Luis Strack gjmurcia@fi.mdp.edu.ar jlstrack@fi.mdp.edu.ar Control y monitoreo a través de servidor Ethernet Ejemplo de control y monitoreo de varias estaciones de bombeo

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Control de procesos con Arduino.

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Control de procesos con Arduino. TEMA: Control de procesos con Arduino. Ejercicio: Controlando un proceso la ayuda de la tarjeta Arduino Objetivo: Mediante modulo Arduino, controlamos un proceso instrumentado mediante sensores y actuadores.

Más detalles

CAPÍTULO 7. Implementación del prototipo.

CAPÍTULO 7. Implementación del prototipo. CAPÍTULO 7 Implementación del prototipo. 7.1 Introducción. Este capítulo se describe la construcción del prototipo para una fuente de CD en el bus principal de 12 V DC, los dispositivos utilizados y los

Más detalles

CAPÍTULO 3: DESCRIPCIÓN HARDWARE DEL

CAPÍTULO 3: DESCRIPCIÓN HARDWARE DEL CAPÍTULO 3: DESCRIPCIÓN HARDWARE DEL SISTEMA INFODINA. 1.- INTRODUCCIÓN. Como ya se ha mencionado anteriormente, el sistema InfoDina está constituido por dos módulos: una parte hardware, constituida por

Más detalles

INSTRUMENTACIÓN AVANZADA Departamento de Ingeniería Eléctrica y Electromecánica Facultad de Ingeniería Universidad Nacional de Mar del Plata

INSTRUMENTACIÓN AVANZADA Departamento de Ingeniería Eléctrica y Electromecánica Facultad de Ingeniería Universidad Nacional de Mar del Plata Ing. Guillermo Murcia Ing. Jorge Luis Strack gjmurcia@fi.mdp.edu.ar jlstrack@fi.mdp.edu.ar Control y monitoreo a través de servidor Ethernet ETHERNET SHIELD Tensión de alimentación: 5V (se alimenta directamente

Más detalles

Microchip Tips & Tricks...

Microchip Tips & Tricks... ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. PWM Tips & Tricks Estimados lectores, en los artículos anteriores de Microchip Tips & Tricks se presentaron

Más detalles

5. El transistor: BJT y JFET

5. El transistor: BJT y JFET 5. El transistor: BJT y JFET Objetivos: Analizar y simular, con ayuda de MicroCAP, algunos circuitos básicos con transistor bipolar (BJT) y con transistor JFET. Realizar el montaje práctico de un interruptor

Más detalles

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA SUBDIRECCIÓN ACADÉMICA ÁREA DE INVESTIGACIÓN EDUCATIVA. Actividad de Aprendizaje Activo.

FACULTAD DE INGENIERIA MECANICA Y ELECTRICA SUBDIRECCIÓN ACADÉMICA ÁREA DE INVESTIGACIÓN EDUCATIVA. Actividad de Aprendizaje Activo. FACULTAD DE INGENIERIA MECANICA Y ELECTRICA SUBDIRECCIÓN ACADÉMICA ÁREA DE INVESTIGACIÓN EDUCATIVA Actividad de Aprendizaje Activo Actividad 1 Unidad de aprendizaje: Física III Unidad temática en el cual

Más detalles

Índice de Contenidos

Índice de Contenidos Índice de Contenidos CAPÍTULO 1 INTRODUCCION... 12 1.1 El problema (o la oportunidad)... 13 1.2 Objetivo General... 13 1.3 Objetivos específicos... 13 1.5 Alcances y limitaciones... 15 Capítulo 2 MARCO

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 7 LABORATORIO DE NOMBRE DE LA

Más detalles

Microprocesadores I Práctica #9 Rectificación Controlada de la Onda Senoidal de 120v/60Hz Trabajo en Grupo

Microprocesadores I Práctica #9 Rectificación Controlada de la Onda Senoidal de 120v/60Hz Trabajo en Grupo Microprocesadores I Práctica #9 Rectificación Controlada de la Onda Senoidal de 120v/60Hz Trabajo en Grupo Ing. O. Richer I. Descripción del problema. Se desea controlar la rectificación de la señal senoidal

Más detalles

Empieza con // y termina con la siguiente línea de código. Son ignorados por el programa y no ocupan espacio en memoria.

Empieza con // y termina con la siguiente línea de código. Son ignorados por el programa y no ocupan espacio en memoria. /* */ Los bloques de comentarios o comentarios multilíneas son áreas de texto ignoradas por el programa y se usan para describir códigos o comentarios que ayudan a otras personas a entender parte del programa.

Más detalles

Entradas Analógicas.

Entradas Analógicas. CURSO PROVINCIAL: INTRODUCCIÓN A LA ROBÓTICA CON ARDUINO ROBÓTICA EDUCATIVA Entradas Analógicas. Manuel Hidalgo Díaz Enero 2011 Entradas analógicas. El controlador Atmega de Arduino lleva incluido un conversor

Más detalles

En el presente capítulo se hará mención de las conclusiones obtenidas de la realización del

En el presente capítulo se hará mención de las conclusiones obtenidas de la realización del CAPÍTULO 6 Conclusiones En el presente capítulo se hará mención de las conclusiones obtenidas de la realización del proyecto, así como posibles modificaciones del sistema y trabajos futuros. En lo que

Más detalles

LABORATORIO DE CONTROL INDUSTRIAL PRÁCTICA N 11

LABORATORIO DE CONTROL INDUSTRIAL PRÁCTICA N 11 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica 1. TEMA

Más detalles

MANUAL DE USUARIO Como utilizar un servo motor con Arduino REV. 1.0

MANUAL DE USUARIO Como utilizar un servo motor con Arduino REV. 1.0 MANUAL DE USUARIO Como utilizar un servo motor con Arduino REV. 1.0 Ingeniería MCI Ltda. Luis Thayer Ojeda 0115 of. 1105, Providencia, Santiago, Chile. +56 2 23339579 www.olimex.cl cursos.olimex.cl info@olimex.cl

Más detalles

INTERRUPTOR CREPUSCULAR CON LDR Y ARDUINO OBJETIVOS MATERIAL NECESARIO

INTERRUPTOR CREPUSCULAR CON LDR Y ARDUINO OBJETIVOS MATERIAL NECESARIO INTERRUPTOR CREPUSCULAR CON LDR Y ARDUINO OBJETIVOS Aprender mediante una aplicación práctica el funcionamiento de una LDR. Aprender cómo se utilizan las entradas analógicas de ARDUINO. MATERIAL NECESARIO

Más detalles

LABORATORIO DE CIRCUITOS ELÉCTRICOS II PRÁCTICA N 8

LABORATORIO DE CIRCUITOS ELÉCTRICOS II PRÁCTICA N 8 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones

Más detalles

Universidad Nacional de San Juan Facultad de Filosofía Humanidades y Artes Depto. de Física y Química Profesorado en Física ELECTRÓNICA

Universidad Nacional de San Juan Facultad de Filosofía Humanidades y Artes Depto. de Física y Química Profesorado en Física ELECTRÓNICA Universidad Nacional de San Juan Facultad de Filosofía Humanidades y Artes Depto. de Física y Química Profesorado en Física ELECTRÓNICA Control de iluminación Eloísa María Santander Año 2011 1 Introducción

Más detalles

Buceando en el HC908...

Buceando en el HC908... COMENTARIO TÉCNICO Buceando en el HC908... Por Ing. Daniel Di Lella Dedicated Field Application Engineer www.edudevices.com.ar dilella@arnet.com.ar Como implementar un control remoto por infrarrojo en

Más detalles

Control de LCD y sensor de temperatura

Control de LCD y sensor de temperatura Control de LCD y sensor de temperatura Componentes Protoboard Arduino UNO Sensor de temperatura LM35 Potenciómetro (resistencia variable) Resistencia de 220 Ω Pantalla LCD 16 x 2 20 cables jumpers Montaje

Más detalles

Uso del osciloscopio digital, para la determinación del factor de potencia

Uso del osciloscopio digital, para la determinación del factor de potencia Página 1/10 Uso del osciloscopio digital, para la determinación del factor de potencia N de práctica: 05 Página 2/10 1. Seguridad en la ejecución Peligro o Fuente de energía Riesgo asociado 1 Tensión Alterna

Más detalles

CONVERTIDOR ELEVADOR Y CONVERTIDOR REDUCTOR

CONVERTIDOR ELEVADOR Y CONVERTIDOR REDUCTOR CAPITUO 2 CONVERTIDOR EEVADOR Y CONVERTIDOR REDUCTOR 2.1 Introducción os convertidores de CD-CD son circuitos electrónicos de potencia que transforman un voltaje de corriente continua en otro nivel de

Más detalles

Curso de Electricidad, Electrónica e - CEEIBS /20. Ing. Daniel Thevenet

Curso de Electricidad, Electrónica e - CEEIBS /20. Ing. Daniel Thevenet Curso de Electricidad, Electrónica e Instrumentación n Biomédica con Seguridad - CEEIBS - 1/20 - Conceptos básicos b Electrónica: Es una rama de la física y la ingeniería que estudia sistemas cuyo funcionamiento

Más detalles

DIODOS Y TRANSISTORES.

DIODOS Y TRANSISTORES. INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 3.0.0. DIODOS Y TRANSISTORES. Amplificadores con transistor BJT. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del 2015

Más detalles

Laboratorio de Casas Inteligentes Etapa de potencia Practica No. 3

Laboratorio de Casas Inteligentes Etapa de potencia Practica No. 3 Laboratorio de Casas Inteligentes Etapa de potencia Practica No. 3 Objetivo: Configurar las etapas de potencia que controlaran motores de corriente directa y lámparas. Conexión de la tarjeta del Arduino

Más detalles

PRÁCTICA 5. CONVERTIDOR DC/DC ELEVADOR

PRÁCTICA 5. CONVERTIDOR DC/DC ELEVADOR PRÁCTICA 5. CONVERTIDOR DC/DC ELEVADOR 1. Objetivo En esta práctica se estudiará el funcionamiento de un circuito convertidor de continua tipo boost (elevador) utilizando el integrado SG3524 como modulador

Más detalles

Manual de Prácticas. Práctica 2

Manual de Prácticas. Práctica 2 UNIVERSIDAD CARLOS III DE MADRID Manual de Prácticas Práctica 2 Dispositivos y Medios de Transmisión Ópticos Fecha: 06/03/12 Autores: Juan Carlos Torres Zafra David Sánchez Montero Carmen Vázquez García

Más detalles

Práctica 2. El Circuito Integrado NE555 como oscilador astable y como detector de pulsos fallidos. 9 El Circuito Integrado NE555: Montaje y Prueba

Práctica 2. El Circuito Integrado NE555 como oscilador astable y como detector de pulsos fallidos. 9 El Circuito Integrado NE555: Montaje y Prueba L-2 9 El Circuito Integrado NE555: Montaje y Prueba 1. Objetivo de la práctica El objetivo de esta práctica es mostrar el comportamiento del CI 555, uno de los dispositivos más extendidos en el diseño

Más detalles

QUÉ ES EL OPEN SOURCE?

QUÉ ES EL OPEN SOURCE? TALLER ARDUINO QUÉ ES EL OPEN SOURCE? Ventajas del open source : Idea Compartir Desarrollo del proyecto - Desarrollo acelerado de proyectos. - Feedback internacional y cooperación comunitaria. - Desarrollo

Más detalles

Metodología y didáctica de la robótica y el control por ordenador

Metodología y didáctica de la robótica y el control por ordenador ÍNDICE INTRODUCCIÓN 1. CARACTERÍSTICAS TÉCNICAS 1.1. CÓMO CONECTAR LA TARJETA AL ORDENADOR. 1.2. CARGAR LAS RUTINAS DE CONTROL DE LA TARJETA EN MSWLOGO. 1.3. CARACTERÍSTICAS TÉCNICAS 2. SALIDAS 2.1. SALIDAS

Más detalles

S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 71

S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 71 S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 71 6.1.1 Definiciones y Terminología. Varistor. Un varistor es un componente que protege a los circuitos electrónicos de variaciones y picos

Más detalles

1. IDENTIFICACIÓN DE LA GUÍA

1. IDENTIFICACIÓN DE LA GUÍA 1. IDENTIFICACIÓN DE LA GUÍA Nombre de la guía: Adquisición de la señal de un sensor. Código de la guía (No.): 3 Taller(es) o Laboratorio(s) aplicable(s): M-110 Tiempo de trabajo práctico estimado: Asignatura(s)

Más detalles

Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD

Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD Generador olar de Energía Eléctrica a 00W CAPÍTU III Convertidores CD-CD 3.1.- Introducción En muchas aplicaciones industriales se requiere convertir un voltaje fijo de una fuente de cd en un voltaje variable

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9 Electrónica I. Guía 3 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES

Más detalles

Introducción a Arduino. Electrónica para todos.

Introducción a Arduino. Electrónica para todos. Introducción a Arduino. Electrónica para todos. Qué es Arduino? Qué es Opensource? Opensource (Código abierto o fuente abierta): Software distribuido y desarrollado libremente. Busca los beneficios prácticos

Más detalles