Tema 4: Electrocinética
|
|
|
- Daniel Quintana Vera
- hace 9 años
- Vistas:
Transcripción
1 Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías 4.5 Leyes de Kirchhoff 4.6 Circuito RC: carga y descarga de un condensador
2 4.1 Corriente eléctrica y densidad de corriente Consideramos un segmento de un hilo conductor que transporta una corriente. Q es la cantidad de carga que atraviesa un área A en un tiempo t La intensidad de la corriente es: Q t Unidad de corriente: 1 Ampere = 1 C/s Q q i n: densidad de partículas = número de partículas por unidad de volumen (la densidad de carga es =qn) Q i q nv vol q n A( v d t) donde v d es la velocidad media de desplazamiento de las cargas (<< que la velocidad instantánea media). q n Av A V vol d v d A( v d t)
3 Ejemplo Un cable de cobre tiene radio mm y transporta una corriente de 1 A. a) Calcular la carga de los electrones de 1 m de cable. Asumir que cada átomo aporta un electrón libre (densidad de masa m : 8.93 g/cm 3, masa molecular M= 63.5 g/mol, NA=6.02x10 23 atomos/mol) b) Calcular la velocidad media de desplazamiento de los electrones libres. c) Asumiendo el teorema de equi-partición de la energía (la energía cinética media de un electrón es 3k B T/2, k B =1.38 x10-23 J/K) calcular la velocidad media instantánea de los electrones libres a T=300K. Q e n AL e n Av Q / L m e 2 v 2 d 3k BT 2 n v d v M m v d N A 3k BT m e Q / L Q / L m/s 2 4 mm/s C/m
4 Densidad de corriente Av d Densidad de corriente = corriente por unidad de área (A/m 2 ) J vd A J Corriente (carga por unidad de tiempo) que atraviesa una superficie: es el flujo de la densidad de corriente a través de la superficie. J nˆ da v d J Densidad de corriente superficial (A/m): cuando las cargas se mueven sobre una superficie. K Cuando las cargas se mueven sobre una línea (un cable conductor con densidad de carga ): v d v d
5 Ecuación de continuidad y conservación de la carga Consideremos una superficie cerrada S que encierra a un volumen V J nˆ da J dv S V Como la carga se conserva, el flujo que carga que sale a través de la superficie tiene que ser igual a la disminución de la carga encerrada. d dq J dv dv dt dt V V Considerando un volumen fijo. J dv dv t V V Ecuación de continuidad: Como se cumple para todo V: J 0 representa la t conservación de la carga Forma integral de la conservación de la carga: dq J nˆ da dt S
6 4.2 Conductividad, resistividad, resistencia y Ley de Ohm En un conductor la densidad de corriente es proporcional a la fuerza eléctrica por unidad de carga (F/q=E) J E donde es la conductividad del material (no confundir con densidad de carga!) La resistividad del material es (no confundir con densidad de carga!) 1/ E J Ley de Ohm (forma diferencial): J E E J La conductividad (y la resistividad) de una sustancia dependen de la temperatura. Para un conductor perfecto: 0 Unidad: 1 ohm = 1 V/ 1 A Unidad de resistividad : m
7 J v Modelos de conducción en metales d qn v d en e v d n e es la densidad de electrones libres (número de electrones por unidad de volumen) y -e es la carga del electrón. E E J E en v e d En presencia del campo eléctrico, la ecuación del movimiento de un electrón es ee m e a ee v v 0 t me ee vd m es el tiempo medio entre colisiones e
8 E en v e d ee vd m e Modelo clásico de Drude me 2 e n e v es la distancia media que un La velocidad de desplazamiento media es: Según el modelo clásico, se relaciona con: El tamaño de los iones de la red cristalina (A) El número de iones por unidad de volumen (n ion ) m e e 2 n v e electrón recorre entre dos colisiones consecutivas 3k BT m 1 n ion A Como y <v> no dependen del campo eléctrico, la resistividad tampoco, lo que esta de acuerdo con la Ley de Ohm. Problema: debería variar con la temperatura, T porque v T Experimentalmente se observa que la resistividad aumenta linealmente con T. El modelo clásico falla porque los electrones no obedecen la mecánica clásica. v e
9 Ejemplo: tiempo de redistribución de la carga en el interior de un conductor óhmico J J E 0 t J t ( t) e 0 E ( / ) t e 0 t / t Tiempo de relajación: el tiempo que demora en disminuir la densidad de carga a un e -1 (36.7%) del valor inicial. Para el cobre: s, para la mica 15 hs
10 Ejemplo: conductor óhmico homogéneo que transporta una corriente estacionaria J E J 0 E 0 E J 0 t Conductor Corriente homogéneo estacionaria Consecuencias: 1) E 0 E E V 2) 0 E dl 0 0 En el interior del conductor la densidad de carga libre es cero (ya lo sabíamos para cargas en reposo). 0 V 2 V 0 En el interior del conductor podemos calcular el potencial resolviendo la ecuación de Laplace.
11 J E JA E V L V L A R V EL Resistencia J L L L R A A La resistencia depende de la temperatura / A L La resistencia del filamento de la bombilla (y de todos los metales) aumenta con T
12 Ejemplo Los dos cilindros están separados por un material dieléctrico de permitividad y resistividad y se mantienen a una diferencia de potencial V. El cilindro interior tiene carga por unidad de longitud. E 1 2r a r b, V s b a Edr J nˆ da s a dr ln 2 b r 2 E nˆ da donde S es una superficie cilíndrica que encierra el cilindro interior. E L 2rL L b a V 2 ln L b a V R R 2L ln b a
13 Conductores, semiconductores y aislantes / 0 0 T T 0 El carbono es normalmente utilizado para las resistencias de equipos electrónicos. Ejemplo: Un cable de nicrom tiene un radio de 0.65 mm. Qué longitud de cable se necesita para obtener una resistencia de 2? Resp: 2.65 m
14
15 Asociaciones de resistencias Serie Paralelo R eq R 1 R2 R3... Ejemplo: 1 1 R eq R1 1 1 R eq R i 1 R 2 1 R 3 eq... R R i
16 4.3 Potencia disipada y Ley de Joule Cuando por un conductor de resistividad circula corriente eléctrica, parte de la energía cinética de los electrones se transforma en calor debido a los choques que sufren los electrones con los átomos del material, lo que produce un aumento de la temperatura (efecto Joule). Cuando por el conductor circula una corriente estacionaria una parte de la energía se disipa en forma de calor debido a las colisiones de electrones libres con los átomos fijos. W U Q( V ) b Va V b V a V V a V b 0 U QV U Q V V t t 2 V P V R 2 R Potencia disipada en una resistencia
17 4.4 Fuerza electromotriz y baterías Para mantener una corriente estacionaria en un circuito real (que posee una cierta resistencia) se requiere un suministro de energía. Batería o pila: convierte energía química en energía eléctrica. Motor: convierte energía mecánica en energía eléctrica. Fuente de FEM (motor o batería): realiza trabajo sobre toda carga que pasa a través de la fuente, elevando su energía potencial. Una fuente de FEM ideal es un dispositivo que suministra energía eléctrica (fuente electromotriz) y que mantiene una diferencia de potencial E fem constante entre sus dos terminales. Para una fuente real: E fem
18 Fuente de fuerza electromotriz En el interior de la fuente las cargas se mueven de una región de bajo potencial a otra de mayor potencial. Cuando un elemento de carga Q atraviesa la fuente su energía aumenta en Q E fem La potencia suministrada por la fuente es P Q E t fem E fem Analogía mecánica:
19 Energía almacenada en una batería E fem R r r es la resistencia interna de la batería. Las baterías se suelen especificar en Ampere hora, lo que indica la carga total Q que pueden suministrar: E fem 1Ah (1C/s)(3600 s) 3600 C La energía total almacenada es: P E fem de almacenada dt dq dt dq dt E fem P E de fem almacenada dt es constante E Q( t) almacenada E fem La energía almacenada es la carga total multiplicada por la fem y es igual al trabajo total que puede realizar la batería.
20 Potencia suministrada por una batería E fem R r P E fem 2 R 2 E fem R r R dp dr 0 R r La potencia suministrada por la batería es máxima cuando la resistencia externa es igual a la interna.
21 4.5 Leyes de Kirchhoff Permiten calcular las corrientes y la diferencia de potencial en cada componente de un circuito en situación estacionaria (corrientes y voltajes constantes en el tiempo). Regla de las mallas E dl 0 La suma algebraica de las variaciones de potencial a lo largo de cualquier bucle o V i 0 i malla cerrada del circuito debe ser igual a cero. Regla de los nudos dq La carga no se acumula (ni se pierde) en ningún J nˆ da 0 dt punto del circuito, por lo que en cada nudo donde S puede dividirse la corriente, la suma de las i 0 corrientes que entran (negativas) debe ser igual a i la suma de las corrientes que salen (positivas).
22 Circuitos de una sola malla R 1 E1 E2 R R 2 3 r 1 r 2
23 Circuitos de múltiples mallas Calcular 1, 2 y la energía disipada en 3 s en la resistencia de 4. Resp: 1.5 A, 0.5 A y 27 J
24 Amperímetros, Voltímetros y Ohmímetros Se conectan en serie (amperímetro) y en paralelo (voltímetro) para poder medir la intensidad (que circula por un cable) y la diferencia de potencial (entre dos puntos) respectivamente. El amperímetro, el voltímetro y el ohmímetro contienen un galvanómetro: la lectura del galvanómetro es proporcional a la corriente que pasa por el galvanómetro. Suele consistir en una bobina de alambre situada en un campo magnético permanente (imán). Cuando una corriente circula por la bobina el campo magnético del imán ejerce un momento que hace girar la bobina y este giro permite medir la corriente.
25 Amperímetros, Voltímetros y Ohmímetros Amperímetro construido con un Galvanómetro (R p pequeña) Resistencia efectiva del amperímetro R p la corriente que circula por el circuito casi no se modifica. Voltímetro construido con un Galvanómetro (R s grande) Resistencia efectiva del voltímetro R s la corriente que circula por el voltímetro es muy pequeña. Ohmímetro: R s se elije tal que la aguja indica 0 cuando a y b están en cortocircuito
26 4.6 Circuito RC: carga y descarga de un condensador Descarga de un condensador dq dt Q Q e Q C dq Q 0 t / R dt RC Q RC dq dt Q 0 RC e Q e dq dt t e RC 0 t / t / 0 Constante de tiempo Q RC V0 R 0 Q0 / C R
27 Carga de un condensador E fem R dq dt Q C dq Q E fem R 0 dt C t RC Q CE fem 1 e dq dt E fem e R t /
Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)
Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento
La corriente eléctrica. Juan Ángel Sans Tresserras
La corriente eléctrica Juan Ángel Sans Tresserras E-mail: [email protected] Índice Corriente eléctrica y densidad de corriente Resistencia y ley de Ohm Asociación de resistencias Energía, potencia y ley
Ejercicios Propuestos Transporte eléctrico.
Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas
Corriente eléctrica. Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla
Física Grado en ngeniería de Organización ndustrial Primer Curso Joaquín Bernal Méndez Curso 2011-2012 Departamento de Física Aplicada Universidad de Sevilla Índice ntroducción 2/39 ntroducción Existe
E 1 =24 V E 2 =24 V R 1 =10 E 3 =24 V R 3 =10 R 2 =10 R 4 = V v. 50 V. R 1 =20 R=5 Ω R 2. Ejercicios corriente continua 1-66
Ejercicios corriente continua 1-66 1. En el circuito de la figura, se sabe que con k abierto, el amperímetro indica una lectura de 5 amperios. Hallar: a) Tensión U AB b) Potencia disipada en la resistencia
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
B Acumuladores de corriente eléctrica
1 B Acumuladores de corriente eléctrica Condensadores Distintos tipos de condensadores. 2 3 Configuraciones para acoplar condensadores. Pilas y baterías a) Características de las pilas y baterías: Resistencia
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE
FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO
FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3. ELECTRODINÁMIC FORMULRIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3.1) Para la calefacción de una habitación se utiliza
1. La corriente eléctrica.
1. La corriente eléctrica. Corriente eléctrica: En sentido amplio, todo movimiento de cargas eléctricas constituye una corriente eléctrica. Sin embargo, se suele denominar corriente eléctrica a un movimiento
Aplicar la ley de ohm, en el desarrollo de ejercicios..
Corriente eléctrica Aplicar la ley de ohm, en el desarrollo de ejercicios.. En términos simples, la electricidad corresponde al movimiento de cargas eléctricas. Las cargas que pueden moverse son los electrones
Electrotecnia. Tema 7. Problemas. R-R -N oro
R-R -N oro R 22 0^3 22000 (+-) 00 Ohmios Problema.- Calcular el valor de la resistencia equivalente de un cubo cuyas aristas poseen todas una resistencia de 20 Ω si se conecta a una tensión los dos vértices
Capítulo 16. Electricidad
Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra
Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua
Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011
Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2
2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,
Corriente eléctrica. Ley de Ohm.
Corriente eléctrica. Ley de Ohm. Un conductor en un campo eléctrico: condiciones dinámicas Un conductor en un campo eléctrico: condiciones dinámicas E 0 dentro del conductor. El ciclo continuo de electrones
(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008
(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 Desde ApuntesITBA nos hemos tomado el trabajo de escanear y recopilar este material, con el afán de brindarles a los futuros ingenieros del ITBA
Bases Físicas del Medio Ambiente. Corriente Eléctrica y Circuitos de Corriente Continua
Bases Físicas del Medio Ambiente Corriente Eléctrica y Circuitos de Corriente Continua Programa XII. COIENTE ELÉCTICA. CICUITOS DE COIENTE CONTINUA.(2h) Corriente. Ley de Ohm. esistencia. Conductores,
Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.
38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión
ELECTRODINAMICA. Nombre: Curso:
1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia
EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA
Averigua lo que sabes La corriente eléctrica es: La agitación de los átomos de un objeto. EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA El movimiento ordenado de
Ejemplo 2. Velocidad de arrastre en un alambre de cobre
Ejemplo 1 Cual es la velocidad de desplazamiento de los electrones en un alambre de cobre típico de radio 0,815mm que transporta una corriente de 1 A? Si admitimos que existe un electrón libre por átomo
3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2
3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una
Corriente continua : Condensadores y circuitos RC
Corriente continua : Condensadores y circuitos RC Marcos Flores Carrasco Departamento de Física [email protected] Tópicos introducción Condensadores Energia electroestática Capacidad Asociación
Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón
Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, [email protected] Mariana Ceraolo
-CEEIBS Clase 1 Principios de electricidad
Curso de Electricidad, Electrónica e Instrumentación Biomédica con Seguridad -CEEIBS- 2016 Clase 1 Principios de electricidad Franco Simini, Martıın Arregui. Núcleo de ingenierııa biomédica, Facultades
1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una
1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una sección transversal cualquiera del conductor cada minuto?
1. Los conductores eléctricos. Las resistencias fijas y variables.
1. Los conductores eléctricos. Las resistencias fijas y variables. La corriente eléctrica continua (DC), se puede explicar como el flujo de electrones por un conductor. Para definir este transporte, se
Unidad 4. Circuitos eléctricos
Unidad 4 Circuitos eléctricos ELEMENTOS DE FíSICA 115 4.1. Corriente eléctrica y unidades El movimiento de cargas eléctricas produce un fenómeno denominado corriente eléctrica. Si se considera una superficie
Resistencias en serie I =I 1 +I 2 = V R 1
Resistencias en serie Circuitos de Corriente Continua: La Dirección de la corriente no cambia con el tiempo. De la ley de Ohm:Entre los extremos de una resistencia R hay una diferencia de potencialv en
Corriente Eléctrica. La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una
Capitulo 27 Corriente y Resistencia Corriente Eléctrica La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una región del espacio En el SI, la corriente se mide en ampere
corriente) C Aquí q esta en Coulomb, t en segundos, I en Amperes (1A= 1 ) s
UNA CORRIENTE i de electricidad existe en cualquier región donde sean transportadas cargas eléctricas desde un punto a otro punto de esa región.supóngase que la carga se mueve a través de un alambre.si
Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS
Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS CORRIENTE ELÉCTRICA Y MOVIMIENTO DE CARGAS Problema 1: Una corriente de 3.6 A fluye a través de un faro de automóvil. Cuántos Culombios de carga fluyen
Corriente y Circuitos Eléctricos
Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando
Introducción. Se estudiarán diferentes combinaciones de resistores o resistencias, así como las reglas para determinar la resistencia equivalente
FEM y Circuitos DC Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Introducción Las baterías proporcionan un
ALUMNO-A: CURSO: 2º ESO
UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,
CIRCUITOS ELECTRICOS DE CORRIENTE CONTINUA (C.C.)
.E.S. ZOCO (Córdoba) º Bachillerato. eoría. Dpto. de ecnología CCUOS ELECCOS DE COENE CONNU (C.C.) CCUO ELÉCCO: Es el conjunto de receptores y de fuentes de energía eléctrica conectados mediante conductores
Tema 8. Inducción electromagnética
Tema 8. Inducción electromagnética Se producirá una corriente eléctrica inducida en un circuito, cuando varíe el flujo magnético que lo atraviesa. Los aparatos se alimentan con energía eléctrica, y necesitan
3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD
3º ESO Tecnología, programación y robótica Tema Electricidad página 1 de 12 3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3
EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.
EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de
CIRCUITOS ELÉCTRICOS
CIRCUITOS ELÉCTRICOS 1. LA CORRIENTE ELÉCTRICA. 1.1. Estructura del átomo. Todos los materiales están formados por átomos. En el centro del átomo (el núcleo) hay dos tipos de partículas: los protones (partículas
Circuitos Eléctricos Fundamentos
Electricidad 1 Circuitos Eléctricos Fundamentos http://www.areatecnologia.com/ electricidad/circuitoselectricos.html QUÉ ES UN CIRCUITO ELÉCTRICO? Un Circuito Eléctrico es un conjunto de elementos conectados
Ayudantía 1. FIZ0221 / FIS1533 Electricidad y magnetismo Profesor: S. Wallentowitz. Cargas eléctricas y fuerza de Coulomb
Ayudantía 1 Cargas eléctricas y fuerza de Coulomb Aviso: Siempre calcular primero con variables para obtener una formula. Después insertar numeros con unidades y correctamente combinar unidades. El resultado
Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM
Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental
TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA
TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA II.1 Ley de ohm II.2 Resistencia II.3 Potencia II.4 Energía II.5 Instrumentos de medida II.6 Acoplamiento serie II.7 Acoplamiento paralelo II.8 Acoplamiento mixto
Electrónica REPASO DE CONTENIDOS
Tema 1 Electrónica Conocerás las principales componentes de los circuitos eléctricos. Resistencias, condensadores, diodos y transistores. Sabrás cómo montar circuitos eléctricos simples. REPASO DE CONTENIDOS
TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos
TEMA 6 ELECTROACÚSTICA Sonorización industrial y de espectáculos Ley de Ohm La intensidad de corriente que circula en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional
EJERCICIOS RESUELTOS
Laboratorio Virtual de niciación al Estudio de la Electrocinética y Circuitos de Corriente EJECCOS ESUELTOS EJECCO La cantidad de carga q (en C) que pasa a través de una superficie de área cm varía con
Circuitos de corriente continua
Circuitos de corriente continua Capítulo 28 28 Física Sexta edición Paul Paul.. Tippens Circuitos simples; resistores en serie esistores en paralelo fem y diferencia de potencial terminal Medición n de
UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA JUSTIFICACION DEL CURSO
UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA FS0310 FISICA GENERAL II Créditos: 3 Correquisito: FS-311 Requisitos: FS-210, FS-211, MA-1002 ó MA-2210 Horas por semana: 4 JUSTIFICACION
EJERCICIOS TEMA 12: CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA
EJERCICIOS TEMA 12: CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA 1. Qué cantidad de electrones habrán atravesado un cable si la intensidad ha sido de 5 A durante 30 minutos? I = Q = I. t = 5. 30. 60 = 9000
Leyes de Kirchoff El puente de Wheatstone
Leyes de Kirchoff El puente de Wheatstone 30 de marzo de 2007 Objetivos Aprender el manejo de un multímetro para medir resistencias, voltajes, y corrientes. Comprobar las leyes de Kirchoff. Medir el valor
TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R
TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,
TEMA 13: CIRCUITOS ELÉCTRICOS
TEMA 13: CIRCUITOS ELÉCTRICOS 1 TEMA 13: CIRCUITOS ELÉCTRICOS 13.1.- QUÉ ES UN CIRCUITO ELÉCTRICO? Un circuito eléctrico es un conjunto de elementos conectados entre sí, por los que circula una corriente
IES RIBERA DE CASTILLA LA CORRIENTE ELÉCTRICA
UNIDAD 9 LA CORRIENTE ELÉCTRICA La intensidad de la corriente. Corriente eléctrica. Conductores. Tipos. Intensidad. Unidades. Sentido de la corriente. Corriente continua y alterna. Resistencia. Resistencia
Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin
Circuitos de Corriente Continua Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin 1. OBJETIVOS - Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones
Tema 1.- Análisis de circuitos de corriente continua
Tema 1.- nálisis de circuitos de corriente continua 1.1 Conceptos y leyes básicas de la conducción eléctrica Denominamos corriente eléctrica al fenómeno físico del movimiento de la carga eléctrica: cuando
de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.
1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de
Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra
Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad
Page 1 of 5 Departamento: Dpto Ing. Electrica y Electro Nombre del curso: ELECTROMAGNETISMO CON LABORATORIO Clave: 003880 Academia a la que pertenece: Electromagnetismo Requisitos: Ninguno Horas Clase:
ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4
5 CIRCUITOS ELÉCTRICOS. LEYES Y TEOREMAS Electrónica Analógica ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 1.1. CIRCUITO EQUIVALENTE... 5 1.. leyes de hirchhoff... 9 1.3. teorema de thevenin... 11 1.4. teorema
CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor.
CIRCUITOS DC Y AC 1. Fuentes de tensión y corriente ideales.- Una fuente ideal de voltaje se define como un generador de voltaje cuya salida V=V s es independiente de la corriente suministrada. El voltaje
Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:
FI120: FÍICA GENERAL II GUÍA#5: Conducción eléctrica y circuitos. Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Conocer y analizar la corriente
DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO
DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO CAMPO ELÉCTRICO El espacio que rodea a un objeto cargado se altera en presencia de la carga. Podemos postular la existencia
TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS
Tema. Dispositivos Electrónicos. Análisis de Circuitos. rev TEMA DSPOSTVOS ELECTONCOS ANALSS DE CCUTOS Profesores: Germán Villalba Madrid Miguel A. Zamora zquierdo Tema. Dispositivos Electrónicos. Análisis
Tema 1. Conceptos básicos
Tema 1. Conceptos básicos 1. Introducción... 1 2. Conceptos básicos... 2 2.1. Circuito eléctrico... 2 2.2. Teoría de Circuitos... 2 3. Magnitudes de un circuito: Tensión e intensidad... 3 3.1. Carga y
Estudio de fallas asimétricas
Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.
CORRIENTE CONTINUA. 1. Calcular el valor de R X para que, conocido el valor de R, la resistencia total entre los bornes. R 1 R x. R x (R x R) 2R x R E
Corriente contínua - CORRIENTE CONTINUA. Calcular el valor de R X para que, conocido el valor de R, la resistencia total entre los bornes A y B sea, precisamente, igual a R. Calcularemos, paso a paso,
FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo
Electricidad y magnetismo CORRIENTE ELÉCTRICA Diferencia de potencial, resistencia e intensidad La palabra corriente se utiliza para expresar movimiento de. La corriente de un río, por ejemplo, nos expresa
Campos Electromagnéticos Estáticos
Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria
CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA
CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA EL CIRCUITO ELÉCTRICO Definición: Es un conjunto de elementos empleados para la transmisión y control de la energía eléctrica desde el generador hasta el receptor
ASIGNATURA: FÍSICA III
UAP FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III CÓDIGO: 24-211, IV CICLO, 2HR. TEÓRICAS Y 2HR. PRÁCTICAS SESIÓN : 7 (SEMANA 7) TEMA: ELECTRODINÁMICA.
Capitulo 1: Introducción
Capitulo 1: Introducción 1.1 Sistema Internacional de Unidades Para cuantificar una observación o fenómeno es necesario hacer uso de las unidades de medidas que representa la magnitud de dicha unidad fisica.
APUNTES DE TECNOLOGÍA
APUNTES DE TECNOLOGÍA 4º E.S.O. TEMA 1 CIRCUITOS ELÉCTRICOS Alumno: Grupo: 4º 1 CORRIENTE ELÉCTRICA 1.-CIRCUITOS ELÉCTRICOS La corriente eléctrica es un flujo de electrones en el seno de un material conductor.
6. Circuitos eléctricos con resistencias en serie y en paralelo
UNIDAD 8: ENERGÍA Y ELECTRICIDAD. Concepto de electricidad. Propiedades eléctricas de la materia 2. Interacción entre cargas 3. Corriente eléctrica 4. Circuitos eléctricos 5. Magnitudes de la corriente
CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito
CAPIULO XI EL VAIMERO. INRODUCCION. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito Según la definición de potencia, un vatímetro debe ser un instrumento que
CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE
eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA
MICRODISEÑO CURRICULAR Nombre del Programa Académico
1. IDENTIFICACIÓN Asignatura Física de Campos Área Ciencias Básicas Nivel IV Código FCX 44 Pensum Correquisito(s) Prerrequisito(s) FMX23, CIX23 Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128 2. JUSTIFICACIÓN. El
Guía de ejercicios 5to A Y D
Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular
MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V
SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía
INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B
INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto
TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA
TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA 1. Un conductor esférico de radio a y carga Q es concéntrico con un cascaron esférico más grande de radio b y carga Q, como se muestra en la figura. Encuentre
Teoría de Circuitos (1º de ITI) Práctica 1
Práctica 1: Aparatos de medida y medidas eléctricas básicas. Las leyes de Ohm y de Kirchoff en corriente continua. Asociación de resistencias en serie y en paralelo. Teorema de Thevenin y de máxima transferencia
CORRIENTE CONTINUA II
CORRIENTE CONTINUA II Efecto Joule. Ya vimos en la primera parte de estos apuntes que en todos los conductores y dispositivos se produce una disipación calorífica de la energía eléctrica. En una resistencia
Física y Química 3º ESO
1. Física y Química. Ciencias de la medida forman parte de las necesitan Ciencias de la naturaleza medir las propiedades de los cuerpos que se dividen en para lo cual se emplean lo que siempre conlleva
Dinámica de Fluidos. Mecánica y Fluidos VERANO
Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
TEMA 3 TEORIA DE SEMICONDUCTORES
TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA
Circuitos de corriente continua
Capítulo 4: Circuitos de corriente continua Corriente promedio: carga que pasa por A por unidad de tiempo Corriente Instantánea [ I ] = C/s = A (Ampere) J = q n v d Ley de Ohm George Simon Ohm (1789-1854)
Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO
SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares
ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO
ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO 2. ELEMENTOS DE UN CIRCUITO 3. MAGNITUDES ELÉCTRICAS 4. LEY DE OHM 5. ASOCIACIÓN DE ELEMENTOS 6. TIPOS DE CORRIENTE 7. ENERGÍA ELÉCTRICA. POTENCIA 8. EFECTOS DE LA
UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS
UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS SILABO P.A. 2012-I 1. INFORMACION GENERAL Nombre del
Carrera: Ingeniería en Mecatrónica. Clave de la asignatura: Horas teoría-horas práctica-créditos: 4-2-10 ASIGNATURAS TEMAS ASIGNATURAS TEMAS
1. - DATOS DE LA ASIGNATURA Nombre de la asignatura: Electricidad y Magnetismo Carrera: Ingeniería en Mecatrónica Clave de la asignatura: Horas teoría-horas práctica-créditos: 4-2-10 2. - UBICACIÓN a)
5692 Electrotecnia para Ingeniería I. Horas trabajo adicional estudiante. Totales teoría 16 práctica IEA IM IMA IME IMT CB CB CB
A) CURSO Clave Asignatura 5692 Electrotecnia para Ingeniería I Horas de teoría por semana Horas de práctica por semana Horas trabajo adicional estudiante Créditos Horas Totales 4 1 4 9 64 teoría 16 práctica
PROBLEMAS ELECTROMAGNETISMO
PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza
Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos
Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes
FACULTAD: INGENIERIAS Y ARQUITECTURA PROGRAMA: INGENIERÍA INDUSTRIAL DEPARTAMENTO DE: INGENIERIA MECÁNICA, INDUSTRIAL Y MECATRONICA
Página 1 de 5 FACULTAD: INGENIERIAS Y ARQUITECTURA PROGRAMA: INGENIERÍA INDUSTRIAL DEPARTAMENTO DE: INGENIERIA MECÁNICA, INDUSTRIAL Y MECATRONICA CURSO: ELECTROMAGNETISMO CODIGO: 157009 AREA: CIENCIAS
