II. Material y equipo. Item Cantidad Descripción 1 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "II. Material y equipo. Item Cantidad Descripción 1 1"

Transcripción

1 Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Conversión de energía electromecánica II Tema: Generadores de CC Guía No.6 I. Objetivos Desarrolle e implemente un sistema de generación de CC con generador Shunt y con generador Excitación Separada. Determine las características de operación en vacío del generador con Excitación Separada y Shunt. Determine la dependencia de Ea=Vt con respecto a If del circuito de campo. Determine la dependencia de Ea=Vt con respecto de la velocidad (rpm), de la máquina. II. Material y equipo Item Cantidad Descripción 1 1 Máquina de corriente continua en derivación (como primotor) 2 1 Cubierta de seguridad de acople de eje 3 1 Cubierta de seguridad de final de eje 4 2 Multímetro digital 5 1 Interruptor de 4 polos 6 X Cables de toda medida 7 1 Máquina Shunt (como generador) 8 1 Fuente de CC variable de 10A (primotor) 9 1 Fuente de CC variable de 1A (excitación) 10 1 Carga Resistiva III. Introducción El generador Shunt de CC, es un generador que suministra su propia corriente de excitación mediante la conexión en derivación del campo sobre los terminales de la máquina. Comparando con el generador de excitación separada, el generador Shunt tiene la ventaja que no requiere fuente adicional para alimentar su excitación. Proceso de Auntoexcitación. El proceso de autoexcitación de un generador de CC necesita la existencia de un flujo residual en los polos de la máquina. De esta forma cuando la máquina comienza a girar se autoinduce en la armadura el voltaje degeneración: Ea=k ω

2 Esta tensión inicial es de unos pocos voltios, lo que hace que aparezca voltaje en los terminales del generador, y por consiguiente, hace circular la corriente por los bobinados del campo (If= Vt/Rf). La corriente da lugar a una fuerza magnetomotriz que incrementa el flujo en los polos. El aumento de flujo origina un aumento de Ea=Kφω, lo que a su vez origina un aumento en el voltaje terminal Vt. Las causas por las cuales no puede haber voltaje generado son: a. No hay flujo magnético residual en el generador. b. Podría haberse revertido el sentido de giro de la máquina. c. La resistencia del campo puede ser ajustada a un valor mayor que la resistencia crítica (resistencia elevada que hace cero la corriente de campo) Características de Carga. Cuando aumenta la carga en el generador, IL aumenta, lo que hace que la potencia exigida al generador sea mayor, y aumente la corriente de armadura, lo que causa una disminución del voltaje terminal. Control del Voltaje de Generación. Al igual que el generador de excitación separada, hay dos formas de controlar la tensión de un generador Shunt: 1. Variando la velocidad del primotor. 2. Variando la corriente de excitación del generador mediante la variación de la resistencia de campo. Sin embargo, tradicionalmente se hace por el control de campo por resistencia (Rf), lo que hace variar arriba y abajo del voltaje del generador por variaciones en el flujo de la excitatriz. IV. Procedimiento PARTE I. Conexiones y funcionamiento básicos de un generador de CC. Generador de CC conexión Shunt. PARTE I. El Generador Shunt (Autoexcitado). 1. Implemente el sistema primotor generador que se muestra en la figura 1. Figura 1. Sistema de Generador Shunt. 2. La conexión eléctrica del generador se muestra en la figura 2.

3 Figura 2. Conexión Generador Shunt (generador autoexcitado). 3. Ajuste el Starter regulador de campo como carga resistiva aproximadamente al 10% de su valor de resistivo. 4. Cierre el interruptor para energizar el sistema. 5. Aplique voltaje Vdc al primotor ajustando la velocidad del sistema hasta 1800 rpm. 6. Anote los valores de voltaje generado, según el valor resistivo sugerido para cada caso, completando la tabla 1, y teniendo cuidado de no llegar al 0% ni al 100% del valor de la carga resistiva. Esto con el fin de evitar dejar un cortocircuito como carga eléctrica (0 ohmios). 7. Deberá medir el voltaje en la carga (Vc), y además, la corriente total. Nota: Nótese que el voltaje es proporcional a la velocidad del primotor; además, observe que a mayor resistencia de carga habrá una mayor caída de voltaje a la salida del generador. R % 10% 20% 30% 40% 50% 60% 70% 80% 90% Vc (V) Itotal (Amp) Tabla 1. PARTE II. El Generador Excitación Independiente (Excitación Separada). 1. Sin desconectar el promotor, y sólo haciendo cambios en la parte de la generación, proceda a conectar el generador excitación separada, tal y como se muestra en la figura 3. Figura 3. Conexión Generador Excitación Independiente. 2. En este caso no se conectará carga eléctrica a la salida del generador. Las mediciones se harán en vacío en las terminales del generador. 3. Para un valor de If igual a la mitad del valor nominal (constante), determine la dependencia de Ea=Vt en función de la velocidad. Complete la tabla 2.

4 Velocidad (rpm) If (Amp) If= 1/2 Inominal Vt (V) Tabla Para un valor de velocidad igual a 1800 rpm (constante), determine la dependencia de Ea=Vt con respecto a la If de la máquina. Complete la tabla 3, esto para diez valores de corriente de campo If, de tal manera de no sobrepasar la corriente nominal de la máquina. If (Amp) Velocidad (Rpm) 2000 rpm Vt (V) Tabla Determine el efecto de operar la máquina en sentido de rotación horario como en sentido antihorario sin cambiar ninguna conexión del generador. 6. Desconecte todo y ordene su mesa de trabajo. V. Discusión de resultados 1. Explique cómo se comporta el voltaje a la salida del generador, a medida aumenta el valor de la resistencia de carga (tabla 1). 2. Dibuje la gráfica de Vt en función de la velocidad (tabla 2). Explique la tendencia de la gráfica. 3. Dibuje la gráfica de Vt en función de la corriente de campo (tabla 2). Explique la tendencia de la gráfica. 4. Explique las diferencias entre los dos tipos de generadores estudiados durante la práctica. VI. Investigación complementaria 1. Investigue 3 aplicaciones de generadores autoexcitados y 3 de excitación separada. 2. Investigue porqué un generador autoexcitado no se conecta a una fuente adicional de Vdc. 3. Investigue si el voltaje de salida de un generador de Vdc es completamente puro o si tiene rizado. Explique. 4. Mencione tres ventajas y desventajas entre los generadores estudiados. VII. Bibliografía Electric Machines. Second Edition. Charles I. Hubert. Prentice Hall, Máquinas Eléctricas. Quinta Edición. A. E. Fitzgerald/ Charles Kingsley, Jr. McGraw-Hill Fundamentos de Máquinas Eléctricas. Stephen Chapman. McGraw-Hill 1990.

5 VIII. Anexos

No. 5 I. OBJETIVOS II. INTRODUCCIÓN

No. 5 I. OBJETIVOS II. INTRODUCCIÓN Nivel: Facultad de Estudios Tecnológicos. Departamento: Eléctrica. Materia: Maquinas Eléctricas II. Docente de Laboratorio: Ing. Wilfredo Monroy. Lugar de Ejecución: Laboratorio de Maquinas Eléctricas,

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓN DE LA

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓN DE LA Tema: GENERADORES SINCRONOS EN PARALELO. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓN DE LA ENERGIA ELECTROMECÁNICA II. I. OBJETIVOS. Desarrollar un circuito de generadores y obtener

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA Tema: PRINCIPIOS DE LAS MAQUINAS DE CORRIENTE CONTINUA. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA ENERGIAELECTROMECÁNICAII. Que el estudiante: Identifique la

Más detalles

MÁQUINAS ELÉCTRICAS LABORATORIO No. 5

MÁQUINAS ELÉCTRICAS LABORATORIO No. 5 Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.

Más detalles

Conversión de Energía Electromecánica II. Objetivos Específicos. Introduccion Teorica. Te ma: GENERADOR SINCRONO TRIFASICO.

Conversión de Energía Electromecánica II. Objetivos Específicos. Introduccion Teorica. Te ma: GENERADOR SINCRONO TRIFASICO. Te ma: GENERADOR SINCRONO TRIFASICO. Objetivos Específicos Introduccion Teorica Que el estudiante adquiera destreza en la conexión y operación del generador síncrono trifásico. Demostrar experimentalmente

Más detalles

MÁQUINAS ELÉCTRICAS LABORATORIO No. 6

MÁQUINAS ELÉCTRICAS LABORATORIO No. 6 Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.

Más detalles

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Contenidos. Objetivos Específicos

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Contenidos. Objetivos Específicos Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II Tema: Fundamentos de motores síncronos Contenidos Operación de un motor a tensión nominal y en vacío.

Más detalles

No. 3 I. OBJETIVOS. - Implementar el accionamiento de un motor Vdc en arreglo Shunt (derivación).

No. 3 I. OBJETIVOS. - Implementar el accionamiento de un motor Vdc en arreglo Shunt (derivación). Nivel: Facultad de Estudios Tecnológicos. Departamento: Eléctrica. Materia: Maquinas Eléctricas II. Docente de Laboratorio: Ing. Wilfredo Monroy. Lugar de Ejecución: Laboratorio de Maquinas Eléctricas,

Más detalles

MÁQUINAS ELÉCTRICAS LABORATORIO No. 8

MÁQUINAS ELÉCTRICAS LABORATORIO No. 8 Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.

Más detalles

e) Lámina para transformador Comprobar experimentalmente, como la frecuencia incide en las pérdidas por histéresis.

e) Lámina para transformador Comprobar experimentalmente, como la frecuencia incide en las pérdidas por histéresis. Tema: EL CICLO DE HISTERESIS. I. OBJETIVOS. Determinar experimentalmente el ciclo de histéresis para: a) Lámina para dínamo b) Núcleo de ferrita c) Hierro pulverizado d) Metal Mu Facultad de Ingeniería.

Más detalles

a) Elementos de conexiones. A continuación se muestra la forma en que vienen marcados los terminales de conexión de los motores trifásicos.

a) Elementos de conexiones. A continuación se muestra la forma en que vienen marcados los terminales de conexión de los motores trifásicos. Tema: PRINCIPIOS DE MOTORES DE INDUCCION. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. I. OBJETIVOS. Conocer e interpretar los datos de placa de los

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Tema: Aplicaciones prácticas de circuitos magnéticos. I. Objetivos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Analizar la relación del número de vueltas en los

Más detalles

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C.

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. 1. INTRODUCCION La forma como se produce el flujo magnético en las máquinas de corriente contínua (cc), estas máquinas se clasifican en: EXCITACIÓN INDEPENDIENTE

Más detalles

Práctica 2: Relaciones básicas de voltaje corriente y velocidad en una máquina de CD

Práctica 2: Relaciones básicas de voltaje corriente y velocidad en una máquina de CD IEE Clave: 1131076 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com 1. Objetivos Observar el comportamiento de un motor de CD. Aprender a realizar

Más detalles

Práctica 2: Relaciones básicas de voltaje corriente y velocidad en una máquina de CD

Práctica 2: Relaciones básicas de voltaje corriente y velocidad en una máquina de CD IEE Clave: 1131076 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 2: Relaciones básicas de voltaje corriente y velocidad en una máquina

Más detalles

MÁQUINAS ELÉCTRICAS LABORATORIO No. 4

MÁQUINAS ELÉCTRICAS LABORATORIO No. 4 Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.

Más detalles

Práctica 7: Sincronización de un generador a la red eléctrica y principios fundamentales del motor síncrono

Práctica 7: Sincronización de un generador a la red eléctrica y principios fundamentales del motor síncrono IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Víctor Manuel Jiménez Mondragón e-mail: vmjm1986@gmail.com Práctica 7: Sincronización de un generador a la red eléctrica

Más detalles

SESION 10: GENERADORES DE C.C.

SESION 10: GENERADORES DE C.C. SESION 10: GENERADORES DE C.C. 1. INTRODUCCION Los generadores de c.c. son máquinas de cc que se usan como generadores. No hay diferencia real entre un generador y un motor, pues solo se diferencian por

Más detalles

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA 1. La característica de magnetización de un generador de corriente continua operando a una velocidad de 1500 [rpm] es: I f [A] 0 0,5 1 2 3 4 5 V rot [V] 10 40 80

Más detalles

MÁQUINAS ELÉCTRICAS LABORATORIO No. 7

MÁQUINAS ELÉCTRICAS LABORATORIO No. 7 Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.

Más detalles

Clase VI. Máquinas de Corriente Directa: Generadores de Corriente Directa. Generalidades

Clase VI. Máquinas de Corriente Directa: Generadores de Corriente Directa. Generalidades Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electromecánica Curso: Máquinas Eléctricas para Mecatrónica Profesor: Ing. Greivin Barahona Guzmán Clase VI Máquinas de Corriente Directa: Generadores

Más detalles

VersiónPreliminar. 1. Problemas a resolver

VersiónPreliminar. 1. Problemas a resolver IEE 1. Problemas a resolver Maquinas de Corriente Directa e Inducción Clave: 1131075 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Rafael Escarela Pérez e-mail: epr@correo.azc.uam.mx 1.

Más detalles

Práctica 6: Máquina Síncrona. Conocer y determinar el papel de cada componente de la máquina síncrona.

Práctica 6: Máquina Síncrona. Conocer y determinar el papel de cada componente de la máquina síncrona. IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 6: Máquina Síncrona Conocer y determinar el papel de

Más detalles

PROGRAMA DE CURSO. Laboratorio de Equipos y Dispositivos Eléctricos Nombre en Inglés Electric Devices Laboratory SCT

PROGRAMA DE CURSO. Laboratorio de Equipos y Dispositivos Eléctricos Nombre en Inglés Electric Devices Laboratory SCT PROGRAMA DE CURSO Código Nombre EL 5204 Laboratorio de Equipos y Dispositivos Eléctricos Nombre en Inglés Electric Devices Laboratory SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes Cátedra

Más detalles

Práctica No. 8 EL MOTOR SÍNCRONO

Práctica No. 8 EL MOTOR SÍNCRONO DIISIÓN DE CIENCIS BÁSICS E INGENIERÍ DEPRTMENTO DE ENERGÍ RE EÉCTRIC BORTORIO DE INGENIERÍ EÉCTRIC Práctica No. 8 E MOTOR SÍNCRONO Jiménez Mondragón íctor Manuel I OBJETIO Estudiar experimentalmente el

Más detalles

Práctica 3: Características de la Máquina de CD Funcionando Como Generador

Práctica 3: Características de la Máquina de CD Funcionando Como Generador IEE 1. Objetivos Clave: 1131076 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 3: Características de la Máquina de CD Obtener la característica

Más detalles

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc.

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc. Tema: EL TRANSFORMADOR MONOFASICO. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. I. OBJETIVOS. Establecer el procedimiento para determinar la polaridad

Más detalles

Fundamentos de Maquinaria Eléctrica

Fundamentos de Maquinaria Eléctrica Fundamentos de Maquinaria Eléctrica Universidad del Turabo School of Engineering ETRE 125 Ing. Egberto Hernández COMPOUND-WOUND DC GENERATORS CAMPO de EXCITACIÓN - es el voltaje aplicado a las bobinas

Más detalles

EL GENERADOR SERIE DE CD

EL GENERADOR SERIE DE CD EL GENERADOR SERIE DE CD OBJETIVOS 1. Estudiar las propiedades del generador serie de cc. 2. Aprender a conectar un generador serie. 3. Obtener la curva de tensión de armadura en función de la intensidad

Más detalles

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada Tema: Inducción magnética. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Comprender acerca de la relación del voltaje inducido en una bobina, en función

Más detalles

Práctica 4: Características de la Máquina de CD Funcionando Como Motor

Práctica 4: Características de la Máquina de CD Funcionando Como Motor IEE 1. Objetivos Clave: 1131076 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 4: Características de la Máquina de CD Analizar la

Más detalles

Tema: Campo eléctrico y potencial en las placas de un capacitor. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

Tema: Campo eléctrico y potencial en las placas de un capacitor. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Tema: Campo eléctrico y potencial en las placas de un capacitor. I. Objetivos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Que el estudiante comprenda la naturaleza

Más detalles

Control 3. EL42C Conversión Electromecánica de la Energía

Control 3. EL42C Conversión Electromecánica de la Energía Control 3 EL42C Conversión Electromecánica de la Energía Problema 1 Profesor: Patricio Mendoza A. Prof. Auxiliar: Inés Otárola L. 9 de junio de 2008 Responda brevemente las siguientes preguntas: a. Qué

Más detalles

Nombre de la asignatura: Maquinas Eléctricas. Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCC-0207

Nombre de la asignatura: Maquinas Eléctricas. Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCC-0207 . - DATOS DE LA ASIGNATURA Nombre de la asignatura: Maquinas Eléctricas Carrera: Ingeniería Mecatrónica Clave de la asignatura: MCC-0207 Horas teoría-horas práctica - créditos: 4-2-0 2. - UBICACIÓN a)

Más detalles

Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016

Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016 Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE 0615 - Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016 Reporte 9: La máquina CC autoexitada. Mauricio Aguilar Villalobos, B20126

Más detalles

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE ELÉCTRICA PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. Tema: MOTOR CON DEVANADOS DAHLANDER. MOTOR DE DOBLE DEVANADO. I. OBJETIVOS. Conocer las características

Más detalles

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Curvas V de los motores síncronos.

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Curvas V de los motores síncronos. Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II Tema: Curvas V de los motores síncronos Contenidos Puntos de operación para el motor síncrono. Objetivos

Más detalles

UNIVERSIDAD VERACRUZANA. FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA. ZONA XALAPA.

UNIVERSIDAD VERACRUZANA. FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA. ZONA XALAPA. UNIVERSIDAD VERACRUZANA. FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA. ZONA XALAPA. LABORATORIO DE MÁQUINAS ELÉCTRICAS. RESPONSABLE Mtro. OSCAR MANUEL LÓPEZ YZA. NOMBRE: MATRÍCULA: MATERIA:Motores y Generadores

Más detalles

Práctica 1: Transformador monofásico. Conocer y determinar el papel de cada componente del transformador monofásico.

Práctica 1: Transformador monofásico. Conocer y determinar el papel de cada componente del transformador monofásico. IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Víctor Manuel Jiménez Mondragón e-mail: vmjm1986@gmail.com Práctica 1: Transformador monofásico Conocer y determinar

Más detalles

Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas Eléctricos Lineales II

Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas Eléctricos Lineales II Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas Eléctricos Lineales II Tema: Redes de Dos Puertos. Contenidos Red de dos puertos. Parámetros de admitancia. Parámetros de impedancia.

Más detalles

3.- EXPERIENCIAS DE MAQUINAS ELECTRICAS EXPERIENCIA N 3: MAQUINAS DE CORRIENTE CONTINUA

3.- EXPERIENCIAS DE MAQUINAS ELECTRICAS EXPERIENCIA N 3: MAQUINAS DE CORRIENTE CONTINUA 3.- EXPERIENCIAS DE MAQUINAS ELECTRICAS 3.1.- EXPERIENCIA N 3: MAQUINAS DE CORRIENTE CONTINUA A.- INTRODUCCION En una sola sesión de laboratorio se experimentará con dos máquinas de CC, operando respectivamente

Más detalles

Carrera: ELC Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos.

Carrera: ELC Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos. .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Conversión de la Energía II Ingeniería Eléctrica ELC-0 --0.- HISTORIA DEL PROGRAMA

Más detalles

CARACTERISTICAS Y SELECCIÓN MOTORES ELECTRICOS. Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos

CARACTERISTICAS Y SELECCIÓN MOTORES ELECTRICOS. Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos CARACTERISTICAS Y SELECCIÓN DE MOTORES ELECTRICOS Profesor: Francisco Valdebenito A. CLASIFICACIÓN

Más detalles

Práctica 1: Transformador monofásico. Conocer y determinar el papel de cada componente del transformador monofásico.

Práctica 1: Transformador monofásico. Conocer y determinar el papel de cada componente del transformador monofásico. IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 1: Transformador monofásico Conocer y determinar el

Más detalles

Energía Solar Fotovoltaica IE Informe Práctica #2: LA CELDA SOLAR COMO TRANSFORMADOR DE ENERGIA

Energía Solar Fotovoltaica IE Informe Práctica #2: LA CELDA SOLAR COMO TRANSFORMADOR DE ENERGIA Energía Solar Fotovoltaica IE-1117 Informe Práctica #2: LA CELDA SOLAR COMO TRANSFORMADOR DE ENERGIA Enrique García Mainieri B12711 Resumen: En esta práctica se utiliza una celda solar como un transformador

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9 Electrónica I. Guía 3 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES

Más detalles

Práctica 1: Principio General de Funcionamiento de la Máquina de Corriente Directa

Práctica 1: Principio General de Funcionamiento de la Máquina de Corriente Directa IEE 1. Objetivos Clave: 1131076 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 1: Principio General de Funcionamiento de la Localizar

Más detalles

Práctica No. 5 EL TRANSFORMADOR ELÉCTRICO

Práctica No. 5 EL TRANSFORMADOR ELÉCTRICO LBORTORIO DE INGENIERÍ ELÉCTRIC DIISIÓN DE CIENCIS BÁSICS E INGENIERÍ DEPRTMENTO DE ENERGÍ RE ELÉCTRIC LBORTORIO DE INGENIERÍ ELÉCTRIC Práctica No. EL TRNSFORMDOR ELÉCTRICO JIMÉNEZ MONDRGÓN ÍCTOR MNUEL

Más detalles

Tema: Modelado de transformadores trifásicos. Combinaciones: estrella, delta y combinaciones paralelas.

Tema: Modelado de transformadores trifásicos. Combinaciones: estrella, delta y combinaciones paralelas. Tema: Modelado de transformadores trifásicos. Combinaciones: estrella, delta y combinaciones paralelas. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas de Potencia I. I. OBJETIVOS.

Más detalles

Máquinas de corriente directa

Máquinas de corriente directa Electricidad básica ENTREGA 6 - Curso de electricidad Máquinas de corriente directa Las máquinas de corriente continua (MCC) se caracterizan por su versatilidad debido a las distintas configuraciones posibles

Más detalles

PRINCIPIOS DE LAS MAQUINAS ELECTRICAS PRODUCCION DE UNA FUERZA INDUCIDA EN. Si un conductor conduce una corriente dentro de un

PRINCIPIOS DE LAS MAQUINAS ELECTRICAS PRODUCCION DE UNA FUERZA INDUCIDA EN. Si un conductor conduce una corriente dentro de un PRODUCCION DE UNA FUERZA INDUCIDA EN UN CONDUCTOR Si un conductor conduce una corriente dentro de un campo magnético se inducirá sobre éste una fuerza (acción motora). Este concepto básico es ilustrado

Más detalles

Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016

Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016 Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE 0615 - Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016 Reporte 8: La máquina de corriente directa con excitación independiente.

Más detalles

Carrera: MTF Participantes Representante de las academias de ingeniería en Mecatrónica de los Institutos Tecnológicos.

Carrera: MTF Participantes Representante de las academias de ingeniería en Mecatrónica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Máquinas Eléctricas Ingeniería Mecatrónica MTF-0508 2-4-8 2.- HISTORIA DEL PROGRAMA

Más detalles

Problemas resueltos. Enunciados

Problemas resueltos. Enunciados Problemas resueltos. Enunciados Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de

Más detalles

ESCUELA: Ingeniería Eléctrica TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO 2 2

ESCUELA: Ingeniería Eléctrica TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO 2 2 Máquinas Eléctricas I (215) PROPÓSITO CÓDIGO: PAG.: 1 217 DE: 7 El propósito de esta asignatura es instruir al estudiante en las técnicas de medición de acuerdo a la normativa internacional y nacional

Más detalles

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS 1 CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA CRONOGRAMA DE MATERIA CARRERA: ING. COM. Y ELECT. HORAS SEM: T: 60 hrs. P:

Más detalles

PROFESIONALES [PRESENCIAL]

PROFESIONALES [PRESENCIAL] SILABO POR ASIGNATURA 1. INFORMACION GENERAL Coordinador: DUTAN AMAY WALTER JAVIER(walter.dutan@ucuenca.edu.ec) Facultad(es): [FACULTAD DE INGENIERÍA] Escuela: [ESCUELA INGENIERÍA ELECTRÍCA] Carrera(s):

Más detalles

BLOQUE II: MÁQUINAS. TEMA 10. MÁQUINAS ELÉCTRICAS CUESTIONES (40)

BLOQUE II: MÁQUINAS. TEMA 10. MÁQUINAS ELÉCTRICAS CUESTIONES (40) BLOQUE II: MÁQUINAS. TEMA 10. MÁQUINAS ELÉCTRICAS CUESTIONES (40) INTRODUCCIÓN C1. Define qué es una máquina eléctrica. C2. Realiza una clasificación de las máquinas eléctricas, explicando cada una de

Más detalles

Figura 6.1: Modelo de Línea de Transmisión de Longitud Media. (a) Circuito nominal π. (b) Circuito nominal T.

Figura 6.1: Modelo de Línea de Transmisión de Longitud Media. (a) Circuito nominal π. (b) Circuito nominal T. Tema: Modelo de Línea de Transmisión PI con y sin efectos capacitivos. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas de Potencia I. Describir el funcionamiento

Más detalles

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA. TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.

Más detalles

Práctica 4: Transformador trifásico. Medir la resistencia de los devanados de un transformador trifásico.

Práctica 4: Transformador trifásico. Medir la resistencia de los devanados de un transformador trifásico. IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 4: Transformador trifásico Medir la resistencia de

Más detalles

Práctica 5: Transformador trifásico con carga

Práctica 5: Transformador trifásico con carga IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 5: Transformador trifásico con carga Llevar a cabo

Más detalles

UNIVERSIDAD VERACRUZANA. FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA. ZONA XALAPA.

UNIVERSIDAD VERACRUZANA. FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA. ZONA XALAPA. UNIVERSIDAD VERACRUZANA. FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA. ZONA XALAPA. LABORATORIO DE MÁQUINAS ELÉCTRICAS. RESPONSABLE Mtro. OSCAR MANUEL LÓPEZ YZA. NOMBRE: MATRÍCULA: MATERIA:Motores y Generadores

Más detalles

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 02: MEDICION DE TENSION

Más detalles

MÁQUINAS ELÉCTRICAS LABORATORIO No. 3

MÁQUINAS ELÉCTRICAS LABORATORIO No. 3 Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.

Más detalles

Práctica 3: Transformador monofásico con carga

Práctica 3: Transformador monofásico con carga IEE Ayudante: 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr.Irvin López García e-mail: irvinlopez@yahoo.com Práctica 3: Transformador monofásico con carga Hiram

Más detalles

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.3.

Más detalles

Práctica 2: Pruebas en un transformador monofásico. Llevar a cabo las pruebas de circuito abierto y de cortocircuito a un transformador monofásico.

Práctica 2: Pruebas en un transformador monofásico. Llevar a cabo las pruebas de circuito abierto y de cortocircuito a un transformador monofásico. IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Irvin López García e-mail: irvinlopez@yahoo.com Práctica 2: Pruebas en un transformador monofásico Llevar a

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 8

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 8 Electrónica I. Guía 3 1 / 8 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales o Automatización (Ed.3) CIRCUITOS RECTIFICADORES Objetivo general

Más detalles

IE Laboratorio de Máquinas Eléctricas I: Práctica #13 y #14: Arranque de motores a tensión reducida y Generador de inducción trifásico

IE Laboratorio de Máquinas Eléctricas I: Práctica #13 y #14: Arranque de motores a tensión reducida y Generador de inducción trifásico IE0315 - Laboratorio de Máquinas Eléctricas I: Práctica #13 y #14: Arranque de motores a tensión reducida y Generador de inducción trifásico KEVIN OLIVARES R. B04587 ANDRÉS ROJAS J. B25848 Universidad

Más detalles

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA.

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. 1. INTRODUCCION Haciendo girar una espira en un campo magnético se produce una f.e.m. inducida en sus conductores. La tensión obtenida

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL PRÁCTICA N 9

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL PRÁCTICA N 9 FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL 1. TEMA PRÁCTICA N 9 VARIADOR DE VELOCIDAD 2. OBJETIVOS 2.1. Programar

Más detalles

EJERCICIOS DE MÁQUINAS DE CORRIENTE CONTINUA

EJERCICIOS DE MÁQUINAS DE CORRIENTE CONTINUA EJERCICIOS DE MÁQUINAS DE CORRIENTE CONTINUA 1.- Un motor de c.c. con excitación serie tiene las siguientes características: V nom. = 200V ; R a = 0,1Ω ; R s = 1Ω ; p M af = 0,8 H Suponiendo nulas las

Más detalles

Universidad de Costa Rica

Universidad de Costa Rica Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-0615 Laboratorio Máquinas Eléctricas II Reporte 4: La Máquina Síncrona Polos Lisos. Ignacio Picado Vargas A94781 Zúrika

Más detalles

Práctica #2. Figura 1. Diagrama de conexiones para la práctica #2

Práctica #2. Figura 1. Diagrama de conexiones para la práctica #2 Práctica #2 Durante esta práctica se hizo el siguiente montaje: Figura 1. Diagrama de conexiones para la práctica #2 En el que se utilizó una celda solar, lámpara que simula la radiación solar y un motor

Más detalles

Tema: Conceptos fundamentales de Sistemas de Potencia. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas de Potencia I.

Tema: Conceptos fundamentales de Sistemas de Potencia. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas de Potencia I. Tema: Conceptos fundamentales de Sistemas de Potencia. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Análisis de Sistemas de Potencia I. Al finalizar la práctica de laboratorio,

Más detalles

Práctica 5: Transformador trifásico con carga

Práctica 5: Transformador trifásico con carga IEE Ayudante: 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Prof. Dr. Juan Carlos Olivares Galván e-mail: jolivare 1999@yahoo.com Práctica 5: Transformador trifásico con

Más detalles

PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES

PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES Laboratorio de Circuitos/Electrotecnia I PRÁCTICA 1 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES OBJETIVO Enseñar a usar y en lo posible, familiarizar

Más detalles

LABORATORIO DE TRANSFORMADORES

LABORATORIO DE TRANSFORMADORES LABORATORIO DE TRANSFORMADORES EXPEUEW7 I. OBJETIVO Objetivo Establecer el procedimiento para determinar la polaridad de las terminales de los devanados, utilizando: Corriente Continua y Corriente Alterna.

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA CICLO: I/215 GUIA DE LABORATORIO #8 Nombre de la Practica: Circuitos Rectificadores de Onda Lugar de Ejecución: Fundamentos

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquinas Eléctricas I - G862 Tema 5. Máquinas eléctricas de Corriente Con7nua. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. Tema: CONEXIÓN DE BANCOS TRIFÁSICOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. I. OBJETIVOS. Que el alumno: Realice la conexión de un banco de transformadores

Más detalles

Práctica 2: Pruebas en un transformador monofásico. Llevar a cabo las pruebas de circuito abierto y de cortocircuito a un transformador monofásico.

Práctica 2: Pruebas en un transformador monofásico. Llevar a cabo las pruebas de circuito abierto y de cortocircuito a un transformador monofásico. IEE 1. Objetivos Clave: 1131073 Área de Ingeniería Energética y Electromagnética 2 Profesor: Dr. Víctor Manuel Jiménez Mondragón e-mail: vmjm1986@gmail.com Práctica 2: Pruebas en un transformador monofásico

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO: 01-2013 GUIA DE LABORATORIO # 1 Nombre de la Práctica: Uso del óhmetro Parte I. Lugar de Ejecución: Laboratorio

Más detalles

Tema: Capacitancia. Curvas de carga y descarga del capacitor

Tema: Capacitancia. Curvas de carga y descarga del capacitor Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Teoría electromagnética Tema: Capacitancia. Curvas de carga y descarga del capacitor Contenidos El capacitor. Curvas de carga y descarga.

Más detalles

GUIA DE TRABAJO: EL REGULADOR FOTOVOLTAICO.

GUIA DE TRABAJO: EL REGULADOR FOTOVOLTAICO. GUIA DE TRABAJO: EL REGULADOR FOTOVOLTAICO. Un regulador de carga es un dispositivo que controla la entrada y la salida de la energía de una batería tanto en el proceso de carga como en el de descarga.

Más detalles

CIRCUITOS Y MEDICIONES ELECTRICAS

CIRCUITOS Y MEDICIONES ELECTRICAS Laboratorio electrónico Nº 2 CIRCUITOS Y MEDICIONES ELECTRICAS Objetivo Aplicar los conocimientos de circuitos eléctricos Familiarizarse con la instalaciones eléctricas Realizar mediciones de los parámetros

Más detalles

LABORATORIO DE MAQUINAS ELECTRICAS

LABORATORIO DE MAQUINAS ELECTRICAS GENERADORES CORRIENTE CONTINUA - HUBER MURILLO M 1 I.- INTRODUCCION Los generadores de corriente continua, GCC, se estudian para poder comprender el proceso de auto excitación y comportamiento del material

Más detalles

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA Laboratorio de Circuitos/ Electrotecnia PRÁCTICA 2 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Analizar el funcionamiento de circuitos resistivos conectados

Más detalles

TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos

TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos TEMA 6 ELECTROACÚSTICA Sonorización industrial y de espectáculos Ley de Ohm La intensidad de corriente que circula en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional

Más detalles

Carrera: ECM Participantes Participantes de las Academias de Ingeniería Electrónica de los Institutos Tecnológicos. Academias de Ingeniería

Carrera: ECM Participantes Participantes de las Academias de Ingeniería Electrónica de los Institutos Tecnológicos. Academias de Ingeniería .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Máquinas Eléctricas. Ingeniería Electrónica ECM-045 3 8.- HISTORIA DEL PROGRAMA

Más detalles

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en: INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también

Más detalles

5.1.1)Principio de funcionamiento.

5.1.1)Principio de funcionamiento. CAPÍTULO 5 MÁQUINAS DE CORRIENTE CONTINUA 5.1)ASPECTOS CONSTRUCTIVOS Y PRINCI- PIO DE FUNCIONAMIENTO. 5.1.1)Principio de funcionamiento. Devanado de Estator (campo): - Objetivo: producir el campo que posibilita

Más detalles

SISTEMAS ELECTRICOS DE POTENCIA SEMESTRE 2013-II ING. CESAR LOPEZ A

SISTEMAS ELECTRICOS DE POTENCIA SEMESTRE 2013-II ING. CESAR LOPEZ A PRACTICA 5 : PRUEBAS EN TRANSFORMADORES I. OBJETIVO Realizar los circuitos equivalentes para la prueba de transformadores Calcular los valores de tensión, corriente, impedancia de transformadores. II.

Más detalles

Sílabo de Fundamentos de Máquinas Eléctricas

Sílabo de Fundamentos de Máquinas Eléctricas Sílabo de Fundamentos de Máquinas Eléctricas I. Datos Generales Código Carácter A0999 Obligatorio Créditos 5 Periodo Académico 2017 Prerrequisito Teoría Electromagnética Horas Teóricas: 4 Prácticas: 2

Más detalles

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo Electrónica II. Guía 4 FILTROS ACTIVOS DE PRIMER ORDEN Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.2 (Edificio

Más detalles