Sistemas Digitales I
|
|
|
- Amparo Mendoza Soler
- hace 8 años
- Vistas:
Transcripción
1 UNIVERSIDAD INDUSTRIAL DE SANTANDER Sistemas Digitales I Taller No1 Profesor: Carlos A. Fajardo Mayo de 2015 Temas: Representación digital de los Datos, Algebra de Boole, Funciones Lógicas, Introducción a VHDL, Implementación de circuitos combinacionales usando VHDL.
2 Sección 1: Representación digitales de los datos. 1. Realice las siguientes conversiones: a. 100, a Binario punto fijo con el mínimo de bits posible. b. C FLOAT a Decimal c. -125,6 10 a flotante precisión simple d a Complemento a 2 con 5 bits e a BCD 2. Realice las siguientes operaciones en la base indicada, mostrando claramente los acarreos: a b c d e. A26B AAB Encuentre, si es posible, el valor de la base x en la que se encuentra escrito el siguiente número (x es número entero positivo): a. 321 x = b. 198 x = Realice las operaciones indicadas en complemento a 2 con 6 bits. (Sugerencia: primero escriba los números en complemento a 2 y luego realice las operaciones). a b. -1A Realice las operaciones indicadas: Primero en punto fijo (3:3). Segundo en complemento a 2 con 6 bits. (Sugerencia: primero escriba los números en complemento a 2 y luego realice las operaciones). a b Determine el rango de valores numéricos que pueden escribirse en palabras de 8 bits si el número está escrito en: a. Signo y magnitud b. Complemento a 2 c. BCD d. Punto fijo con 3 bits en la parte entera y 5 bits en la parte decimal 7. Determine el rango de valores numéricos que pueden escribirse en palabras de 16 bits si el número está escrito en: a. Signo y magnitud b. Complemento a 2 c. BCD d. Punto fijo con 12 bits en la parte entera y 4 bits en la parte decimal 1
3 Sección 2: Algebra de Boole y Funciones Lógicas 8. Diseñe un circuito SOP, empleando el menor número de compuertas AND, OR y NOT. La entrada al circuito es un número en BCD y la salida debe indicar si el número es divisible entre Diseñe un circuito SOP, empleando el menor número de compuertas AND, OR y NOT, cuya entrada sea un número de 3 bits en complemento a 2 y su salida sea su correspondiente representación en magnitud y signo. 10. Usando mapas de Karnaugh encuentre la mínima expresión POS (Producto de Sumas) de la función F. F (0,1,5,7,13,15) D) m 11. Usando mapas de Karnaugh encuentre la mínima expresión SOP (suma de productos) de la función F. Donde d, son condiciones no importa (don t care). F m(0,1,2) (3,8,9,10,11,12) D) d 12. Implemente la siguiente función boolena con el mínimo posible de compuertas AND, OR y NOT. F (A,C) = AB C + AB C + ABC + A B C 13. Implemente la siguiente función boolena con el mínimo posible de compuertas AND, OR y NOT. F (A,C) = A xor C + AB + AB C 14. Usando mapas de Karnaugh encuentre la mínima expresión POS (Producto de Sumas) de la función F. Donde d, son condiciones no importa (don t care). F (5,7,13,15) (0,4,8,12) m D) d 15. Usando mapas de Karnaugh encuentre la mínima expresión POS (Producto de Sumas) de la función F. F (0,2,5,7,13,15,21,23,29,31) D, E) m 16. Usando mapas de Karnaugh encuentre la mínima expresión POS (Producto de Sumas) de la función F. Donde d, son condiciones no importa (don t care). F m (0,2,11,13,14,15,27,26) (,8,10,16,18,24,26,30) D) d 17. Implemente la función G D) m (2,4,7,13,14), utilizando a. Un multiplexor de 8 a 1 2
4 b. Un multiplexor de 4 a Implemente la función G D, E) (0,2,3,4,11,17,24,25,27,30,31) utilizando un multiplexor de 8 a Diseñe un circuito SOP, empleando el menor número de compuertas AND, OR y NOT, cuya entrada sea un número de 3 bits en signo y magnitud y la salida sea su correspondiente representación en complemento a Diseñe un circuito POS, empleando el menor número de compuertas AND, OR y NOT, cuya entrada sea un número de 3 bits en complemento a 2 y la salida sea su correspondiente representación en signo y magnitud. 21. Diseñe un decodificador de 2 a 4 de lógica negada con enable activo en bajo. El diseño debe utilizar el mínimo posible de compuertas lógicas AND, OR y NOT. 22. Diseñe un comparador de dos números de tres bits cada uno, el cual debe indicar si los dos números son iguales. (La salida debe ser 1 si A y B son iguales y 0 si son diferentes). Ver figura 1. Figura 1: Comparador de igualdad 23. Diseñe un comparador de dos números de tres bits cada uno, el cual debe indicar si un número es mayor (La salida F debe ser 1 si A es mayor que B o 0 si es menor o igual, ver figura 2). Figura 2: Comparador Mayor que. 24. Diseñe un multiplexor de 2 a 1, usando únicamente compuertas NOR. Su diseño debe contener el mínimo posible de compuertas NOR. 3
5 25. El display de 7 segmentos de la figura 3, requiere un nivel BAJO para encender cada segmento (ánodo común). Diseñar un circuito POS con el mínimo de compuertas posibles cuya entrada sea un número en BCD y la salida sea la lógica del segmento B. Figura 3: Display de 7 segmentos 26. El display de 7 segmentos de la figura 3, requiere un nivel BAJO para activar cada segmento (ánodo común). Diseñar un circuito SOP con el mínimo de compuertas posibles cuya entrada sea un número en BCD y la salida sea la lógica del segmento G. 27. El display de 7 segmentos de la figura 3, requiere un nivel ALTO para activar cada segmento (cátodo común). Diseñar un circuito SOP con el mínimo de compuertas posibles cuya entrada sea un número en BCD y la salida sea la lógica del segmento D. 4
6 Sección 3: Implementación de funciones combinacionales en VHDL Ejercicios 28 31:Suponga que usted es un sintetizador de VHDL y debe sintetizar los siguientes circuitos. Ustede debe: Verificar la sintaxis, si la descripción VHDL tiene errores indique cuáles son. Si la descripción NO tiene errores de sintaxis muestre el RTL. El diagrama RTL debe estar en función de bloques combinacionales como sumadores, restadores, comparadores, multiplexores, compuertas lógicas, etc
7
8 7
9 Respuestas a los ejercicios seleccionados 1. a , b. -12,125 c. C2FB3333 d e a. Base 4 b. Base a. b. 101, , , , , , a. F = BD b. F = B c. F = A B C + BD A 2 A 1 A 0 F 3 F 2 F 1 F F 3 = A 2 F 2 = A 2 A 1 0 F 1 = A 2 A A A 1 A 0 F 0 = A 0 8
10 Error de sintanxis. 9
Sistemas Digitales I Taller No 1:Sistemas Numéricos, Algebra de Boole y Funciones Lógicas
UNIVERSIDAD INDUSTRIAL DE SANTANDER Escuela de Ingenierías Eléctrica, Electrónica y Telecounicaciones Sisteas Digitales I Taller No 1:Sisteas Nuéricos, Algebra de Boole y Funciones Lógicas Profesor: Carlos
Sistemas Digitales I Taller No 2: Diseño de Circuitos combinacionales usando VHDL
UNIVERSIDAD INDUSTRIAL DE SANTANDER Escuela de Ingenierías Eléctrica, Electrónica y Telecomunicaciones Sistemas Digitales I Taller No 2: Diseño de Circuitos combinacionales usando VHDL Profesor: Carlos
Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios.
Práctico 3 Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Objetivo Conocer y entrenarse en las técnicas para la construcción de circuitos combinatorios de mediano porte. Conocer
Operación de circuitos lógicos combinatorios.
Operación de circuitos lógicos combinatorios. 1.1 Analiza circuitos lógicos combinatorios, empleando sistemas y códigos numéricos. A. Identificación de las características de la electrónica digital. Orígenes
Sistemas Combinacionales
Sistemas Combinacionales Tipos de Sistemas Digitales Puertas Lógicas Bloques Combinacionales Multiplexores Decodificadores/demultiplexores Decodificadores BCD a 7 segmentos Codificadores Comparadores Sumadores
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1)
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1) 1. CONVERSORES DE CODIGO La disponibilidad de una gran variedad de códigos para los mismos elementos discretos de información origina el uso de
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?
Tema 3. Operaciones aritméticas y lógicas
Tema 3. Operaciones aritméticas y lógicas Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Transparencia: 2 / 28 Índice Operaciones lógicas: OR, AND, XOR y NOT Operaciones
Universidad Autónoma de Baja California
Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2
FUNDAMENTOS DE COMPUTADORES INGENIERÍA TÉCNICA INFORMÁTICA DE GESTIÓN
FUNDAMENTOS DE COMPUTADORES INGENIERÍA TÉCNICA INFORMÁTICA DE GESTIÓN LISTADO DE PRÁCTICAS CURSO 2005/2006 Practicas de Fundamentos de Computadores (05/06) 2 Práctica 1 Construcción de Funciones Lógicas
PRÁCTICA 1b: SUMA Y RESTA BINARIA
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA 1b: SUMA Y RESTA BINARIA ü ü Iniciar y familiarizar al alumno con las operaciones básicas (suma y resta) con números binarios.
HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS
f Universidad Rey Juan Carlos Grado en Ingeniería Informática Fundamentos de Computadores HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS. Dado el módulo combinacional de la figura se pide dibujar
TEMA 3 BLOQUES COMBINACIONALES.
TEMA 3 BLOQUES COMBINACIONALES. Objetivos. Describir la diferencia entre circuitos combinacionales y secuenciales. Interpretar la función de un multiplexor, un demultiplexor, un codificador y un decodificador.
CIRCUITOS DIGITALES -
CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:
Organización de Computadoras
Organización de Computadoras SEMANA 1 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Sistema Binario Interpretación Representación Aritmética Sistema Hexadecimal Hoy! Lógica proposicional Compuertas lógicas:
Tema 3: Operaciones aritméticas y lógicas
Tema 3: Operaciones aritméticas y lógicas S Suma-resta en base dos S Operaciones lógicas: OR, AND, XOR y NOT S Operaciones de desplazamiento S Suma-resta en los diferentes sistemas de representación de
Tema 1: Circuitos Combinacionales
Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos
TEMA 1. Sistemas Combinacionales.
TEMA. Sistemas Combinacionales.. Introducción a los sistemas digitales. Familias lógicas (2-20) 2. Definición de circuito combinacional (2-25) 3. Funciones combinacionales. Simplificación e implementación
SUMADORES Y COMPARADORES
Universidad Nacional de Quilmes Diplomatura en Ciencia y Tecnología Circuito semisumador de un bit. TÉCNICAS DIGITALES Los circuitos sumadores entregan 2 datos: suma (S) y acarreo (A), y, este circuito
IEE 2712 Sistemas Digitales
IEE 2712 Sistemas Digitales Clase 6 Objetivos educacionales: 1. Saber aplicar el método de mapas de Karnaugh para 5 o más variables y para situaciones no-importa. 2. Conocer la implementación práctica
ÍNDICE CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN CAPÍTULO 2. ÁLGEBRA DE CONMUTACIÓN Y FUNCIONES LÓGICAS... 37
ÍNDICE LISTA DE FIGURAS... 7 LISTA DE TABLAS... 11 CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN... 13 1.1. REPRESENTACIÓN DE LA INFORMACIÓN... 15 1.2. SISTEMAS DE NUMERACIÓN BINARIO NATURAL Y HEXADECIMAL... 18 1.3.
Tema 3: Sistemas Combinacionales
Ejercicios T3: Sistemas Combinacionales Fundamentos de Tecnología de Computadores Tema 3: Sistemas Combinacionales 1. Analizar el siguiente circuito indicando la expresión algebraica que implementa, la
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
PROBLEMA VHDL. 7 dig1. dig2. Entradas : Señales a[3..0] y b [3..0] en código GRAY Salida : Señales Dig1[6..0] y Dig2[6..0] para los visualizadores
LAB. Nº: 4 HORARIO: H-441 FECHA: 2/10/2005 Se tienen 2 números en Código GRAY de 4 bits. Se requiere diseñar un circuito que obtenga la suma de estos 2 números y que muestre el resultado en formato BCD
Tema 4 - Bloques combinacionales
- Bloques combinacionales Eduardo Rodríguez Martínez Departamento de Electrónica División de Ciencias Básicas e Ingeniería Universidad Autónoma Metropolitana Unidad Azcapotzalco Email: [email protected]
DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS
DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS Circuitos Combinacionales Un circuito combinacional es un circuito digital cuyas salidas, en un instante determinado son función, exclusivamente, de la combinación
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES
TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES Exponer los conceptos básicos de los fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre sistemas digitales y sistemas analógicos.
Sistemas Digitales - Examen temas 1, 2 y 3 - (6 de Abril 2016)
Sistemas Digitales - Examen temas, 2 y 3 - (6 de Abril 206) EXAMEN RESUELTO Problema-. Modelo-A (Calificación 0 puntos) Se quiere diseñar un circuito digital, tal que, dado un número en código octal de
ESTRUCTURA Y TECNOLOGIA DE COMPUTADORES II Curso PROBLEMAS TEMA 4: Unidad Aritmético Lógica
Problemas propuestos en examen PROBLEMAS TEMA 4: Unidad Aritmético Lógica 4.1 Se desea realizar una Unidad Aritmético Lógica que realice dos operaciones, suma y comparación de dos números X (x 2 ) e Y
PRÁCTICA 1: SISTEMAS COMBINACIONALES
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA : SISTEMAS COMBINACIONALES ü ü Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
CIRCUITOS ELECTRÓNICOS DIGITALES BOLETÍN DE PROBLEMAS 4
CIRCUITOS ELECTRÓNICOS DIGITALES GRADO EN INGENIERÍA INFORMÁTICA TECNOLOGÍAS INFORMÁTICAS BOLETÍN DE PROBLEMAS 4 1.- Indique cuántos bits son necesarios, como mínimo, para representar cada uno de los siguientes
TEMA 5.3 SISTEMAS DIGITALES
TEMA 5.3 SISTEMAS DIGITALES TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA 08 de enero de 2015 TEMA 5.3 SISTEMAS DIGITALES Introducción Sistemas combinacionales Sistemas secuenciales TEMA 5.3 SISTEMAS
PRÁCTICA 1: SISTEMAS COMBINACIONALES
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO fdsfdsdfsdfsdf EN INGENIERÍA INFORMÁTICA OBJETIVOS Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo de la instrumentación
PROGRAMA DE ESTUDIO Área de Formación : Carlos González Zacarías Fecha de elaboración: 21 de Mayo de 2010 Fecha de última actualización:
PROGRAMA DE ESTUDIO Programa Educativo: Área de Formación : Licenciado en Informática Administrativa General Sistemas digitales Horas teóricas: 2 Horas prácticas: 4 Total de Horas: 6 Total de créditos:
Sumadores. Tipos de sumadores: Half-adder. Full-Adder. Carry-Look-Ahead. Carry-select.
Sumadores En electrónica un sumador es un circuito lógico que calcula la operación suma. En los computadores modernos se encuentra en lo que se denomina Unidad aritmético lógica (ALU). Generalmente realizan
plicación de los circuitos SUMADOR DIBITAL S C
plicación de los circuitos ógicos A B SUMADOR DIBITAL S C Aplicaciones de los circuitos lógicos Algunas aplicaciones elementales como los circuitos aritméticos digitales y los codificadores y decodificadores,
Electrónica Digital. Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas
Electrónica Digital Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández 2001 Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas UNIVERSIDAD DE LA LAGUNA ii ÍNDICE Lección 0. Introducción...1
Subsistemas aritméticos y lógicos. Tema 8
Subsistemas aritméticos y lógicos Tema 8 Qué sabrás al final del capítulo? Diseño de Sumadores Binarios Semisumadores Sumador completo Sumador con acarreo serie Sumador con acarreo anticipado Sumador /
FUNDAMENTOS DE COMPUTADORES Ejercicios U2: Circuitos Combinacionales
U_. Se desea transmitir las primeras cuatro letras del alfabeto de un ordenador ORD a otro ORD. En el primero las cuatro letras están codificadas en tres líneas X, X y X y en el segundo tan sólo en dos,
Montaje y evaluación de sistemas digitales combinacionales.
PRÁCTICA 3 Montaje y evaluación de sistemas digitales combinacionales. 1. Objetivos El objetivo de la siguiente práctica es familiarizar al alumno con el manejo de sistemas combinacionales, además de:
ANALISIS Y DISEÑO DE CIRCUITOS ARITMÉTICOS
ANALISIS Y DISEÑO DE CIRCUITOS ARITMÉTICOS Suma y resta binaria Diseño de un sumador Análisis del sumador Análisis de un sumador/restador Suma y resta en BCD Suma y resta en BCD exceso de tres Análisis
HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS
f Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Tecnología de Computadores HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS. Dado el módulo combinacional de la figura se pide dibujar
Circuitos electrónicos digitales. Unidades Aritméticas Lógicas. Departamento de Tecnología Electrónica Universidad de Sevilla
Circuitos electrónicos digitales Unidades Aritméticas Lógicas Índice Introducción Circuitos sumadores básicos Sumador paralelo de n bits Sumador/Restador Unidad aritmético-lógica (ALU) Introducción Los
FUNDAMENTOS DE COMPUTADORES 1ª PRUEBA ESCRITA
FUNMENTOS E OMPUTORES 1ª PRUE ESRIT GRO EN INGENIERÍ INFORMÁTI FUNMENTOS E OMPUTORES 1ª PRUE ESRIT pellidos y nombre Firma NORMS: Las preguntas de test se responderán en el casillero adjunto. No está permitido
TRABAJO PRÁCTICO Nº 3. Expresiones booleanas, tablas de verdad y compuertas lógicas
Sistemas Digitales TRABAJO PRÁCTICO Nº 3 Expresiones booleanas, tablas de verdad y compuertas lógicas Ejercicio Nº 1: Dadas las siguientes funciones: F ( A, B, C, D) = C.( D + A) + A. C.( B + D 1 ) F 2
CURSO: ELECTRÓNICA DIGITAL UNIDAD 2: SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. CIRCUITOS ARITMÉTICOS
CURSO: ELECTRÓNICA DIGITAL UNIDAD 2: SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA En Electrónica digital se tienen sistemas combinatorios y sistemas secuenciales. Un sistema combinatorio
Circuitos Combinatorios
UNIDAD 5 Circuitos Combinatorios Introducción a la unidad Los circuitos combinatorios o circuitos combinacionales transforman un conjunto de entradas en un conjunto de salidas de acuerdo con una o más
EJERCICIOS. (Tema 5).
EJERCICIOS. (Tema 5). 1) Diseña un circuito que sume la unidad a un número de N bits. 2) Se desea diseñar un circuito que realice la resta de dos números positivos (A y B) de 4 bits. Para ello, es necesario
DISEÑO CURRICULAR ELECTRÓNICA DIGITAL
DISEÑO CURRICULAR ELECTRÓNICA DIGITAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas. CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 116243 02 02 03 VI PRE-REQUISITO ELABORADO
Álgebra Booleana y Simplificación Lógica
Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 2 Simplificación utilizando Álgebra Booleana Simplificar la expresión AB + A(B + C) + B(B + C) 1. Aplicar la ley distributiva al segundo
Diseño combinacional (Parte #2) Mapas de Karnaugh
Departamento de Electrónica Electrónica Digital Diseño combinacional (Parte #2) Mapas de Karnaugh Facultad de Ingeniería Bioingeniería Universidad Nacional de Entre Ríos Procedimiento de diseño de un circuito
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL
PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)
TEMA 7 ELECTRÓNICA DIGITAL: LÓGICA COMBINACIONAL
TEMA 7 ELECTRÓNICA DIGITAL: LÓGICA COMBINACIONAL 11 1) Cuántas funciones de conmutación diferentes se pueden definir con 3 variables binarias? a) 8. b) 9. c) depende del problema en concreto. d) 256. 2)
GUIA DIDACTICA DE ELECTRONICA N º12 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE CUARTO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
ELECTRÓNICA. Unidad 2: Circuitos combinacionales. Primera Parte
ELECTRÓNICA Unidad 2: Circuitos combinacionales Primera Parte Unidad 2: Circuitos combinacionales 1. Introducción a los circuitos combinacionales. 2. Codificadores y decodificadores. 2.1. Codificadores
Taller No. 6 Final Electrónica digital (Multiplexores y demultiplexores)
Taller No. 6 Final Electrónica digital (Multiplexores y demultiplexores) CONCEPTOS PREVIOS MULTIPLEXORES: Los multiplexores son circuitos combinacionales con varias entradas y una salida de datos, y están
Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones
Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología
UNIVERSIDAD AUTONOMA DE BAJA CALIFORNIA
UNIVERSIDAD AUTONOMA DE BAJA CALIFORNIA DIRECCION GENERAL DE ASUNTOS ACADEMICOS PROGRAMA DE ASIGNATURA POR COMPETENCIAS I. DATOS DE IDENTIFICACIÓN 1. Unidad Académica: Facultad de Ciencias Químicas e Ingeniería
CURSO: ELECTRÓNICA DIGITAL SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: ING. JORGE ANTONIO POLANÍA
CURSO: ELECTRÓNICA DIGITAL SISTEMAS COMBINATORIOS - TEORÍA PROFESOR: ING. JORGE ANTONIO POLANÍA En esta unidad usted aprenderá a utilizar los diferentes circuitos integrados que se han fabricado para resolver
Conocer, diseñar y aplicar los circuitos digitales para el control de los diferentes sistemas mecatrónicos.
Nombre de la asignatura: Electrónica Digital Créditos: 2-4-6 Aportación al perfil Conocer y analizar la diferencia entre circuitos analógicos y digitales y la relación existente entre ellos. Analizar sistemas
^6+1 2^5+1 2^2+1 2^1+1 2^ ^6+1 2^0-65.
ELECTRÓNICA DIGITAL 23-I-2014 PREGUNTAS TEÓRICO PRÁCTICAS: 1. Determinar el valor decimal de los números expresados en Complemento a 2. (0.25 puntos). 10011001 10011000 01100111 1 2^6+1 2^5+1 2^2+1 2^1+1
Practica Nº4 Multiplexores
Practica Nº4 Multiplexores OBJETIVO: El estudiante al terminar esta práctica estará en capacidad de poder analizar y diseñar circuitos combinacionales Multiplexores y circuitos lógicos aritméticos. PRELABORATORIO:
TRABAJO PRÁCTICO Nº 3. Expresiones booleanas, tablas de verdad y compuertas lógicas
Sistemas Digitales TRABAJO PRÁCTICO Nº 3 Expresiones booleanas, tablas de verdad y compuertas lógicas Ejercicio Nº 1: Dadas las siguientes funciones: F ( A, B, C, D) C.( D A) AC..( B D 1 ) F2 ( A, B, C,
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, Decana de América)
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, Decana de América) FACULTAD DE INGENIERIA DE SISTEMAS E INFORMATICA Escuela Académico Profesional de Ingeniería de Sistemas SILABO 1. ESPECIFICACIONES
Modelos de Circuitos FCHE 2011
Modelos de Circuitos Secuenciales: Mealy y Moore FCHE 20 Modelos/Maquinas/Autómatas Mealy: las salidas están en función de dos, el estado presente y las entrada. Moore: Las salidas están en función del
Electrónica. Diseño lógico. Fundamentos en electrónica digital. Héctor Arturo Flórez Fernández
Electrónica Diseño lógico Fundamentos en electrónica digital Héctor Arturo Flórez Fernández Flórez Fernández, Héctor Arturo Diseño lógico: fundamentos de electrónica digital / Héctor Arturo Flórez Fernández.
ÍNDICE TEMÁTICO. 4 Características de las familias lógicas Circuitos lógicos combinacionales
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Sistemas Digitales
DECODIFICADORES. Para cualquier código dado en las entradas solo se activa una de las N posibles salidas. 2 N
DECODIFICADORES Tienen como función detectar la presencia de una determinada combinación de bits en sus entradas y señalar la presencia de este código mediante un cierto nivel de salida. Un decodificador
SELECCIÓN DE PROBLEMAS
SELECCIÓN DE PROBLEMAS 1. Representación numérica 1.1. Convertir a hexadecimal y a binario las siguientes cantidades: a) 757.25 10 b) 123.17 10 1.2. Se dispone de palabras de 10 bits. Representar mediante
PROBLEMAS DE ESTRUCTURA Y TECNOLOGIA DE COMPUTADORES I
1) Convertir los siguientes números a sus correspondientes representaciones en las bases 2,, 5 y 16: a) 465 10 b) 24 8 c) 4287 10 2) Pasar los siguientes números binarios a base octal y hexadecimal: a)
PROGRAMA INSTRUCCIONAL CIRCUITOS DIGITALES
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar
1.1 Circuitos Digitales
TEMA III Circuitos Digitales Electrónica II 27. Circuitos Digitales Del mundo analógico al digital. Ventajas de la señal digital. Inconvenientes de la señal digital. Algebra de Boole. Puertas Lógicas.
FORMATO DE CONTENIDO DE CURSO
PÁGINA: 1 de 8 FACULTAD DE.CIENCIAS BÁSICAS PROGRAMA DE: FÍSICA PLANEACIÓN DEL CONTENIDO DE CURSO 1. IDENTIFICACIÓN DEL CURSO NOMBRE : ELECTRÓNICA II CÓDIGO : 210080 SEMESTRE : VII NUMERO DE CRÉDITOS :
Carrera: 2-4-8. Participantes Representante de las academias de ingeniería en Mecatrónica de los Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Electrónica Digital Ingeniería Mecatrónica Clave de la asignatura: Horas teoría-horas práctica-créditos 2-4-8 2.- HISTORIA DEL PROGRAMA Lugar
Ing. Yesid E. Santafe Ramon CIRCUITOS LÓGICOS COMBINATORIOS
Ing. Yesid E. Santafe Ramon CIRCUITOS LÓGICOS COMBINATORIOS La evolución de la electrónica digital ha llevado a la comercialización de circuitos integrados de media escala de integración (MSI) que representan
Circuitos Lógicos Combinatorios. Ing. Jorge Manrique 2004 Sistemas Digitales 1
Circuitos Lógicos Combinatorios Ing. Jorge Manrique 2004 Sistemas Digitales 1 Circuitos Combinatorios Un circuito combinatorio es un arreglo de compuertas lógicas con un conjunto de entradas y salidas.
Proyecto de Diseño 2
Altera University Program 1 Proyecto de Diseño 2 Números y Visualizadores El objetivo de esta práctica es diseñar circuitos combinacionales que realicen conversiones numéricas de binario a decimal y adición
ARQUITECTURA DE COMPUTADORAS
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INFORMÁTICA PROGRAMA DE LA ASIGNATURA ARQUITECTURA DE COMPUTADORAS SEMESTRE AREA:
PROGRAMA DE CURSO Modelo 2009
REQUISITOS: HORAS: 3 Horas a la semana CRÉDITOS: PROGRAMA(S) EDUCATIVO(S) QUE LA RECIBE(N): IETRO PLAN: 2009 FECHA DE REVISIÓN: Mayo de 2011 Competencia a la que contribuye el curso. DEPARTAMENTO: Departamento
FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES : SISTEMAS DIGITALES I SÍLABO
I.-DATOS GENERALES SÍLABO CARRERA PROFESIONAL : INGENIERÍA ELECTRÓNICA Y CÓDIGO CARRERA PROFESIONAL : 29 ASIGNATURA : CÓDIGO DE ASIGNATURA : 2902-29213 CÓDIGO DE SÍLABO : 2921330072014 Nº DE HORAS TOTALES
TEMA 5. SISTEMAS COMBINACIONALES MSI.
Fundamentos de Computadores. Circuitos Combinacionales MSI T5-1 TEMA 5. SISTEMAS COMBINACIONALES MSI. INDICE: INTRODUCCIÓN DECODIFICADORES o REALIZACIÓN DE FUNCIONES CON DECODIFICADORES CONVERTIDORES DE
ASIGNATURA: ELECTRÓNICA DIGITAL PROGRAMA ACADÉMICO: INGENIERIA EN MECATRÓNICA TIPO EDUCATIVO: INGENIERIA MODALIDAD: MIXTA
INSTITUTO UNIVERSITARIO PUEBLA HOJA: 1 DE 3 PROGRAMA ACADÉMICO: INGENIERIA EN MECATRÓNICA TIPO EDUCATIVO: INGENIERIA MODALIDAD: MIXTA SERIACIÓN: NINGUNA CLAVE DE LA ASIGNATURA: IM45 CICLO: OCTAVO CUATRIMESTRE
ARQUITECTURA DE COMPUTADORES INFORME DE LABORATORIO Nº 2 CÁRDENAS MOYA JOSÉ GABRIEL TUTOR ING. HAIMER GUTIERREZ
ARQUITECTURA DE COMPUTADORES INFORME DE LABORATORIO Nº 2 CÁRDENAS MOYA JOSÉ GABRIEL TUTOR ING. HAIMER GUTIERREZ UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD CEAD ACACIAS QUINTO SEMESTRE INGENIERÍA DE
Tema 3. 2 Sistemas Combinacionales
Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores
TEMA 1: Control y programación de sistemas automáticos
Esquema: TEMA : Control y programación de sistemas automáticos TEMA : Control y programación de sistemas automáticos....- Introducción.....- Representación de las señales digitales...2 2.- Sistemas de
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica
PRÁCTICA 1b: SUMA Y RESTA BINARIA
DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA 1b: SUMA Y RESTA BINARIA! Iniciar y familiarizar al alumno con las operaciones básicas (suma y resta) con números binarios.!
TEMA III: OPERACIONES CON LOS DATOS
CUESTIONES A TRATAR: Cual es la función de la unidad operativa? Es necesaria? Qué tipos de circuitos implementan la unidad operativa? Unidad operativa frente a ALU Qué es una operación de múltiple precisión?
Temario TEMARIO. Sist. Electrónicos Digitales 1
TEMARIO 1 TEMA 1. Introducción a los Sistemas Digitales. 1.1. Concepto de Sistema. Estructura y Comportamiento Señal analógica y señal digita Señal binarial 1.2. Sistemas de numeración. Binario Octal Hexadecimal
