Tema 3: Sistemas Combinacionales
|
|
|
- Natalia Maestre Cáceres
- hace 9 años
- Vistas:
Transcripción
1 Ejercicios T3: Sistemas Combinacionales Fundamentos de Tecnología de Computadores Tema 3: Sistemas Combinacionales 1. Analizar el siguiente circuito indicando la expresión algebraica que implementa, la tabla de verdad correspondiente y la función lógica en sus dos formas canónicas 2. Expresar en forma de minterms las siguientes funciones: a)- F(c,b,a)= c b c b a c b b)- F(d,c,b,a)= d b c b a 3. Convertir la siguiente función a su primera forma normal F(a,b,c)= a b c a c a b c 4. Simplificar por el método de Karnaugh las siguientes funciones: a)- F(d,c,b,a) = 0,1,4,5,6,8,9,13,14 b)- F(d,c,b,a) = 0,1,2,4,5,8,10 c)- F(d,c,b,a) = 0,1,3,4,5,7,8,9,14,15 d)- F(d,c,b,a) = 1,2,3,5,6,7,8,9,10,11,14 5. Simplificar la siguiente función por los métodos conocidos: F(d,c,b,a)= 0,2,5,7,8,10,13,15 6. Diseñar un circuito compuesto por puertas lógicas AND y OR de cuatro entradas y dos salidas definido por las funciones siguientes: Departamento de Automática. Universidad de Alcalá Página 1 de 6
2 Ejercicios T3: Sistemas Combinacionales Fundamentos de Tecnología de Computadores a)- F1(d,c,b,a)= b)- F2(d,c,b,a)= 0,1,4,5,6,8,9,13,14 (misma que 4.a) 0,1,2,4,5,8,10,13,14 c)- Rediseñarlos con puertas NAND exclusivamente 7. Dado el siguiente diagrama de tiempos para las señales de entrada a,b y c, y la de salida F, Obtener la expresión lógica más simple de F utilizando los diferentes métodos de simplificación conocidos. a b c F 8. Diseñar un decodificador de tres entradas que permita representar en un display de 7 segmentos el valor en binario puro de dichas entradas. (Hacer la tabla de verdad, obtener la expresión en minterms/maxterms para cada segmento Fa, Fb..Fg-, simplificarlas y hacer los circuitos). 9. Diseñar un circuito que discrimine si una entrada de 4 bits representa o no un dígito BCD válido 10.Diseñar un circuito que sume dos números BCD natural y nos dé el resultado en código binario de 5 bits. Se pueden usar sumadores BCD, sumadores binarios de 4 bits y las puertas necesarias. 11.Dados dos números naturales de dos bits cada uno A (a2 a1) y B (b2 b1) diseñar un sistema combinacional que obtenga el valor absoluto de la diferencia entre ellos A-B. 12.Diseñar un circuito que sume dos números naturales de dos bits A (a2 a1) y B (b2 b1) proporcionando la salida en tres bits. 13.Diseñar un circuito que compare dos números naturales de dos bits A (a2 a1) y B (b2 b1) y proporcione las siguientes salidas: a)- En función de las entradas A y B: Departamento de Automática. Universidad de Alcalá Página 2 de 6
3 S1 = 1 si A > B y 0 en cualquier otro caso S2 = 1 si A = B y 0 en cualquier otro caso S3 = 1 si A < B y 0 en cualquier otro caso b)- Como una variante al diseño anterior, obtener S2 a partir de S1 y S3 14.Utilizando multiplexores y las puertas lógicas necesarias integrar los circuitos diseñados anteriormente en un único circuito combinacional: este ha de tener igualmente dos entradas A (a2 a1) y B (b2 b1), y 3 salidas (S3, S2 y S1) de datos pero además tendrá dos entradas de control C2 C1 que deberán seleccionar el tipo de funcionamiento del circuito: si C2 =0 y C1 = 0 --> las salidas S = 111 si C2 =1 y C1 = 0 --> las salidas mostrarán la suma de A y B (circuito ya diseñado en un problema anterior) si C2 =0 y C1 = 1 --> las salidas mostrarán la comparación de A y B (circuito ya diseñado en un problema anterior) si C2 =1 y C1 = 1 --> las salidas S = Diseñar mediante puertas lógicas un circuito que tenga por entrada un número binario de 4 bits X (d,c,b,a) que realice las siguientes operaciones de salida: si X>9, se activa una línea de salida S1 que enciende una luz roja si X<9, se activa una línea de salida S2 que enciende una luz verde si X=9, se activa una línea de salida S3 que enciende una luz ámbar 16.Realizar un circuito que ante una entrada de 8 bits indique si esta información tiene paridad par o impar. Departamento de Automática. Universidad de Alcalá Página 3 de 6
4 17.A partir de comparadores 7485 de números de 4 bits, realizar un comprador de magnitudes de 32 bits. 18.Dados dos decodificadores 3 a 8 como el de la figura, constrúyase un decodificador de 4 a Realizar un convertidor de código BCD natural a un código BCD con exceso a tres. a)- con puertas lógicas b)- con circuitos multiplexores 20.Construir un decodificador para visualizar números binarios de 3 bits con un display 7 segmentos. 21.El bloque codificador de la figura es un circuito combinacional que realiza una codificación de las señales de entrada (a,b,c) según las ecuaciones siguientes: c b a Codificador x = b xor a y = c xor b z = c z y x Decodificador? c b a x = b xor a z = c siendo c y z los bits más significativos Se pide: a)- Obtener la salida del codificador b)- Diseñar el circuito decodificador de modo que permita obtener de nuevo el código original Departamento de Automática. Universidad de Alcalá Página 4 de 6
5 22. Un banco desea instalar un sistema de alarma dotado de sensores de proximidad por rayos infrarrojos. Existen dos zonas de seguridad X e Y y la alarma de seguridad debe dispararse cuando se active cualquiera de ellas. La zona X tiene 3 sensores. A, B y C, mientras que la zona Y tiene 4 sensores: D,E,F y G. Para evitar falsas alarmas producidas por el disparo aleatorio de algunaos sensores, el sistema activará cuando bien en la zona X o bien en la zona Y se activen al menos 2 sensores simuñtáneamente. Diseñar el circuito de control con la función más sencilla obtenida. rediseñar con puertas NOR únicamente. Departamento de Automática. Universida de Alcalá Departamento de Automática. Universidad de Alcalá Página 5 de 6
6 Transformar mientras sea posible. Ejercicios Leyes de de-morgan. 1- A BC D E F 2- A B C D 3- ABC DFE 4- AB CD EF 5- ABC D E 6- A B C 7- A B CD 8- A B CD E F 9- AB C D E Reducir algebraicamente Ejercicios Álgebra de Boole: Expresión Solución 1- AB A B C B B C B AC 2- AB A B C B B C AB 3- AB C BD AB C BC 4- CD[ AB C BD AB] CD 5- ABC ABC ABC ABC ABC BC AB CB 6- ABC ABC ABC ABC ABC AC AB 7- AB AC ABC A BC 8- AB AC ABC A B C Departamento de Automática. Universidad de Alcalá Página 6 de 6
Circuitos Combinacionales. Fundamentos de Computadores Escuela Politécnica Superior. U.A.M
Circuitos Combinacionales Fundamentos de Computadores Escuela Politécnica uperior. U..M Índice de la Unidad U. Circuitos combinacionales U.. mplementación de la lógica combinacional. Funciones lógicas.
ÍNDICE AUTORES...13 PRÓLOGO...19 INTRODUCCIÓN...21 SIMBOLOGÍA Y NOMENCLATURA...25 PROGRAMAS UTILIZADOS...29
ÍNDICE AUTORES...13 PRÓLOGO...19 INTRODUCCIÓN...21 SIMBOLOGÍA Y NOMENCLATURA...25 PROGRAMAS UTILIZADOS...29 CAPÍTULO 1. FUNDAMENTOS GENERALES DE LA ELECTRÓNICA GENERAL...35 1.1 SISTEMAS ANALÓGICOS Y DIGITALES...36
Sistemas Digitales I
UNIVERSIDAD INDUSTRIAL DE SANTANDER Sistemas Digitales I Taller No1 Profesor: Carlos A. Fajardo Mayo de 2015 Temas: Representación digital de los Datos, Algebra de Boole, Funciones Lógicas, Introducción
Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios.
Práctico 3 Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Objetivo Conocer y entrenarse en las técnicas para la construcción de circuitos combinatorios de mediano porte. Conocer
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
ELECTRÓNICA DIGITAL. Ejercicios propuestos Tema 3
ELECTRÓNICA DIGITAL Ejercicios propuestos Tema Ejercicio. Convertir a binario natural, los siguientes números expresados en formato decimal. Puedes predecir a priori los bits que necesitarás para la representación
Funciones Lógicas Y Métodos De Minimización
Circuitos Digitales I Tema III Funciones Lógicas Y Métodos De Minimización Luis Tarazona, UNEXPO Barquisimeto EL-3213 Circuitos Digitales I - 2004 75 Funciones lógicas Circuito combinacional: Un circuito
TEMA 2: Control combinacional. 1.- Introducción. Esquema:
Esquema: TEMA 2: Control combinacional TEMA 2: Control combinacional...1 1.- Introducción...1 1.1.-Diseño de circuitos combinacionales...2 2.- Circuitos combinacionales avanzados...2 2.1.- Codificadores...2
Diseño combinacional (Parte #2) Mapas de Karnaugh
Departamento de Electrónica Electrónica Digital Diseño combinacional (Parte #2) Mapas de Karnaugh Facultad de Ingeniería Bioingeniería Universidad Nacional de Entre Ríos Procedimiento de diseño de un circuito
TEMA 8. CIRCUITOS COMBINACIONALES
TEMA 8. CIRCUITOS COMBINACIONALES http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 Aniversary: http://www.flickr.com/photos/ieee25/with/289342254/ TEMA 8 CIRCUITOS
TEMA 4. Diseño de Sistemas Combinacionales SSI.
Fundamentos de los Computadores. Sistemas Combinacionales T4-1 TEMA 4. Diseño de Sistemas Combinacionales SSI. INDICE: SISTEMAS COMBINACIONALES METODOLOGÍA DE DISEÑO MÉTODOS DE SIMPLIFICACIÓN o MAPAS DE
CURSO: ELECTRÓNICA DIGITAL SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: ING. JORGE ANTONIO POLANÍA
CURSO: ELECTRÓNICA DIGITAL SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: ING. JORGE ANTONIO POLANÍA En esta unidad usted aprenderá a utilizar los diferentes circuitos integrados que se han fabricado para resolver
Álgebra de BOOLE. Tema 4
Álgebra de BOOLE Tema 4 1. Definición formal del álgebra de Boole. 2. Leyes y reglas del álgebra de Boole. 3. Operaciones y expresiones booleanas. 4. Formas canónicas de las expresiones booleanas. 5. Expresiones
Algebra de Boole y simplificación de funciones lógicas. Capítulo 4
Algebra de Boole y simplificación de funciones lógicas Capítulo 4 Contenido 1. Expresiones y operaciones Booleanas 2. Propiedades y Reglas del Algebra de Boole 3. Teoremas de DeMorgan 4. Análisis booleano
FUNDAMENTOS DE COMPUTADORES Ejercicios U2: Circuitos Combinacionales
U_. Se desea transmitir las primeras cuatro letras del alfabeto de un ordenador ORD a otro ORD. En el primero las cuatro letras están codificadas en tres líneas X, X y X y en el segundo tan sólo en dos,
PRÁCTICAS DE ELECTRÓNICA DIGITAL
PRÁCTICAS DE ELECTRÓNICA DIGITAL Práctica 0: CONEXIÓN DE LOS CIRCUITOS INTEGRADOS (C.I.) 1º: Para que funcionen correctamente, han de estar conectados a una tensión de 5V. Para realizar esto, el polo (+)
ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES PRÁCTICAS DE LÓGICA CABLEADA
ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES PRÁCTICAS DE LÓGICA CABLEADA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN - 2008 PRÁCTICAS DE ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES Página 2 INTRODUCCIÓN En el
HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS
f Universidad Rey Juan Carlos Grado en Ingeniería Informática Fundamentos de Computadores HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS. Dado el módulo combinacional de la figura se pide dibujar
Lógica y compuertas (Parte 2): Circuitos Combinacionales y Secuenciales
Práctica 4 Lógica y compuertas (Parte 2): Circuitos Combinacionales y Secuenciales Objetivos de la práctica: que el alumno domine Circuitos lógicos y diagramas de compuertas Introducción a equivalencias
Tema 5. SISTEMAS COMBINACIONALES. Tema 5. Sistemas combinacionales por Angel Redondo I.E.S Isaac Peral Torrejon de Ardoz 1
Tema 5. SISTEMAS COMBINACIONALES Tema 5. Sistemas combinacionales por Angel Redondo I.E.S Isaac Peral Torrejon de Ardoz SISTEMAS COMBINACIONALES Sistemas combinacionales. Codificadores Decodificadores
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0
Decodificadores/Demultiplexores. Grupo 9 Javier de Gregorio Menezo Laro de la Fuente Lastra Raúl Fernández Díaz
Decodificadores/Demultiplexores Grupo 9 Javier de Gregorio Menezo Laro de la Fuente Lastra Raúl Fernández Díaz Decodificadores Un decodificador (DEC) es un circuito combinacional que convierte un código
Sistemas Combinacionales
Sistemas Combinacionales Tipos de Sistemas Digitales Puertas Lógicas Bloques Combinacionales Multiplexores Decodificadores/demultiplexores Decodificadores BCD a 7 segmentos Codificadores Comparadores Sumadores
UNIVERSIDAD NACIONAL DEL SANTA Facultad de Ingeniería EAP INGENIERIA DE SISTEMAS E INFORMATICA
UNIVERSIDAD NACIONAL DEL SANTA Facultad de Ingeniería EAP INGENIERIA DE SISTEMAS E INFORMATICA DISEÑO DE CIRCUITOS COMBINATORIOS USANDO EL CONVERTIDOR LOGICO DIGITAL PARA APLICACIONES EN SISTEMAS DIGITALES
FUNDAMENTOS DE COMPUTADORES INGENIERÍA TÉCNICA INFORMÁTICA DE GESTIÓN
FUNDAMENTOS DE COMPUTADORES INGENIERÍA TÉCNICA INFORMÁTICA DE GESTIÓN LISTADO DE PRÁCTICAS CURSO 2005/2006 Practicas de Fundamentos de Computadores (05/06) 2 Práctica 1 Construcción de Funciones Lógicas
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
Ejemplo de diseño del Proyecto N 1
Ejemplo de diseño del Proyecto N DEPATAENT DE ELECTNCA La empresa de potabilización de agua dispone de un tanque de decantación y desea desde una sala de control monitorear algunas características de los
UNIDAD 28 CIRCUITOS COMBINACIONALES. ÁLGEBRA DE BOOLE
TECNOLOGÍA INDUSTRIAL II > CONTROL Y PROGRAMACIÓN DE SISTEMAS UNIDAD 28 CIRCUITOS COMBINACIONALES. ÁLGEBRA DE BOOLE A-Relación de ejercicios (con solución) 1.- Dada la función F = cba + cba + cba simplifícala
TEMA 1. Sistemas Combinacionales.
TEMA. Sistemas Combinacionales.. Introducción a los sistemas digitales. Familias lógicas (2-20) 2. Definición de circuito combinacional (2-25) 3. Funciones combinacionales. Simplificación e implementación
Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007
Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 7. Álgebra de Boole Este El que éxito resulta de la diseñar tecnología y fabricar digital circuitos
DISEÑO LÓGICO DISEÑO LÓGICO
DISEÑO LÓGICO RESOLUCIÓN DE PROBLEMAS ABIERTOS DE INGENIERÍA Habitualmente el Diseño Lógico se inserta en un proceso más amplio de la resolución de problemas abiertos de ingeniería. Podríamos especificar
Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas.
Tema 2. Funciones Lógicas Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Álgebra de conmutación Algebra de Conmutación: Postulados y Teoremas. Representación
Bloque IV: Electrónica digital
Bloque IV: Electrónica digital.introducción Una señal analógica es aquella que puede tomar infinitos valores para representar la información. En cambio en una señal digital se utiliza sólo un número finito
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1)
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1) 1. CONVERSORES DE CODIGO La disponibilidad de una gran variedad de códigos para los mismos elementos discretos de información origina el uso de
TECNOLOGÍA DE COMPUTADORES. CURSO 2017/18. Problemas propuestos tema 7
TECNOLOGÍA DE COMPUTADORES. CURSO 2017/18. Problemas propuestos tema 7 1) Identifica el circuito de la figura: A Codificador 2x4 con Enable invertido B Decodificador 2x4 con salida invertida C Decodificador
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
HOJA DE PROBLEMAS 5: ESPECIFICACIÓN Y DISEÑO DE CIRCUITOS COMBINACIONALES
Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Tecnología de Computadores HOJA DE PROBLEMAS 5: ESPECIFICACIÓN Y DISEÑO DE CIRCUITOS COMBINACIONALES 1. Para cada una de las funciones dadas
Decodificadores y Demultiplexores. Pedro Fernández Ignacio de la Rosa
Decodificadores y Demultiplexores Pedro Fernández Ignacio de la Rosa Decodificadores El trabajo de un decodificador, es recibir como entradas códigos en binario (N bits) y activar una de las M salidas,
TEMA 3 BLOQUES COMBINACIONALES.
TEMA 3 BLOQUES COMBINACIONALES. Objetivos. Describir la diferencia entre circuitos combinacionales y secuenciales. Interpretar la función de un multiplexor, un demultiplexor, un codificador y un decodificador.
TEMA 5. SISTEMAS COMBINACIONALES MSI. INTRODUCCIÓN
Circuitos Combinacionales MSI 1 TEMA 5. SISTEMAS COMBINACIONALES MSI. INTRODUCCIÓN Los sistemas combinacionales son aquellos en los que las salidas dependen exclusivamente de las entradas, luego para una
TRAB.PRÁCTICO Nº 1: INTRODUCCIÓN A LAS TÉCNICAS DIGITALES
OBJETIVOS: A partir de los conocimientos adquiridos en las asignaturas previas ( Elementos de Informática y Elementos de Lógica y Matemática Discreta ) relacionados con el Álgebra de Boole y funciones
CIRCUITOS ELECTRÓNICOS DIGITALES BOLETÍN DE PROBLEMAS 4
CIRCUITOS ELECTRÓNICOS DIGITALES GRADO EN INGENIERÍA INFORMÁTICA TECNOLOGÍAS INFORMÁTICAS BOLETÍN DE PROBLEMAS 4 1.- Indique cuántos bits son necesarios, como mínimo, para representar cada uno de los siguientes
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
PRÁCTICA 1: SISTEMAS COMBINACIONALES
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA : SISTEMAS COMBINACIONALES ü ü Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo
PROBLEMAS DE ELECTRÓNICA DIGITAL
PROBLEMAS DE ELECTRÓNICA DIGITAL 1. Expresa en base decimal y hexadecimal los siguientes números binarios: a. 10111 2. b. 10011011,11 2. 2. Expresa en base dos (binario) y decimal los siguientes número
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica
TEMA 2 Álgebra booleana y puertas lógicas
TEMA 2 Álgebra booleana y puertas lógicas Tema 2: Álgebra booleana y puertas lógicas 1) Introducción BB1, Cap 4 (Introducción) 2) Álgebra de Boole BB1, Cap 4, Ap 4.1, 4.2, 4.3 3) Concepto de función lógica
k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal
Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en
PRÁCTICA 1: SISTEMAS COMBINACIONALES
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO fdsfdsdfsdfsdf EN INGENIERÍA INFORMÁTICA OBJETIVOS Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo de la instrumentación
Subsistemas aritméticos y lógicos. Tema 10
Subsistemas aritméticos y lógicos Tema 10 Qué sabrás al final del capítulo? Diseño de Sumadores Binarios Semisumadores Sumador completo Sumador con acarreo serie Sumador / Restador Sumador BCD Diseño de
Ejercicios Tema Implemente las siguientes funciones lógicas:
Ejercicios Tema 5.2 1. Implemente las siguientes funciones lógicas: f = a + b c g = d (c + ba) + a a. Con las puertas lógicas que desee b. Solo con puertas NAND c. Solo con puertas NOR 2. Implemente la
HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS
f Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Tecnología de Computadores HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS. Dado el módulo combinacional de la figura se pide dibujar
TRABAJO PRÁCTICO Nº 3. Expresiones booleanas, tablas de verdad y compuertas lógicas
Sistemas Digitales TRABAJO PRÁCTICO Nº 3 Expresiones booleanas, tablas de verdad y compuertas lógicas Ejercicio Nº 1: Dadas las siguientes funciones: F ( A, B, C, D) = C.( D + A) + A. C.( B + D 1 ) F 2
Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid. Circuitos combinacionales
Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid Circuitos combinacionales Puertas lógicas simples y complejas. Multiplexores. Elementos varios: codificadores
EIE 446 - SISTEMAS DIGITALES Tema 4: Algebra de Boole y Simplificación Lógica. Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas
EIE 446 - SISTEMAS DIGITALES Tema 4: Algebra de Boole y Simplificación Lógica Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas OBJETIVOS DE LA UNIDAD Aplicar las leyes y reglas básicas
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar
Operación de circuitos lógicos combinatorios.
Operación de circuitos lógicos combinatorios. 1.1 Analiza circuitos lógicos combinatorios, empleando sistemas y códigos numéricos. A. Identificación de las características de la electrónica digital. Orígenes
Problema Nº 1.a2.- Obtenga las siguientes conversiones numéricas. Problema Nº 1.a3.- Obtenga las siguientes conversiones numéricas. 9E36.
Universidad Simón Bolivar EC173 Circuitos Digitales Trimestre: Septiembre_DIC_ 5 PROBLEMARIO Nº 1.- 1.a.- Problemas sistemas númericos Problema Nº 1.a1.- 0. =?. =? ( c) 67.4 =? d 15 C.3 =? Problema Nº
TRABAJO PRÁCTICO Nº 3. Expresiones booleanas, tablas de verdad y compuertas lógicas
Sistemas Digitales TRABAJO PRÁCTICO Nº 3 Expresiones booleanas, tablas de verdad y compuertas lógicas Ejercicio Nº 1: Dadas las siguientes funciones: F ( A, B, C, D) C.( D A) AC..( B D 1 ) F2 ( A, B, C,
Tema 3. Operaciones aritméticas y lógicas
Tema 3. Operaciones aritméticas y lógicas Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Transparencia: 2 / 28 Índice Operaciones lógicas: OR, AND, XOR y NOT Operaciones
Universidad Carlos III de Madrid Electrónica Digital Ejercicios
1. Determine la función lógica simplificada que realiza el circuito de la figura. Tenga en cuenta que las señales de mayor peso son las que tienen la numeración más alta. Todas las entradas y salidas son
Fundamentos lógicos. Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada
Fundamentos lógicos Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada www.elai.upm.es Álgebra de Boole Buena parte de los automatismos responden a la lógica binaria Las variables binarias
Componentes indispensables Un (1) 74LS181 ALU Un (1) 74 LS 47 Un display 7seg CA
Universidad Simón Bolívar Departamento de Electrónica y Circuitos EC1723, Circuitos Digitales Trimestre Laboratorio - Práctica 2: Circuitos Combinatorios de Media Escala de Integración Objetivo: Familiarizarse
CIRCUITOS ELECTRÓNICOS DIGITALES BOLETÍN DE PROBLEMAS 5
CIRCUITOS ELECTRÓNICOS DIGITALES GRADO EN INGENIERÍA INFORMÁTICA TECNOLOGÍAS INFORMÁTICAS BOLETÍN DE PROBLEMAS 5 P1.- Realice la función f= Σ(0,3,6) con los siguientes componentes: a) Utilizando un decodificador
Electrónica Digital. Ing. Javier Soto Vargas Ph.D. ECI TDDA(M) - Javier Soto 1
Electrónica Digital Ing. Javier Soto Vargas Ph.D. [email protected] ECI TDDA(M) - Javier Soto 1 Sistema Digital Manejo de elementos discretos de información. Elementos discretos: Señales eléctricas.
Organización n del Computador 1. Lógica Digital 1 Algebra de Boole y compuertas
Organización n del Computador 1 Lógica Digital 1 Algebra de Boole y compuertas Representación n de la Información La computadoras necesitan almacenar datos e instrucciones en memoria Sistema binario (solo
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
Práctica 2: Lógica Digital - Combinatorios
Organización del Computador I DC - UBA Segundo Cuatrimestre de 2009 Álgebra booleana Propiedades Álgebra booleana Compuertas - NOT Propiedades A NOT A 0 1 1 0 Compuertas - AND Propiedades A B A AND B 0
plicación de los circuitos SUMADOR DIBITAL S C
plicación de los circuitos ógicos A B SUMADOR DIBITAL S C Aplicaciones de los circuitos lógicos Algunas aplicaciones elementales como los circuitos aritméticos digitales y los codificadores y decodificadores,
FUNDAMENTOS DE SISTEMAS DIGITALES. Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas
FUNDAMENTOS DE SISTEMAS DIGITALES Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas 1 Programa 1. Representación conjunta de números positivos y negativos. 2. Sumadores y restadores. 3. Sumadores
Boletín de Problemas de Circuitos Combinacionales. Fundamentos de Electrónica 3º Curso Ingeniería Industrial
Boletín de Problemas de Circuitos Combinacionales Fundamentos de Electrónica 3º Curso Ingeniería Industrial 2 1. Utilizar el mapa de Karnaugh para implementar la forma suma de productos mínima de la función
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?
Existen distintas formas de representar una función lógica, entre las que podemos destacar las siguientes:
Función booleana Se denomina función lógica o booleana a aquella función matemática cuyas variables son binarias y están unidas mediante los operadores del álgebra de Boole suma lógica (+), producto lógico
Tema 3: Operaciones aritméticas y lógicas
Tema 3: Operaciones aritméticas y lógicas S Suma-resta en base dos S Operaciones lógicas: OR, AND, XOR y NOT S Operaciones de desplazamiento S Suma-resta en los diferentes sistemas de representación de
SELECCIÓN DE PROBLEMAS
SELECCIÓN DE PROBLEMAS 1. Representación numérica 1.1. Convertir a hexadecimal y a binario las siguientes cantidades: a) 757.25 10 b) 123.17 10 1.2. Se dispone de palabras de 10 bits. Representar mediante
ALGEBRA DE BOOLE Y FUNCIONES LÓGICAS
ALGEBRA DE BOOLE Y FUNCIONES LÓGICAS 1. Simplificar las siguientes expresiones utilizando el álgebra de Boole: x = abc + ac y = ( q + r)( q + r) w = abc + ab c + a q = rst( r + s + t) x = ab c + abc +
BLOQUE "E" CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS. Problemas selectividad Curso: 2º Bach. Profesor: José Jiménez R.
CONTROL Y PROGRAMACIÓN SISTEMAS PARTAMENTO 1.- a) Simplificar por el método de Karnaugh la siguiente expresión: S = c. d + a. b. c. d + a. b. c. d + a. b. c. d + bcd b) Dibujar un circuito que realice
PROBLEMAS DE ESTRUCTURA Y TECNOLOGIA DE COMPUTADORES I
1) Convertir los siguientes números a sus correspondientes representaciones en las bases 2,, 5 y 16: a) 465 10 b) 24 8 c) 4287 10 2) Pasar los siguientes números binarios a base octal y hexadecimal: a)
Universidad Autónoma de Baja California
Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
ELECTRÓNICA DIGITAL. Ejercicios propuestos Tema 1
ELECTRÓNICA DIGITAL Ejercicios propuestos Tema 1 Ejercicio 1. Simplificar las siguientes funciones lógicas utilizando los postulados y las propiedades del algebra de Boole. a) Y = A B C + A B C + A B C
Claude Shannon fue el primero en aplicarla en el diseño de circuitos de conmutación eléctrica biestables, en 1948.
La llamada álgebra de Boole es una estructura algebraica que rigoriza las operaciones lógicas Y, O y NO, así como el conjunto de operaciones de unión, intersección y complemento que se pueden dar entre
FUNDAMENTOS DE COMPUTADORES EJERCICIOS U1: Álgebra de Boole y Diseño Lógico
U1_1. Realizar las siguientes operaciones (verificar las respuestas en decimal) a) onvertir a binario natural los números decimales 321, 1462, 205, 1023, 1024, 135, 45 y 967 b) onvertir a decimal los números
CYNTHIA PATRICIA GUERRERO SAUCEDO
Manual de prácticas Prueba Circuitos Electrónicos Digitales Para Sistemas de Control Tabla de contenido Practica #1 Las Compuertas Lógicas...3 Practica #2 Circuitos Lógicos Combinacionales...6 Practica
Algebra de Boole. Algebra de Boole. Ing. José Alberto Díaz García. EL - 3307 Diseño Lógico. Página 1
Página 1 Simplificación de circuitos Como los circuitos lógicos son representaciones de funciones lógicas, se pueden utilizar los recursos disponibles para simplificarlos y así reducir la cantidad de componentes
Subsistemas aritméticos y lógicos. Tema 8
Subsistemas aritméticos y lógicos Tema 8 Qué sabrás al final del capítulo? Diseño de Sumadores Binarios Semisumadores Sumador completo Sumador con acarreo serie Sumador con acarreo anticipado Sumador /
4. Prácticas: Circuitos Combinacionales
4. Prácticas: Circuitos Combinacionales I. Ejercicios teóricos 1. Diseñar, empleando puertas lógicas, un codificador de ocho a tres líneas con salida en binario natural y prioridad a la entrada de mayor
ELECTRÓNICA. Unidad 1: Fundamentos de Electrónica Digital 2ª Parte
ELECTRÓNICA Unidad 1: Fundamentos de Electrónica Digital 2ª Parte Operaciones con binario Suma: Ejemplo: 5 + 4 + 0 1 0 1 0 1 0 0 1 0 0 1 Operaciones con binario Resta: Ejemplo: 5-2 - 0 1 0 1 0 0 1 0 0
Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas.
Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas. Introducción La electrónica digital está basada en una teoría binaria cuya estructura matemática fue desarrollada por George Boole
DISEÑO Y SIMPLIFICACIÓN DE CIRCUITOS LÓGICOS
>PROGRAMA DE INGENIERIA DE SISTEMAS UNIVERSIDAD DEL QUINDÍO < 1 DISEÑO Y SIMPLIFICACIÓN DE CIRCUITOS LÓGICOS Cesar Velásquez Celis, Cristian Camilo Peña Guevara, Neidy Yised Carvajal Londoño. Programa
SUBSISTEMAS COMBINACIONALES. Tema 4: SUBSISTEMAS COMBINACIONALES
Tema 4: SUBSISTEMAS COMBINACIONALES Contenido * Circuitos integrados MSI/LSI. * Subsistemas de propósito específico: * decodificadores, codificadores, convertidores de código * codificadores de prioridad
Tema 3. 2 Sistemas Combinacionales
Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores
APOYO PARA EL LOGRO DEL PRIMER APRENDIZAJE ESPERADO: CONCEPTOS PREVIOS
Profesor/a(s) Nivel o Curso/s 4º Ramon Flores Pino Unidad/Sub Unidad 2.- Circuitos de lógica Combinacional Contenidos 1 Compuertas lógicas 2. Enfoque de problemas, 3.- Codificadores y decodificadores GUÍA
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0
GUIA DE COMPONENTE PRACTICO
GUIA DE COMPONENTE PRACTICO Con el propósito de fomentar el desarrollo de habilidades en el diseño e implementación física de circuitos digitales, se ha diseñado un componente práctico que será desarrollado
