1. La corriente eléctrica.
|
|
|
- Eva Pinto Mora
- hace 9 años
- Vistas:
Transcripción
1 1. La corriente eléctrica. Corriente eléctrica: En sentido amplio, todo movimiento de cargas eléctricas constituye una corriente eléctrica. Sin embargo, se suele denominar corriente eléctrica a un movimiento de electrones a través de una sección transversal de un hilo conductor. La corriente eléctrica a través de un metal. Los electrones libres del metal se mueven, globalmente considerados, en un campo electrostático. La corriente eléctrica a través de una disolución iónica. En una disolución iónica, los iones se desplazan en el campo eléctrico creado al situar dos electrodos a diferente potencial. - El sentido de la corriente eléctrica se ha establecido por convenio como el correspondiente al desplazamiento desde potenciales más altos a potenciales más bajos. En un conductor los electrones se desplazan en sentido contrario al asignado a la corriente. - En función del sentido en el que circulen las cargas, la corriente puede ser: Continua: El sentido no cambia con el tiempo. La corriente continua supone una diferencia de potencial constante y del mismo sentido entre los polos del generador. En esta situación, la intensidad de corriente estacionaria es constante, por lo que la gráfica intensidad de corriente (I) tiempo (t) será una línea recta (ver gráfica). En este caso la corriente continua se llama constante o estacionaria. En caso contrario la corriente continua se denomina variable. Las pilas y baterías suministran corriente continua y constante. Alterna: El sentido cambia con el tiempo de forma periódica. La corriente alterna supone que la diferencia de potencial varía de signo o sentido alternativamente y, lógicamente, también varía el sentido de la corriente que circula (ver gráfica). La corriente alterna es la que circula por los circuitos eléctricos de las casas. En Europa tiene una frecuencia de cambio de sentido de 50 Hz, y en EE UU, de 60 Hz. Banda de conducción: Los materiales más empleados en la fabricación de conductores son los metales. Algunos electrones de los átomos poseen una energía incluida en la zona energética llamada banda de conducción y, debido a ello, pueden moverse libremente por toda la red metálica, Al aplicar un campo eléctrico externo entre los extremos de un conductor metálico, se establece una diferencia de potencial que arrastra electrones desde la zona de potencial más negativo hasta la de potencial más positivo. Electrólitos: Los electrólitos son disoluciones que contienen iones positivos y negativos con libertad de movimiento en su seno. El flujo de cargas en los electrólitos tiene dos sentidos: - Los iones positivos se mueven en el sentido de los potenciales decrecientes. - Los iones negativos se mueven en el sentido de los potenciales decrecientes. Ambas corrientes se suman en lugar de restarse, ya que la carga neta transportada a través de una sección transversal del conductor depende del signo de la carga.
2 2. Intensidad de corriente. Si establecemos una diferencia de potencial entre dos puntos y el medio que los separa es conductor, se origina un movimiento o flujo de cargas sistemático y continuo mientras exista la diferencia de potencial. El movimiento o flujo de cargas supone que, a través de una determinada superficie, pasa un número determinado de cargas eléctricas (electrones en caso de los metales o iones en el caso de las disoluciones de electrólitos) en un determinado intervalo de tiempo. El cociente entre la carga total que ha pasado y el tiempo considerado se denomina intensidad de corriente eléctrica y nos proporciona una medida del flujo de carga eléctrica: La intensidad de corriente se mide en amperios (A) en el Sistema Internacional y es una magnitud de carácter fundamental, en consecuencia, el amperio es una unidad fundamental y equivale a un flujo de cargas de un culombio por cada segundo. Q I Es decir, una corriente de un amperio supone que pasa, a través de una sección perpendicular al conductor, un culombio de carga eléctrica en cada segundo o, lo que es lo mismo, 6,25 i electrones cada segundo. La definición correcta del amperio, al ser una unidad fundamental, se hace a partir de las interacciones entre corrientes eléctricas y, recientemente, a partir de fenómenos más complejos. Por esta razón debemos definir el culombio a partir del amperio: Q I Q t 1C 1A 1 s [ver definición de culombio en el apartado Fenómenos electrostáticos ] 3. Resistencia eléctrica. Ley de Ohm: Ohm fue un físico alemán ( ) que establece que, para los conductores metálicos, la resistencia es constante para cualquier diferencia de potencial (voltaje) aplicada: o sea:... constante I I I V V R constante I Los medios conductores que cumplen con la ley de Ohm se llaman medios óhmicos o medios lineales. Existen otros medios conductores en los que la resistencia depende del voltaje aplicado: termistores, válvulas de vacío, semiconductores, transistores, etc. Resistencia eléctrica: La constante R recibe el nombre de resistencia eléctrica del conductor y se mide en ohmios (O). De acuerdo con la ley de Ohm, un conductor
3 tiene una resistencia de 1 O cuando al establecer entre sus extremos una diferencia de potencial (ddp) de 1 V, circula por él una corriente de 1 A. La dificultad que encuentran las cargas para moverse es distinta en cada metal. Depende de factores como el tipo de red y el tamaño de los átomos del metal. Esta dificultad característica de cada conductor se denomina resistividad o resistencia específica del material (?). Permite calcular fácilmente el valor de la resistencia de los conductores, cuando estos tienen forma de hilo. La relación de la resistividad con la resistencia es: l R S Siendo l la longitud del conductor y S el área de su sección. La unidad de medida de la resistividad en el sistema internacional es el O i m. Los valores de resistividad son muy diversos. Para los conductores su valor es pequeño, mientras que para los aislantes su valor es enorme. La resistividad y la resistencia dependen de la temperatura: generalmente la resistencia de los conductores aumenta con la temperatura. Valores de la resistividad para distintos conductores y aislantes a una determinada temperatura, igual para todos ellos: RESISTIVIDAD DE ALGUNOS CONDUCTORES Y AISLANTES Material Resistividad (en O i m) Plata 1,6 i 10-8 Cobre 1,7 i 10-8 Aluminio 2,8 i 10-8 Hierro y acero 10-7 Nicromo 10-6 Vidrio Madera 1,08 i Ámbar 5 i Generadores y receptores eléctricos. Generadores eléctricos: Para producir una corriente eléctrica en un hilo conductor se necesita establecer entre sus extremos una diferencia de potencial (ddp). A medida que circulan las cargas por el conductor se va reduciendo la diferencia de
4 potencial, hasta llegar a anularse. En este momento se ha alcanzado el equilibrio electrostático. Si lo que se quiere es mantener de forma indefinida la corriente, hay que impedir que la diferencia de potencial se anule; para ello se utilizan unos dispositivos denominados generadores de corriente eléctrica. Los generadores eléctricos son aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina que convierte la energía mecánica en eléctrica se le denomina generador, alternador o dínamo. Fuerza electromotriz: Los generadores se caracterizan por la llamada fuerza electromotriz (f.e.m.),?, que se define como la energía eléctrica que el generador comunica a la unidad de carga que circula a su través. Es decir: o: energía E c arg a q T q En función de la intensidad de corriente que circula, supuesta constante, tendremos la ecuación de la energía: Energía ( E ) q I La potencia del generador será: E P t t Fuerza contraelectromotriz: La fuerza contraelectromotriz se da en los receptores eléctricos (resistencia y motores) y es la energía eléctrica que cede la unidad de carga eléctrica cuando circula a través del mismo: T T q I Los receptores eléctricos tienen un rendimiento que se halla con el cociente entre la energía útil obtenida y la energía total empleada en su obtención. En el caso de los motores: E. útil E. total r
5 Efecto Joule: La energía eléctrica que el generador comunica a las cargas se transforma en energía mecánica si en el circuito hay un motor eléctrico; en energía química si hay una batería cargándose; etc. Si hay una resistencia, la energía se transforma en calor. La explicación está en los choques que experimentan las cargas eléctricas y que hacen que la energía eléctrica se transforme en calor, aumentando la temperatura de la resistencia. Este hecho se conoce como efecto Joule y representa la aplicación del principio de conservación de la energía a la transformación de energía eléctrica en calor. Si consideramos la equivalencia calor trabajo (1J = 0,24 cal), el calor desprendido en una resistencia R por la que circula una corriente I durante un tiempo t será: ( Q R R donde todas las magnitudes vendrán en unidades del sistema internacional. Si quisiéramos que Q estuviera en calorías (cal) se aplicaría lo siguiente: ( Q 0,24 R Potencia: La potencia es la energía generada o consumida por unidad de tiempo: T ( P ( R t R Todos los dispositivos eléctricos domésticos, desde una simple bombilla hasta un televisor, indican la potencia que consumen. Como se conoce habitualmente la tensión a la que se conectan, es fácil calcular la intensidad que circula por ellos o la resistencia que poseen. La unidad de medida en el sistema internacional de la potencia es el vatio (W). 5. Asociación de resistencias. Resistencias en serie: Dos resistencias se encuentran en serie en un circuito cuando aparece una a continuación de otra, unidas por un solo hilo conductor. Se cumple que: a) La intensidad de corriente que circula por ellas es la misma y coincide con la que circula por el hilo conductor que las une. b) La diferencia de potencial (ddp) entre los extremos de la asociación es la suma de las ddp entre los extremos de cada resistencia. En un circuito eléctrico, una asociación de resistencias en serie se puede sustituir por una resistencia equivalente a la suma de las mismas: R. equivalent e R
6 Resistencias en paralelo o derivación: Dos resistencias se encuentran en paralelo o derivación cuando se sitúan en dos conductores distintos que proceden de un punto común. En este caso: a) La diferencia de potencial (ddp) entre los extremos de ambas es la misma y coincide con la que existe en los extremos de la asociación. b) La intensidad de corriente en el circuito es la suma de las intensidades que circulan por cada una de las ramas de la asociación. En una asociación de resistencias en paralelo, la inversa de la resistencia equivalente es 1 1 R. equivalente R igual a la suma de las inversas de las resistencias. Asociaciones mixtas: Los circuitos suelen tener asociaciones mixtas de resistencias, es decir, resistencias que se encuentran a la vez en serie con unas resistencias y en paralelo con otras. Para calcular la resistencia equivalente en estos casos hay que calcular primero, la equivalente a las que se encuentran en paralelo y terminar el procedimiento considerando las resistencias equivalentes calculadas antes como resistencias situadas en serie con el resto. 6. Redes eléctricas. Leyes de Kirchhoff. Se llama red eléctrica a un conjunto de elementos unidos por conductores, tal que por cada elemento pasa una determinada corriente eléctrica. En toda red eléctrica se pueden distinguir los nudos (punto de la red donde concurren tres o más conductores), las ramas (parte de la red comprendida entre dos nudos consecutivos) y las mallas (parte cerrada de la red tal que, partiendo de un nudo, se puede regresar a él sin pasar dos veces por la misma rama). Para calcular la corriente que circula por cada elemento de la red se utilizan las reglas o leyes de Kirchhoff: - Primera ley de Kirchhoff. La suma algebraica de las corrientes que concurren en un nudo es siempre nula. Es decir: 0 Esta ley es una consecuencia del principio de conservación de la carga eléctrica en un circuito en régimen estacionario, y también podemos expresarla así: las corrientes que llegan a un nudo son iguales a las que salen de él. - Segunda ley de Kirchhoff. En una malla se cumple que la suma algebraica de las fuerzas electromotrices es igual a la suma algebraica de los productos de las resistencias por la corriente que circula por cada rama que compone la malla. Es decir: R Las leyes de Kirchhoff son el método más general que existe para la resolución de circuitos, de modo que se pueden aplicar tanto a los circuitos sencillos como a los más complejos.
7
ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO
ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO 2. ELEMENTOS DE UN CIRCUITO 3. MAGNITUDES ELÉCTRICAS 4. LEY DE OHM 5. ASOCIACIÓN DE ELEMENTOS 6. TIPOS DE CORRIENTE 7. ENERGÍA ELÉCTRICA. POTENCIA 8. EFECTOS DE LA
1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una
1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una sección transversal cualquiera del conductor cada minuto?
Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico
Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico 1. Objetivos Comprobación experimental de la ley de Ohm a través de la determinación del valor de una resistencia comercial.
IES RIBERA DE CASTILLA LA CORRIENTE ELÉCTRICA
UNIDAD 9 LA CORRIENTE ELÉCTRICA La intensidad de la corriente. Corriente eléctrica. Conductores. Tipos. Intensidad. Unidades. Sentido de la corriente. Corriente continua y alterna. Resistencia. Resistencia
B Acumuladores de corriente eléctrica
1 B Acumuladores de corriente eléctrica Condensadores Distintos tipos de condensadores. 2 3 Configuraciones para acoplar condensadores. Pilas y baterías a) Características de las pilas y baterías: Resistencia
CONDUCTORES Y AISLANTES CORRIENTE ELÉCTRICA ELEMENTOS BÁSICOS DE UN CIRCUITO SENTIDO DE LA CORRIENTE ELÉCTRICA TECNOLOGÍAS 4ºE.S.O.
CONTENIDOS. Pag 1 de 1 Nombre y Apellidos: Grupo: Nº de lista: CONDUCTORES Y AISLANTES Inicialmente los átomos tienen carga eléctrica neutra, es decir. Nº de protones = Nº de electrones. Si a un átomo
1. Los conductores eléctricos. Las resistencias fijas y variables.
1. Los conductores eléctricos. Las resistencias fijas y variables. La corriente eléctrica continua (DC), se puede explicar como el flujo de electrones por un conductor. Para definir este transporte, se
ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF.
ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF. QUÉ ES? La electricidad se manifiesta por la presencia de cargas eléctricas ( negativas o positivas) tanto si están
Corriente eléctrica. Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla
Física Grado en ngeniería de Organización ndustrial Primer Curso Joaquín Bernal Méndez Curso 2011-2012 Departamento de Física Aplicada Universidad de Sevilla Índice ntroducción 2/39 ntroducción Existe
ELEMENTOS DE MÁQUINAS Y SISTEMAS
ELEMENTOS DE MÁQUINAS Y SISTEMAS 1.- Circuitos Se denomina circuito eléctrico a un conjunto de elementos conectados entre sí que permiten el paso de la corriente eléctrica, transportando la energía desde
LA CORRIENTE ELÉCTRICA
LA CORRIENTE ELÉCTRICA Átomo: protones, electrones y neutrones. Carga eléctrica. Materiales conductores y aislantes. Corriente eléctrica. Electricidad estática. La materia está formada por átomos, constituidos
EL CIRCUITO ELÉCTRICO
EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO
CORRIENTE ELECTRICA. Diferencia de Potencial Eléctrico. Conductores y aislantes
CORRENTE ELECTRCA Diferencia de Potencial Eléctrico. Un objeto de masa m siempre caerá desde mayor altura hasta menor altura. Donde está a mayor altura el objeto posee mayor energía potencial gravitatoria
6. Circuitos eléctricos con resistencias en serie y en paralelo
UNIDAD 8: ENERGÍA Y ELECTRICIDAD. Concepto de electricidad. Propiedades eléctricas de la materia 2. Interacción entre cargas 3. Corriente eléctrica 4. Circuitos eléctricos 5. Magnitudes de la corriente
Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor.
Corriente Eléctrica Es el flujo de cargas s (electrones, protones, iones) a través de un medio conductor. Los metales están constituidos por una red cristalina de iones positivos. Moviéndose a través de
ELECTRICIDAD. Tecnología 1º E. S. O. 1
ELECTRICIDAD Tecnología 1º E. S. O. 1 EL ÁTOMO El átomo es la unidad más pequeña de la que esta constituida la materia. Está formado por un núcleo y una corteza. El núcleo lo componen dos tipos de partículas,
ELECTRICIDAD ELECTRONES. MATERIALES CONDUCTORES Y AISLANTES.
ELECTRICIDAD ELECTRONES. MATERIALES CONDUCTORES Y AISLANTES. Los fenómenos eléctricos son provocados por unas partículas extremadamente pequeñas denominadas electrones. Estas partículas forman parte de
MÉTODOS DE RESOLUCIÓN DE CIRCUITOS
MÉTODOS DE RESOLUCIÓN DE CIRCUITOS Un circuito eléctrico está formado por elementos activos (generadores) y pasivos (resistencias, condensadores, y bobinas). En muchas ocasiones estos elementos forman
TEMA 3. INICIACIÓN A LA ELECTRICIDAD.
TEMA 3. INICIACIÓN A LA ELECTRICIDAD. 1. INTRODUCCIÓN. Hacia el año 600 A.C. Thales de Mileto descubrió que frotando una barra de ámbar con un paño de seda, lograba atraer pequeños objetos. A este fenómeno
UNIDAD 4: CIRCUITOS ELÉCTRICOS Y ELECTRÓNICOS BLOQUE 3: MÁQUINAS Y SISTEMAS TECNOLOGÍA INDUSTRIAL I
UNIDAD 4: CIRCUITOS ELÉCTRICOS Y ELECTRÓNICOS BLOQUE 3: MÁQUINAS Y SISTEMAS TECNOLOGÍA INDUSTRIAL I ESQUEMA DE LA UNIDAD: 1. CIRCUITOS ELÉCTRICOS 2. ELEMENTOS DE UN CIRCUITO 2.1 GENERADORES Y ACUMULADORES
DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO
DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO CAMPO ELÉCTRICO El espacio que rodea a un objeto cargado se altera en presencia de la carga. Podemos postular la existencia
9 La corriente eléctrica
Solucionario 9 La corriente eléctrica EJERCICIOS PROPUESTOS 9. Identifica qué tipo de corriente (continua o alterna) circula por los siguientes aparatos y dispositivos: a) Una linterna de pilas. b) Una
TEMA ELECTRICIDAD 3º ESO TECNOLOGÍA
3º ESO Tecnologías Tema Electricidad página 1 de 6 TEMA ELECTRICIDAD 3º ESO TECNOLOGÍA 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3 3.1.Circuito EN SERIE...3 3.2.Circuito EN PARALELO...4
Tema 3. Circuitos eléctricos
Víctor M. Acosta Guerrero José Antonio Zambrano García Departamento de Tecnología I.E.S. Maestro Juan Calero Tema 2. Circuitos eléctricos. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar
CIRCUITOS ELÉCTRICOS TECNOLOGÍA
1. COMPONENTES DE UN CIRCUITO Los circuitos eléctricos son sistemas por los que circula una corriente eléctrica. Un circuito eléctrico está compuesto por los siguientes elementos: Corriente Eléctrica e
ÍNDICE ÍNDICE 1. ELEMENTOS DE UN CIRCUITO ELÉCTRICO. 1. Elementos de un circuito eléctrico. 1. Elementos de un circuito eléctrico
ÍNDICE 2 1. ELEMENTOS DE UN CIRCUITO ELÉCTRICO 1.1 Qué es la corriente eléctrica? 1.2 Qué tipos de corriente hay? alimentación? 1.4 Qué es un circuito eléctrico? eléctrico? 1.6 Con qué debemos tener cuidado?
ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO
ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO QUÉ ES? La electricidad se manifiesta por la presencia de cargas eléctricas ( negativas o positivas) tanto si están estáticas
ELECTRICIDAD. Tecnología 3º E. S. O. 1
ELECTRICIDAD Tecnología 3º E. S. O. 1 EL ÁTOMO El átomo es la unidad más pequeña de la que esta constituida la materia. Está formado por un núcleo y una corteza. El núcleo lo componen dos tipos de partículas,
ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:
(Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial
Unidad 12. Circuitos eléctricos de corriente continua
Unidad 12. Circuitos eléctricos de corriente continua 1. El circuito eléctrico 2. Magnitudes eléctricas 3. Elementos de un circuito 4. Resolución de problemas complejos 5. Distribución de la energía eléctrica
Tema 4: Electrocinética
Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías
Corriente Eléctrica. La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una
Capitulo 27 Corriente y Resistencia Corriente Eléctrica La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una región del espacio En el SI, la corriente se mide en ampere
Es la cantidad de electricidad (electrones) que recorre un circuito eléctrico en una unidad. Q t I =
3º E.S.O. UNIDAD DIDÁCTICA: EL CIRCUITO ELÉCTRICO Intensidad de corriente eléctrica (medida de una corriente eléctrica) Es la cantidad de electricidad (electrones) que recorre un circuito eléctrico en
ELECTRICIDAD Y MAGNETISMO
ELECTRICIDAD Y MAGNETISMO 1. LA ELECTRICIDAD. La electricidad se manifiesta en las tormentas en forma de rayos, en nuestro sistema nervioso en forma de impulsos eléctricos y es usada por el ser humano
TEMA 5. Electricidad
9º CCNN Departamento de Ciencias Naturales Curso 2012-13 1. Las cargas eléctricas TEMA 5. Electricidad La materia es eléctricamente neutra, sin embargo, un cuerpo se dice que está electrizado cuando gana
GUIA TERCER PARCIAL FÍSICA III GUÍA TERCER PARCIAL 1
GUIA TERCER PARCIAL 1. Qué es electrodinámica? Es la parte de la física y la electricidad que estudia las cargas eléctricas en movimiento y los fenómenos originados por este. 2. Qué son las fuentes de
Cargas eléctricas. Toda materia está formada por partículas como éstas llamadas átomos. Un átomo a su vez está compuesto por pequeños elementos:
Electricidad. Corriente eléctrica Cargas eléctricas Toda materia está formada por partículas como éstas llamadas átomos. Un átomo a su vez está compuesto por pequeños elementos: Protón. Tiene carga eléctrica
Introducción. Condensadores
. Introducción Un condensador es un dispositivo que sirve para almacenar carga y energía. Está constituido por dos conductores aislados uno de otro, que poseen cargas iguales y opuestas. Los condensadores
CORRIENTE CONTINUA. Es una propiedad de la materia. Puede ser positiva o negativa según el cuerpo tenga defecto o exceso de electrones.
CORRENTE CONTNU CONTENDOS. 1.- Carga eléctrica. Conservación. 2.- Corriente continua. Diferencia de potencial. ntensidad. 3.- Ley de Ohm. 4.- Fuerza electromotriz suministrada por un generador. 5.- Fuerza
ELEMENTOS DE MÁQUINAS Y SISTEMAS
ELEMENTOS DE MÁQUINAS Y SISTEMAS 1.- Circuitos 1.1.- Ley de Ohm 1.2.- Corriente eléctrica 1.2.1.- Corriente continua 1.2.1.1.- Asociación de resistencias 1.2.1.2.- Resolución de circuitos usando el método
Circuitos Eléctricos TPR 3º ESO
TEMA 1 CORRIENTE ELÉCTRICA INTRODUCCIÓN CIRCUITO ELÉCTRICO MAGNITUDES ELÉCTRICAS LEY DE OHM CORRIENTE ELÉCTRICA POTENCIA Y ENERGÍA 1._ INTRODUCCIÓN La materia está formada por átomos y cada uno de estos
Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua
Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO
ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1
ELECTROESTÁTICA 1. Naturaleza eléctrica. 2. Interacción electroestática. 3. Campo eléctrico. 4. Energía potencial eléctrica. 5. Potencial eléctrico. 6. Corriente eléctrica continua. 7. Ley de Ohm. 8. Asociación
LA CORRIENTE ELÉCTRICA
LA CORRIENTE ELÉCTRICA 1- MOVIMIENTO DE CARGAS LIBRES EN UN CAMPO ELÉCTRICO La corriente eléctrica consiste en el desplazamiento de cargas libres. Hay distintas sustancias capaces de conducir la corriente
Tema 1. Circuitos eléctricos de corriente continua.
Tema 1. Circuitos eléctricos de corriente continua. Se simplificarán las ecuaciones del electromagnetismo aplicadas a dispositivos eléctricos que nos interesarán para generar, almacenar, transportar o
TEMA 1 CORRIENTE ALTERNA. GENERALIDADES
TEMA 1 CORRIENTE ALTERNA. GENERALIDADES TEMA 1. CORRIENTE ALTERNA. GENERALIDADES 1.1 Introducción En industrias, viviendas, explotaciones agrarias, etc., se requiere energía eléctrica para: a) Obtener
UD1. CONCEPTOS BÁSICOS DE ELECTRICIDAD
UD1. CONCEPTOS BÁSICOS DE ELECTRICIDAD Centro CFP/ES CONCEPTO DE ENERGÍA La capacidad de desarrollar trabajo EA= EU + EP N (Rendimiento) = EU / EA 1 ORIGEN DE LA ELECTRICIDAD Los electrones giran alrededor
Es la cantidad de electricidad (electrones) que recorre un circuito eléctrico en una unidad. Q t I =
3º E.S.O. UNIDAD DIDÁCTICA: EL CIRCUITO ELÉCTRICO Intensidad de corriente eléctrica (medida de una corriente eléctrica) Es la cantidad de electricidad (electrones) que recorre un circuito eléctrico en
Capítulo 27 Corriente y Resistencia
Capítulo 27 Corriente y Resistencia Es como movimiento a Través de un Fluido La fuerza original (en este ejemplo, gravedad) causa movimiento pero eventualmente es cancelada por la fuerza de fricción. Cuando
Corriente continua (Repaso)
Fundamentos de Tecnología Eléctrica (º ITIM) Tema 0 Corriente continua (epaso) Damián Laloux, 004 Índice Magnitudes esenciales Tensión, corriente, energía y potencia Leyes fundamentales Ley de Ohm, ley
TEMA 5. CORRIENTE ELÉCTRICA CONTINUA
TEMA 5. CORRIENTE ELÉCTRICA CONTINUA 1. Corriente eléctrica continua (c.c.). 2. Magnitudes características de la corriente continua: 2.1 Diferencia de potencial (ddp), tensión o voltaje. 2.2 Fuerza electromotriz
UD1. CONCEPTOS BÁSICOS DE ELECTRICIDAD
UD1. CONCEPTOS BÁSICOS DE ELECTRICIDAD Centro CFP/ES CONCEPTO DE ENERGÍA La capacidad de desarrollar trabajo EA= EU + EP N (Rendimiento) = EU / EA 1 ORIGEN DE LA ELECTRICIDAD Los electrones giran alrededor
Podemos definir la materia como todo aquello que ocupa un lugar en el espacio.
Podemos definir la materia como todo aquello que ocupa un lugar en el espacio. MATERIA está formada por moléculas, las cuales son la parte más pequeña que poseen todas las propiedades físicas y químicas
Cuando la carga fluye en forma continua por el circuito, la potencia consumida se obtiene mediante
POTENCIA ELÉCTRICA Siempre que una carga eléctrica se mueve en un circuito a través de un conductor realiza un trabajo, mismo que se consume por lo general en calentar el circuito o hacer girar un motor.
El circuito eléctrico es el recorrido preestablecido por el que se desplazan las cargas eléctricas.
EL CIRCUITO ELÉCTRICO 1.- El circuito eléctrico elemental. El circuito eléctrico es el recorrido preestablecido por el que se desplazan las cargas eléctricas. Circuito elemental Las cargas eléctricas que
R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios.
I FUNDAMENTO TEÓRICO. LEY DE OHM Cuando aplicamos una tensión a un conductor, circula por él una intensidad, de tal forma que si multiplicamos (o dividimos) la tensión aplicada, la intensidad también se
CURSO 4º ESO CENTRO I.E.S. ALONSO DE COVARRUBIAS MATERIA: TECNOLOGÍA. UNIDAD DIDÁCTICA Nº 0 (Tema 0) REPASO DE ELECTRICIDAD
TECNOLOGÍA CUSO 4º ESO CENTO.E.S. ALONSO DE COAUBAS MATEA: TECNOLOGÍA UNDAD DDÁCTCA Nº 0 (Tema 0) EPASO DE ELECTCDAD TECNOLOGÍA CUSO: 4º ESO CENTO:.E.S. ALONSO DE COAUBAS ÁEA DE: TECNOLOGÍA. UNDAD DDÁCTCA:
Electricidad. Electricidad. Tecnología
Electricidad Tecnología LA CARGA ELÉCTRICA Oxford University Press España, S. A. Tecnología 2 Oxford University Press España, S. A. Tecnología 3 Oxford University Press España, S. A. Tecnología 4 Oxford
Problemas de ELECTRICIDAD
Problemas de ELECTRICIDAD. Cargas eléctricas. Cálculo de I, N y t. Aplicación de I = N / t 1. Calcula qué intensidad de corriente ha circulado por una lámpara que ha estado encendida durante 3 segundos,
Física II CF-342 Ingeniería Plan Común.
Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física
Clasificación de Electrolitos
8/11/14 Conductancia eléctrica Lalboratorio de Química Física I QUIM 451 http://www.usm.maine.edu/chy/manuals/114/text/conduct.html Ileana Nieves Martínez agosto 14 1 Clasificación de Electrolitos Electrolitos
UIDAD 6: CIRCUITOS ELÉCTRICOS
UIDAD 6: CIRCUITOS ELÉCTRICOS 1. Corriente eléctrica 2. Generadores de corriente eléctrica 3. Circuito eléctrico 4. Magnitudes eléctricas 5. Medida de magnitudes eléctricas 6. Ley de Ohm 7. Asociación
Unidad didáctica ELECTRICIDAD 2º ESO
Unidad didáctica ELECTRICIDAD 2º ESO TIPOS DE CONEXIONES conexión mixta EFECTOS DE LA CORRIENTE ELÉCTRICA SIMBOLOGÍA NORMALIZADA A la hora de dibujar los circuitos eléctricos en un plano, no se utiliza
5.3 La energía en los circuitos eléctricos.
CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones
ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO
ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala
CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS
LEYES DE LOS CIRCUITOS ELECTRICOS CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS Con estas leyes podemos hallar las corrientes y voltajes en cada una de las resistencias de los diferentes circuitos de CD.
Conceptos de electricidad. Conrado Perea
Conceptos de electricidad Conrado Perea Conceptos de electricidad. La electricidad tiene su origen en el movimiento de una pequeña partícula llamada electrón que forma parte del átomo. El átomo es la porción
Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra
Unidad Didáctica 1: Corriente Continua. 1.- Naturaleza de la electricidad El átomo es la parte más pequeña que puede existir de un cuerpo simple o elemento. Está constituido por un núcleo y una corteza.
ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:
(Ejercicios resueltos) Alumno: Curso: Año: Magnitudes eléctricas básicas. La Ley de Ohm Las magnitudes fundamentales de los circuitos eléctricos son: Tensión o voltaje: Indica la diferencia de energía
Curso de electromagnetismo Test No 3. Circuitos de corriente continua
Curso de electromagnetismo Test No 3. Circuitos de corriente continua Este test contiene problemas sobre los siguientes temas: 1. Resistencia de un conductor 2. Combinación de resistencias 3. Ley de Ohm
La anterior ecuación se puede también expresar de las siguientes formas:
1. LEY DE OHM GUÍA 1: LEYES ELÉCTRICAS El circuito eléctrico es parecido a un circuito hidráulico ya que puede considerarse como el camino que recorre la corriente (el agua) desde un generador de tensión
TEMA 1 FUNDAMENTOS DE ELECTRICIDAD Y MAGNITUDES ELECTRICAS LA CARGA ELECTRICA
LA CARGA ELECTRICA Carga eléctrica o cantidad de electricidad de un cuerpo es el exceso o defecto de electrones. UNIDAD DE CARGA ELÉCTRICA La unidad natural de carga eléctrica es la carga del electrón
Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito.
1 Leyes de Kirchhoff Objetivo Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito. Material 2 Amperímetro Osciloscopio Fluke Generador de onda Computador Fuente
A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia.
DEPARTAMENTO DE ORIENTACIÓN: TECNOLOGÍA 4E_F Primer trimestre Curso: 2014/2015 TEMA II: ELECTRICIDAD Y ELECTRÓNICA La electrónica forma parte de nuestra vida cotidiana.- Los electrodomésticos, los medios
REFUERZO TECNOLOGÍA DE 4º ESO
REFUERZO TECNOLOGÍA DE 4º ESO Los átomos están formados por un núcleo central donde se encuentran los protones (+) y los neutrones (sin carga) y una órbitas alrededor de éste dondesesitúanloselectrones
Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA
Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones en serie y en paralelo. Comprobar experimentalmente las
3ºE.S.O. 4: ELECTRICIDAD
Tecnologías 3ºE.S.O. Tema 4: ELECTRICIDAD 1. Qué es un átomo? Haz un dibujo de éste, señala sus elementos e indica la carga de cada uno de ellos. PROTÓN (carga POSITIVA) NEUTRÓN (SIN carga) ELECTRÓN (carga
PROBLEMAS Y EJERCICIOS
24 PROBLEMAS Y EJERCICIOS 1.- Una corriente permanente de 10 A de intensidad circula por un conductor durante un tiempo de un minuto. Hallar la carga desplazada. (Sol: 600 C) 2.- Calcula la resistencia
CURSO ELEMENTAL DE ELECTRICIDAD PROFESSOR: JUAN PLAZA L
CURSO ELEMENTAL DE ELECTRICIDAD PROFESSOR: JUAN PLAZA L VALORES DE LA C.A. Valor máximo (Vmax): es el valor de cresta o pico,. Valor instantáneo (Vi): Es el valor que toma la corriente en un momento determinado.
Fecha de Entrega: 20/8/2013. Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56. Índice
Gabinete Tema 1: Definiciones Básicas de Corriente Fecha de Entrega: 20/8/2013 Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56 Índice 1 Definiciones Básicas...
EJERCICIOS DE ELECTRICIDAD
EJERCICIOS DE ELECTRICIDAD Intensidad por un conductor 1. Qué intensidad de corriente ha atravesado una lámpara por la que han pasado 280.000 electrones en 10 segundos? 2. Cuántos electrones han atravesado
EL ÁTOMO. Quiénes componen el átomo? El ion. Circulación de la corriente eléctrica
EL ÁTOMO Quiénes componen el átomo? El ion Circulación de la corriente eléctrica EL CIRCUITO ELÉCTRICO (1) Por qué se enciende la bombilla? Definición de circuito eléctrico Corriente eléctrica EL CIRCUITO
Unidad. Circuitos eléctricos 5 de corriente continua
Unidad 5 Circuitos eléctricos d i t ti 5 de corriente continua 15.1. 1 El circuito eléctrico A Concepto de energía eléctrica Composición de un átomo. Cationes y aniones. 1 Diferentes métodos para producir
RESISTENCIAS EN PARALELO
INDICE RESISTENCIA LEY DE OHM TEMPERATURA POTENCIA ENERGIA LEY DE JOULE RESISTENCIAS EN SERIE RESISTENCIAS EN PARALELO CIRCUITOS MIXTOS Familia electricidad /electrónica C:problema 1 RESISTENCIA R L s
UNIDAD 5.- LA ELECTRICIDAD
UNIDAD 5.- LA ELECTRICIDAD 5.1. CONCEPTOS GENERALES. 5.2. CORRIENTE ELÉCTRICA. 5.3. CIRCUITO ELÉCTRICO: SIMBOLOGÍA 5.4. MAGNITUDES ELÉCTRICAS: LA LEY DE OMH 5.5. ASOCIACIÓN DE RECEPTORES 5.1. CONCEPTOS
CIRCUITOS ELÉCTRICOS
CIRCUITOS ELÉCTRICOS 1. LA CORRIENTE ELÉCTRICA. 1.1. Estructura del átomo. Todos los materiales están formados por átomos. En el centro del átomo (el núcleo) hay dos tipos de partículas: los protones (partículas
GUIA DIDACTICA DE TECNOLOGIA N º5 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO PRIMERO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO PRIMERO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
La corriente eléctrica. Juan Ángel Sans Tresserras
La corriente eléctrica Juan Ángel Sans Tresserras E-mail: [email protected] Índice Corriente eléctrica y densidad de corriente Resistencia y ley de Ohm Asociación de resistencias Energía, potencia y ley
COMPONENTES ELECTRÓNICOS BÁSICOS
BÁSICOS 1.- INTRODUCCIÓN La electrónica ocupa un lugar muy importante en la sociedad actual, forma parte de la industria, del hogar, de la medicina, etc. Se puede definir como la ciencia que estudia los
Es la circulación o flujo ordenado de electrones a través de un alambre conductor CORRIENTE ELÉCTRICA - - SIN CORRIENTE CON CORRIENTE
CORRIENTE ELÉCTRICA Es la circulación o flujo ordenado de electrones a través de un alambre conductor - - - - - SIN CORRIENTE - - - - - CON CORRIENTE CÓMO DETERMINAR LA INTENSIDAD DEL FLUJO DE VEHICULOS
TEMA 10 Corriente eléctrica y magnetismo
ases Físicas y Químicas del Medio Ambiente Corriente eléctrica Alambre metálico TEMA 10 Corriente eléctrica y magnetismo iones positivos En un metal las cargas negativas se mueven libremente alrededor
ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO
ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO TEMARIO A. ELECTRICIDAD 1. CARGAS ELÉCTRICAS Y LEY DE COULOMB. I Reseña histórica de la electricidad 2. Concepto de carga eléctrica. 3. Tipos de cargas.
* Energía en circuitos eléctricos. Ley de Joule.
Tema 2: Electrocinética * Intensidad de corriente eléctrica. * esistencia. Ley de Ohm. * Energía en circuitos eléctricos. Ley de Joule. * Generadores y fem. * Leyes de Kirchhoff. Aplicaciones - Conexiones
LOS FENÓMENOS ELÉCTRICOS
LOS FENÓMENOS ELÉCTRICOS 1. LOS FENÓMENOS ELÉCTRICOS. La materia está formada por átomos indivisibles El átomo contiene cargas positivas y negativas Ø El electrón es la partícula negativa del átomo Ø El
Capítulo II. Ecuaciones de los circuitos magnéticos
Capítulo II. Ecuaciones de los circuitos magnéticos 2.1. Intensidad de Campo magnético Los campos magnéticos son el mecanismo fundamental para convertir energía eléctrica de corriente alterna de un nivel
TEMA 1: CIRCUITOS ELÉCTRICOS
TEMA 1: CIRCUITOS ELÉCTRICOS 1.- CONCEPTOS FUNDAMENTALES 2.- LA LEY DE OHM 3.- TIPOS DE CIRCUITOS 3.1.- CIRCUITO SERIE 3.2.- CIRCUITO PARALELO 3.3.- CIRCUITO MIXTO 4.- INSTRUMENTOS DE MEDIDA 5.- POTENCIA
EJERCICIOS TEMA 12: CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA
EJERCICIOS TEMA 12: CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA 1. Qué cantidad de electrones habrán atravesado un cable si la intensidad ha sido de 5 A durante 30 minutos? I = Q = I. t = 5. 30. 60 = 9000
