Tema 1. Conceptos básicos
|
|
|
- Marta de la Fuente López
- hace 9 años
- Vistas:
Transcripción
1 Tema 1. Conceptos básicos 1. Introducción Conceptos básicos Circuito eléctrico Teoría de Circuitos Magnitudes de un circuito: Tensión e intensidad Carga y corriente eléctrica (o intensidad)... 3 Direcciones de referencia Tensión o diferencia de potencial... 5 Dirección de referencia... 5 Analogía hidráulica Leyes de Kirchhoff Topología de un circuito Ley de corrientes de Kirchhoff Ley de tensiones de Kirchhoff Leyes de los dispositivos Introducción Antes de comenzar a desarrollar el tema intentaremos responder a una pregunta: Por qué empezamos con la Teoría de Circuitos?. Principalmente por tres razones: 1. La Teoría de Circuitos y el Electromagnetismo son las teorías sobre las que se fundamentan todas las demás ramas de la ingeniería electrónica. Entre ellas la Física de Semiconductores, objeto de la asignatura Tecnología y Componentes Electrónicos y Fotónicos. La Teoría de Circuitos es una herramienta que nos permitirá evaluar en ejemplos prácticos las conclusiones obtenidas en la asignatura. 2. A lo largo de la asignatura se irán definiendo una serie de modelos para los diferentes dispositivos estudiados. Estos modelos son circuitos, por tanto, necesitaremos la Teoría de Circuitos para entender como se comportan los dispositivos y comenzar a ver aplicaciones de los mismos. De esta forma se comienza a ver la utilidad de la electrónica, no sólo como modelado de dispositivos, sino como instrumento para diseñar circuitos complejos Por último, la Teoría de Circuitos ha proporcionado un lenguaje propio de la ingeniería electrónica. Todos los estudiantes deben familiarizarse con este 1 A lo largo de las prácticas se estudiarán circuitos completos, como por ejemplo, un transmisor receptor de fibra óptica, un transmisor de radio AM y diferentes amplificadores. 1
2 lenguaje lo antes posible, ya que será utilizado en casi todas las asignaturas de la carrera. 2. Conceptos básicos Antes de entrar en detalles es necesario introducir algunos conceptos fundamentales Circuito eléctrico Un circuito eléctrico es una interconexión de elementos eléctricos unidos entre sí de forma que pueda fluir una corriente eléctrica. En la figura 1 se puede ver un ejemplo circuito eléctrico. Se puede ver cómo los diferentes elementos están conectados entre sí mediante conductores o cables. 15V Elementos eléctricos Conductores Vi C1 1uF R1 R2 Rc Re C2 1uF Ce Rl 100K Figura 1. Ejemplo de circuito eléctrico Teoría de Circuitos La Teoría de Circuitos es una herramienta matemática que nos permite calcular la tensión y la corriente eléctrica en los elementos de un circuito. Mediante la Teoría de Circuitos se pueden realizar: 1. Análisis de circuitos: Conocer el comportamiento de un circuito dada una topología. 2. Síntesis de circuitos: Conocer la topología de un circuito dado un comportamiento. 2
3 La Teoría de Circuitos no entra en el interior de los dispositivos, sino que utiliza modelos de los mismos y leyes físicas para conocer el valor de las variables un circuito. En la definición se han utilizado términos no conocidos hasta ahora, como el de tensión y corriente eléctrica. Estos conceptos son muy importantes, ya que las magnitudes que caracterizan el comportamiento de un circuito son precisamente la tensión y la corriente eléctrica de cada uno de sus dispositivos. Por tanto, éstas serán las incógnitas en cualquier problema de teoría de circuitos. A continuación se explicará el significado físico de estas magnitudes. 3. Magnitudes de un circuito: Tensión e intensidad 3.1. Carga y corriente eléctrica (o intensidad). La corriente eléctrica o intensidad se define como el flujo de carga a través de un conductor eléctrico. Para comprender esta definición se necesita introducir una serie de conceptos. En primer lugar hay que tener claro el concepto de carga. La carga, al igual que la masa, longitud y tiempo, es una propiedad de la materia; y se mide en Culombios (C). La física elemental establece que toda materia está formada por átomos, y que cada uno de ellos está compuesto por electrones, protones y neutrones. Por otro lado, la 19 carga de un electrón es negativa (por convención) y de valor C y la del protón es positiva de la misma magnitud. De esta forma, un átomo con igual número de electrones y de protones tiene carga neutra, mientras que si el número de electrones es mayor que el de protones está cargado negativamente. Por otra parte, un conductor eléctrico posee electrones capaces de moverse a lo largo del conductor como respuesta a una fuerza electromotriz. Cuando en un conductor aplicamos un campo eléctrico las cargas son obligadas a moverse (sufren la acción de una fuerza por unidad de carga). El movimiento de cargas forma una corriente eléctrica. Como convención, se considera el flujo de corriente positivo cuando es opuesto al flujo de electrones, como puede verse en la figura 2. I Figura 2. Corriente eléctrica debido al movimiento de cargas en un conductor 3
4 La corriente eléctrica se mide en Amperios ( matemática sería: C A = ) y su definición s dq i = dt i: intensidad q: carga t: tiempo Notar que la definición anterior no implica en absoluto que la corriente sea una función constante. Direcciones de referencia Para poder especificar una corriente necesitamos tener una dirección de referencia y un valor numérico, el cual puede ser positivo o negativo. Las direcciones de referencia se indicarán mediante una flecha encima del conductor, como puede verse en la figura 3a. i=5ma i=5ma (a) (b) Figura 3. Dos representaciones diferentes de la misma intensidad. En la figura 3b se expresa la misma corriente de forma diferente, ya que una corriente hacia arriba de 5mA es igual a una hacia abajo de 5mA. La corriente física es, por definición, positiva, y por tanto la corriente física (real) en la figura 3 va hacia abajo. Antes de comenzar el análisis de cualquier circuito, el estudiante (o ingeniero) es responsable de asignar las intensidades de referencia como primer paso para la resolución del circuito. Estas direcciones se asignan sin importar la dirección de las corrientes físicas. Una vez resuelto el circuito, es decir, calculado el valor de sus tensiones e intensidades, el signo marcará el verdadero sentido de la corriente. 4
5 3.2. Tensión o diferencia de potencial La tensión o diferencia de potencial entre dos puntos de un circuito se define como el trabajo necesario para mover una carga unitaria entre dichos puntos. Se mide en Voltios (V). Vamos a intentar explicar esta definición. Para mover un electrón de un conductor en una dirección particular se requiere cierto trabajo o transferencia de energía. Este trabajo, que se conoce con el nombre de tensión o diferencia de potencial, lo lleva a cabo una fuerza electromotriz. Matemáticamente, podemos definir la tensión entre los puntos a y b de un circuito como: dw v ab = dq v ab : Tensión entre a y b w: Trabajo q: Carga Como se puede deducir de la definición, las dimensiones del Voltio son: V = J = N m C C a a 3V 3V b b (a) (b) Figura 4. Dos representaciones diferentes para la misma tensión Dirección de referencia Tanto el trabajo como la carga pueden ser positivos o negativos, por tanto, la tensión será una magnitud con signo, por ello será necesario tener una dirección de referencia bien definida. Para definir una tensión será necesario especificar dos puntos y un valor numérico, tal como puede verse en la figura 4a. Los signos y se utilizan para definir la dirección de referencia. En la figura 4b se representa otra forma de especificar la misma tensión. 5
6 Al igual que con la intensidad, antes de resolver un circuito, hay que definir las referencias de tensión, y una vez resuelto, los signos de los valores numéricos determinan completamente la tensión entre dos puntos. Analogía hidráulica Normalmente los conceptos eléctricos suelen ser bastante difíciles de asimilar por el estudiante que se enfrenta por primera vez a los mismos. Para comprenderlos mejor se puede asimilar un circuito eléctrico a un circuito hidráulico, mucho más intuitivo. Figura 5. Analogía hidráulica En la figura 5 vemos la presencia de dos elementos acumuladores de energía. Los depósitos de la figura tienen acumuladas dos alturas de agua H 1 y H 2, que tienden a empujar una corriente de agua a salir de ellos. Al final el agua fluirá en un sentido dependiendo de que elemento tenga más energía acumulada (en este caso desde el depósito con altura H1 al depósito con altura H2). En el ejemplo anterior podemos asimilar la carga ( medida en C ) con el agua (medida en l). La cantidad de agua que pasa por la tubería ( l/s ) se puede identificar con la intensidad eléctrica (A=C/s). La tensión sería similar a la diferencia de energía potencial almacenada en cada uno de los depósitos (proporcional a la altura). En este caso el flujo de agua o intensidad irá del depósito con altura H1 al depósito con altura H2. Sin embargo, podemos ver que la diferencia de altura (al igual que tensión eléctrica) implica una potencialidad, es decir, si se cierra la válvula dejará de producirse el flujo de agua. 6
7 4. Leyes de Kirchhoff 4.1. Topología de un circuito Antes de explicar las leyes de Kirchhoff es necesario definir tres conceptos relacionados con la topología de un circuito: rama, nodo y bucle. Una rama representa a cualquier elemento de dos terminales dentro de un circuito. En la figura 6 se resaltan las seis ramas del circuito Figura 6. Identificación de las ramas de un circuito. Un nodo es el punto de interconexión de dos o más ramas. En la figura 7 se representan los cuatro nodos del mismo circuito Figuras 7. Identificación de los nodos del circuito. 7
8 Un bucle es cualquier trayectoria cerrada dentro de un circuito, de forma que partiendo de uno nodo se vuelva de nuevo al nodo de partida sin pasar dos veces por el mismo nodo. En la figura 8 se representan algunos bucles del circuito. Figura 8. Identificación de los bucles de un circuito Ley de corrientes de Kirchhoff La Ley de corrientes de Kirchhoff establece que la suma de todas las corrientes entrantes en un nodo es cero en todo instante. Esta ley se puede escribir: N i k k= 1 = 0 N: Número de ramas que se une en el nodo. i k : Corriente de la rama késima (ver figura 9). i 3 i 4 i 1 i 2 Figura 9. Ilustración de la Ley de corrientes de Kirchhoff. 8
9 Ejemplo 1: Aplicar las Ley de corrientes de Kirchhoff a los nodos A y B del circuito de la figura 1. En primer lugar hay que definir las referencias para las corrientes, par lo cual, como se ha comentado anteriormente, se tiene completa libertad. Se ha asignado una corriente con su respectivo sentido a cada una de las ramas del circuito de forma arbitraria. Las ecuaciones resultantes de aplicar la Ley de corrientes de Kirchhoff son: Nodo A: I 2 I 3 I 4 I 5 =0 Nodo B: I 5 I 6 =0 Para plantear las ecuaciones se han considerado las intensidades entrantes positivas y las salientes negativas. De la ecuación del nodo B se puede sacar una regla que simplifica mucho los sistemas de ecuaciones. Cuando se tiene un nodo, como el nodo B, en el cual se conectan dos componentes en serie no es necesario plantear explícitamente la ley de Kirchhoff. Debido a que la corriente entrante será siempre igual a la saliente, basta con definir una sola corriente para ambas ramas. I 2 A I 4 I 5 I 6 B I 1 I 3 Figura 10. Circuito del ejemplo Ley de tensiones de Kirchhoff La Ley de tensiones de Kirchhoff establece que la suma de todas las tensiones alrededor de un bucle es igual a cero en todo instante. Matemáticamente: N k= 1 v k = 0 N: Número de ramas que componen el bucle. v k : Tensión en la rama késima. 9
10 Ejemplo 2. Plantear la Ley de tensiones de Kirchhoff en el bucle señalado en el circuito de la figura 11. Se plantea la Ley de tensiones de Kirchhoff en el bucle externo del circuito. Para ello definimos un sentido en el que recorreremos las ramas que componen el bucle, en este caso lo haremos en el sentido de las agujas del reloj. Previamente se han asignado de forma aleatoria las referencias de tensión a las diferentes ramas del circuito. La ecuación queda: V 1 V 2 V 5 V 6 =0 Para plantear la ecuación se ha seguido la siguiente regla: Siguiendo el sentido del bucle, la tensión se escribe con signo positivo si nos encontramos el antes que (como V 6 ), y con signo negativo si encontramos el antes que el (V 1, V 2 y V 6 ). V 2 V 1 V V 3 4 V 5 V 6 Figura 11. Circuito del ejemplo Leyes de los dispositivos Las Leyes de Kirchhoff son una herramienta muy poderosa para la resolución de circuitos, sin embargo, NO SON SUFICIENTES para resolver un problema completo. Para resolver un circuito hay que tener en cuenta además las ecuaciones que añaden los propios dispositivos que lo componen. Un dispositivo puede tener dos o más terminales (puntos de conexión), pero vamos a comenzar estudiando dispositivos de dos terminales. Un dispositivo típico de dos terminales se representa en la figura
11 I V V=f(I) Figura 12. Ejemplo de dispositivo cualquiera de dos terminales. Un dispositivo estará caracterizado por una función que relaciona su tensión con su intensidad ( V = f (I) ). Notar que para definir completamente esta función es necesario especificar las referencias de tensión e intensidad que se están considerando. Por tanto, habrá que tener cuidado con las referencias a la hora de aplicar la fórmula. Ejemplo 3. Plantear las ecuaciones para resolver el circuito de la figura 13. Se conoce que las ecuaciones de los dispositivos son válidas definiendo las referencias de tensión e intensidad tal como están en la figura. Como se ha dicho anteriormente, resolver un circuito consiste en calcular el valor de corriente y la tensión de cada una de sus ramas. Resultado de aplicar la Ley de corrientes de Kirchhoff: Nodo 1: I 1 I 2 =0 Nodo 2: I 2 I 3 =0 Resultado de aplicar la Ley de tensiones de Kirchhoff: V 1 V 2 V 3 =0 Ecuaciones de los dispositivos: V 1 =f(i 1 ) V 2 =f(i 2 ) V 3 =f(i 3 ) Como podemos ver hay seis ecuaciones con seis incógnitas. Por tanto, aplicando la Leyes de Kirchhoff y las ecuaciones que unen tensión e intensidad en cada uno de sus dispositivos se puede resolver cualquier problema de teoría de circuitos. 11
12 V 2 I 2 V 2 =f(i 2 ) V 1 =f(i 1 ) I 1 V 1 V 3 I 3 V 3 =f(i 3 ) Figura 13. Circuito del ejemplo 3. 12
FÍSICA II Ing. Pablo M. Flores Jara Ing. Pablo M. Flores Jara
FÍSICA II [email protected] CORRIENTE ELÉCTRICA, VOLTAJE Y CIRCUITOS DE CORRIENTE CONTINUA Intensidad de Corriente Carga y corriente eléctrica (o intensidad). La corriente eléctrica o intensidad
Tema 1. Circuitos eléctricos de corriente continua.
Tema 1. Circuitos eléctricos de corriente continua. Se simplificarán las ecuaciones del electromagnetismo aplicadas a dispositivos eléctricos que nos interesarán para generar, almacenar, transportar o
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO CUESTIONARIO PREVIO PRÁCTICA PLANTEAMIENTO DE UNA RED ELÉCTRICA SENCILLA
CUESTIONARIO PREVIO PRÁCTICA PLANTEAMIENTO DE UNA RED ELÉCTRICA SENCILLA Instrucciones: Responder las siguientes preguntas. 1. Explicar cuál es la utilidad de resolver un sistema de ecuaciones 2. Explicar
Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 1 - Generalidades de circuitos DC. Curso 2018
Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 1 - Generalidades de circuitos DC Curso 2018 Contenido de la presentación Bibliografía de referencia Circuitos DC Componentes básicos
E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia
Universidad Abierta Interamericana Facultad de Tecnología Informática E.E.S. I Trabajo de Investigación Alumno: Profesor: Cristian La Salvia Lic. Carlos Vallhonrat 2009 Descripción de la investigación...
Curso de electromagnetismo Test No 3. Circuitos de corriente continua
Curso de electromagnetismo Test No 3. Circuitos de corriente continua Este test contiene problemas sobre los siguientes temas: 1. Resistencia de un conductor 2. Combinación de resistencias 3. Ley de Ohm
Ley de Ohm. I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω).
V Ley de Ohm I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω). En un conductor recorrido por una corriente eléctrica, el cociente entre la diferencia
Circuitos. En el circuito se establece una corriente estable i, y existe una diferencia de potencia V ab
Circuitos Los circuitos eléctricos (caminos cerrados) permiten el transporte de energía para ser utilizada en múltiples dispositivos (lámparas, radio, televisores, etc.). En el circuito se establece una
Física II CF-342 Ingeniería Plan Común.
Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física
CAPÍTULO I: INTRODUCCIÓN A LA TEORÍA DE CIRCUITOS
Departamento de Ingeniería Eléctrica Fundamentos de Ingeniería Eléctrica CAPÍTLO I: INTRODCCIÓN A LA TEORÍA DE CIRCITOS Juan B. García González Rafael Molina Maldonado Francisco J. Muñoz Gutiérrez Antonio
ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF.
ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF. QUÉ ES? La electricidad se manifiesta por la presencia de cargas eléctricas ( negativas o positivas) tanto si están
TÉCNICAS Y TEOREMAS PARA EL ANÁLISIS DE CIRCUITOS ELÉCTRICOS
TÉCNICAS Y TEOREMAS PARA EL ANÁLISIS DE CIRCUITOS ELÉCTRICOS UN CIRCUITO ELÉCTRICO ES UNA INTERCONEXIÓN DE ELEMENTOS ELÉCTRICOS. Carga es una propiedad eléctrica de las partículas atómicas de las que se
LEY DE OHM - CIRCUITOS - RESISTENCIA - INSTRUMENTOS
LEY DE OHM - CICUITOS - ESISTENCIA - INSTUMENTOS Amperímetros y Voltímetros Las dos magnitudes que siempre interesa conocer para un componente de circuito (por ejemplo una resistencia), son la corriente
Electricidad. Error! Marcador no definido.
Las cargas eléctricas pueden originar tres tipos de fenómenos físicos: a) Los fenómenos electrostáticos, cuando están en reposo. b) Las corrientes eléctricas. c) Los fenómenos electromagnéticos, cuando
La anterior ecuación se puede también expresar de las siguientes formas:
1. LEY DE OHM GUÍA 1: LEYES ELÉCTRICAS El circuito eléctrico es parecido a un circuito hidráulico ya que puede considerarse como el camino que recorre la corriente (el agua) desde un generador de tensión
Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua
Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO
CONTROL DE CIRCUITOS MAGNITUDES ELÉCTRICAS
CONTROL DE CIRCUITOS Como se comprobó en el apartado anterior (ELEMENTOS DE CONTROL MANUAL EN CIRCUITOS ELÉCTRICOS), el paso de corriente por un circuito elemental depende de la posición del elemento de
1 Leyes y magnitudes fundamentales de los circuitos eléctricos
1 Leyes y magnitudes fundamentales de los circuitos eléctricos 1.1 Tensión Se denomina tensión eléctrica a la diferencia de potencial existente entre dos puntos de un circuito eléctrico. Su unidad de medida
TEMA 1 Nociones básicas de Teoría de Circuitos
TEMA 1 Nociones básicas de Teoría de Circuitos http://www.el.uma.es/marin/ ÍNDICE 1.1. MAGNITUDES ELÉCTRICAS Y CONCEPTOS FUNDAMENTALES: Conceptos básicos de circuitos. Leyes de Kirchoff. Potencia Eléctrica.
Circuitos de corriente directa. Circuito eléctrico es cualquier conexión de elementos eléctricos
Circuitos de corriente directa Circuito eléctrico es cualquier conexión de elementos eléctricos (resistencia, baterías, fuentes, capacitores, etc.) a través de los cuales puede circular corriente en forma
En un elemento cambiar la polaridad o el sentido de la corriente implica cambiar el signo de la magnitud correspondiente.
1 2 3 La disposición de los signos + y asociados a la tensión se denomina polaridad. En un elemento dado, la polaridad y el sentido de la corriente pueden estar fijados por la persona que plantea el problema,
A nivel funcional, podemos convenir que los átomos estén formados por tres clases diferentes de partículas:
Principios Básicos Para poder comprender el funcionamiento de los circuitos electrónicos es preciso entender los fenómenos eléctricos y sus aplicaciones, con este fin se hace necesario escudriñar la estructura
CIRCUITOS ELÉCTRICOS CONCEPTOS BÁSICOS
CIRCUITOS ELÉCTRICOS CONCEPTOS BÁSICOS CONCEPTOS BÁSICOS: BASES SÓLIDAS Vamos a empezar por dejar claros algunos conceptos fundamentales. QUE ES ELECTRICIDAD? La real academia de la lengua nos da algunas
CULOMBIO: unidad de carga eléctrica, se representa por C acumular un culombio necesitamos 6, electrones.
VOCABULARIO CULOMBIO: unidad de carga eléctrica, se representa por C acumular un culombio necesitamos 6,25 10 18 electrones. ELECTRIZACIÓN: proceso por el cual un cuerpo adquiere carga positiva o negativa.
Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.
38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión
Unidad. Circuitos eléctricos 5 de corriente continua
Unidad 5 Circuitos eléctricos d i t ti 5 de corriente continua 15.1. 1 El circuito eléctrico A Concepto de energía eléctrica Composición de un átomo. Cationes y aniones. 1 Diferentes métodos para producir
Laboratorio Física II Práctica Nº 4 LEYES DE KIRCHHOFF
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA MUNICIPALIZACIÓN TOCÓPERO ÁREA DE TECNOLOGÍA COORDINACIÓN DE LABORATORIOS DE FÍSICA Laboratorio Física II LEYES DE KIRCHHOFF Adaptado por: Oscar Medina
UNIDAD 4: CIRCUITOS ELÉCTRICOS Y ELECTRÓNICOS BLOQUE 3: MÁQUINAS Y SISTEMAS TECNOLOGÍA INDUSTRIAL I
UNIDAD 4: CIRCUITOS ELÉCTRICOS Y ELECTRÓNICOS BLOQUE 3: MÁQUINAS Y SISTEMAS TECNOLOGÍA INDUSTRIAL I ESQUEMA DE LA UNIDAD: 1. CIRCUITOS ELÉCTRICOS 2. ELEMENTOS DE UN CIRCUITO 2.1 GENERADORES Y ACUMULADORES
Tema 5 Electricidad. Cómo medimos el valor de la carga eléctrica? Pues la unidad en la que se mide es el Culombio, C, que equivale a:
Tema 5 Electricidad 5.1.- INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son partículas con carga eléctrica negativa. - Protones: son
ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores
ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta
Corriente continua (Repaso)
Fundamentos de Tecnología Eléctrica (º ITIM) Tema 0 Corriente continua (epaso) Damián Laloux, 004 Índice Magnitudes esenciales Tensión, corriente, energía y potencia Leyes fundamentales Ley de Ohm, ley
FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009
FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009 Los circuitos eléctricos instalados en automóviles, casas, fábricas conducen uno de los dos tipos de corriente: Corriente directa
Corriente Directa. La batería se define como fuente de fem
Capítulo 28 Circuitos de Corriente Directa Corriente Directa Cuando la corriente en un circuito tiene una magnitud y una dirección ambas constantes, la corriente se llama corriente directa Como la diferencia
TEMA: CIRCUITOS ELÉCTRICOS
TEMA: CIRCUITOS ELÉCTRICOS ÍNDICE 1. INTRODUCCIÓN 2 2. LA ELECTRICIDAD 2 3. EL CIRCUITO ELÉCTRICO 2 a) Generador de corriente 3 b) Conductor 3 c) Receptores 3 d) Controladores 3 4. TIPOS DE CIRCUITOS 3
Tema 3. Iniciación a la electricidad
Tema 3. Iniciación a la electricidad Víctor M. Acosta Guerrero José Antonio Zambrano García Departamento de Tecnología I.E.S. Maestro Juan Calero Tema 3. Iniciación a la electricidad. 1. INTRODUCCIÓN.
Electrotecnia General
Universidad Nacional de Mar del Plata Departamento de Ingeniería Eléctrica Área Electrotecnia Electrotecnia General (para la Carrera Ingeniería Industrial) Leyes Fundamentales Profesor Adjunto: Ingeniero
Tema 4: Electrocinética
Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías
CORRIENTE ELÉCTRICA. Conducción. Convección. Arrastre de cargas en un medio eléctricamente neutro. Un transporte de masa Implica un trasporte de carga
CORRIENTE ELÉCTRICA Movimiento de cargas Corriente eléctrica Conducción Arrastre de cargas en un medio eléctricamente neutro Movimiento de electrones en un hilo conductor Convección Un transporte de masa
Electrotecnia. Conceptos Básicos. Departamento de Ingeniería Eléctrica. Área Electrotecnia. (para la Carrera Ingeniería Mecánica)
Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Electrotecnia (para la Carrera Ingeniería Mecánica) Conceptos Básicos Profesor Adjunto: Ingeniero Electricista
CONFIGURACIONES BÁSICAS DE CIRCUITOS
INSTITUCIÓN EDUCATIVA JOSÉ EUSEBIO CARO ÁREA DE TECNOLOGÍA E INFORMÁTICA 2016 DOCENTE JESÚS EDUARDO MADROÑERO RUALES CORREO [email protected] GRADO ONCE FECHA 02 DE MAYO DE 2016 CONFIGURACIONES
TECNOLOGÍA GRADO DÉCIMO SEGUNDO
TECNOLOGÍA GRADO DÉCIMO SEGUNDO PERIODO 1 1. El panel de navegación de Access... A. Contiene los elementos de la base de datos que vamos creando, como las tablas. B. Está situado por defecto en la zona
Algunas Aplicaciones de Sistemas de Ecuaciones Lineales
Universidad Central de Venezuela Facultad de Ingeniería Departamento de Matemática Aplicada Álgebra Lineal Prof. Norma Guzmán Algunas Aplicaciones de Sistemas de Ecuaciones Lineales 1. Modelo Insumo-Producto
ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores
ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta
RESUMEN PLANTEAMIENTO DEL PROBLEMA OBJETIVO GENERAL
I8. ESTUDIO DEL COMPORTAMIENTO DE CORRIENTE Y VOLTAJE EN CIRCUITOS MIXTOS, APLICACIONES DE LA LEY DE KIRCHHOFF RESUMEN Las leyes de Kirchhoff resultan de vital importancia en el manejo de circuitos complejos,
Módulo 4 - Electrotecnia MÉTODO DE CORRIENTES DE MALLAS MÉTODO DE POTENCIALES DE NODOS
2016 Módulo 4 - Electrotecnia MÉTODO DE CORRIENTES DE MALLAS MÉTODO DE POTENCIALES DE NODOS Ing. Rodríguez, Diego 01/01/2016 MÉ TODO DÉ LAS CORRIÉNTÉS DÉ MALLA El método de las corrientes de malla consiste
CORRIENTE ELECTRICA. Presentación extraída de Slideshare.
FISICA II CORRIENTE ELECTRICA Presentación extraída de Slideshare. 1.1 CORRIENTE ELECTRICA CORRIENTE ELECTRICA Moviemiento ordenado y permanente de las partículas cargadas en un conductor, bajo la influencia
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa
Corriente directa La corriente alterna es muy útil para transmitir la energía eléctrica, pues presenta menos pérdidas disipativas, y permite una fácil conversión entre voltaje y corriente por medio de
FÍSICA II PRÁCTICO 5 Corriente continua
FÍSICA II PRÁCTICO 5 Corriente continua Ejercicio 1 Se considera un cable de plata de 1 mm 2 de sección que lleva una corriente de intensidad 30A. Calcule: a) La velocidad promedio de los electrones suponiendo
5.3 La energía en los circuitos eléctricos.
CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones
La Electricidad. Conoces algún fenómeno eléctrico natural?
La Electricidad Conoces algún fenómeno eléctrico natural? Cómo se obtiene la corriente eléctrica? Qué pasa si recibimos la corriente eléctrica? Qué entiendes por un circuito eléctrico? Índice de Contenidos
5 Aplicaciones de ED de segundo orden
CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos
Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:
FÍICA GENERAL II GUÍA 5 - Conducción eléctrica y circuitos. Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Conocer y analizar la corriente
Electroacústica AP_ELEC_1
AP_ELEC_1 Aunque no seamos capaces de verlos por su tamaño microscópico, todas las cosas que vemos a nuestro alrededor incluido nosotros están constituidas por pequeñísimas partículas llamadas átomos.
CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS
LEYES DE LOS CIRCUITOS ELECTRICOS CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS Con estas leyes podemos hallar las corrientes y voltajes en cada una de las resistencias de los diferentes circuitos de CD.
CIRCUITOS EN SERIE Y PARALELO
CIRCUITOS EN SERIE Y PARALELO Objetivos: - Evaluar experimentalmente las reglas de Kirchhoff. - Formular el algoritmo mediante el cual se obtiene la resistencia equivalente de dos o más resistores en serie
Electrostática. Ley de Coulomb. Campo eléctrico. Líneas de campo. Potencial eléctrico creado por una carga puntual
Electricidad Ley de Coulomb Electrostática Sistemas de unidades d Campo eléctrico. Líneas de campo Potencial eléctrico creado por una carga puntual Estructura atómica Electrones Núcleo: protones y neutrones
CIRCUITOS ELÉCTRICOS
CICUITOS ELÉCTICOS.- CONCEPTOS FUNDAMENTALES Energía eléctrica. Actualmente, la eléctrica es la forma de energía más usada por varios motivos: Es fácil de producir. Se puede transportar a grandes distancias.
NORMAL SUPERIOR LA HACIENDA
NORMAL SUPERIOR LA HACIENDA DPTO. DE CIENCIAS NATURALES ASIGNATURA: FISICA NIVEL 11 o GRADO DOCENTE: MATÍAS ENRIQUE PUELLO CHAMORRO 1 1. CAPACITANCIA - CONDENSADORES Hasta ahora hemos visto cómo analizar
ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1
ELECTROESTÁTICA 1. Naturaleza eléctrica. 2. Interacción electroestática. 3. Campo eléctrico. 4. Energía potencial eléctrica. 5. Potencial eléctrico. 6. Corriente eléctrica continua. 7. Ley de Ohm. 8. Asociación
CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424
09/10/2013 Ing. César Lopez Aguilar UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO 3 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar
Introducción a los circuitos eléctricos
Introducción a los circuitos eléctricos La materia está compuesta por moléculas y éstas por átomos. Los átomos, a su vez, están formados por un núcleo y una corteza. El núcleo consta de partículas con
Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA
E.E.S.T. 8 Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA Ing. Rodríguez, Diego E.E.S.T. 8 INTRODUCCIO N Se entiende por resolver un circuito eléctrico el calcular sus corrientes de rama
Circuitos Eléctricos TPR 3º ESO
TEMA 1 CORRIENTE ELÉCTRICA INTRODUCCIÓN CIRCUITO ELÉCTRICO MAGNITUDES ELÉCTRICAS LEY DE OHM CORRIENTE ELÉCTRICA POTENCIA Y ENERGÍA 1._ INTRODUCCIÓN La materia está formada por átomos y cada uno de estos
ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4
5 CIRCUITOS ELÉCTRICOS. LEYES Y TEOREMAS Electrónica Analógica ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 1.1. CIRCUITO EQUIVALENTE... 5 1.. leyes de hirchhoff... 9 1.3. teorema de thevenin... 11 1.4. teorema
UNIVERSIDAD TECNOLOGICA DE PEREIRA PROGRAMA DE TECNOLOGIA ELECTRICA
UNERSDAD TECNOLOGCA DE PERERA PROGRAMA DE TECNOLOGA ELECTRCA Curso Básico de Análisis de Sistemas Eléctricos de Potencia Antonio Escobar Zuluaga Pereira - Risaralda - Colombia 0 Matriz admitancia Y BUS
Universidad Nacional de Quilmes 1. Teoría de Circuitos. Métodos de resolución de circuitos
1 Teoría de Circuitos Métodos de resolución de circuitos Condición: se aplican a redes bilaterales lineales. El término bilateral se refiere a que no habrá cambios en el comportamiento de la respuesta
ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO
ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO QUÉ ES? La electricidad se manifiesta por la presencia de cargas eléctricas ( negativas o positivas) tanto si están estáticas
Trabajo De Tecnología. (La Electricidad) Saint Georger s college Area de tecnología III Unidad
Saint Georger s college Area de tecnología III Unidad Trabajo De Tecnología (La Electricidad) Integrantes (10º E): Stefan Jercic Ignacio Larraín Crsitian Majluf Profesor: Luis Paredes Fecha: Viernes 16
Capítulo 1 P O L I T E C N I C O Revisión de electricidad. 1 f T Corriente Continua (CC o DC) Corriente Alterna (CA o AC)
Capítulo. Revisión de electricidad.. Corriente Continua (CC o DC) Llamaremos así a aquella tensión o corriente que no cambie de sentido o bien no cambie de signo. Estas magnitudes podrán ser constantes,
REFUERZO TECNOLOGÍA DE 4º ESO
REFUERZO TECNOLOGÍA DE 4º ESO Los átomos están formados por un núcleo central donde se encuentran los protones (+) y los neutrones (sin carga) y una órbitas alrededor de éste dondesesitúanloselectrones
Electrotecnia. Tema 7. Problemas. R-R -N oro
R-R -N oro R 22 0^3 22000 (+-) 00 Ohmios Problema.- Calcular el valor de la resistencia equivalente de un cubo cuyas aristas poseen todas una resistencia de 20 Ω si se conecta a una tensión los dos vértices
A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia.
DEPARTAMENTO DE ORIENTACIÓN: TECNOLOGÍA 4E_F Primer trimestre Curso: 2014/2015 TEMA II: ELECTRICIDAD Y ELECTRÓNICA La electrónica forma parte de nuestra vida cotidiana.- Los electrodomésticos, los medios
Electrotecnia General
Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Electrotecnia General (para la Carrera Ingeniería Industrial) Conceptos Básicos Profesor Adjunto: Ingeniero
MÓDULO FORMATIVO 1. Cuadros eléctricos en edificios.
MÓDULO FORMATIVO 1. Cuadros eléctricos en edificios. ÍNDICE 1. Electricidad básica. 5 2. Características y cálculo de circuitos de cuadros eléctricos. 17 3. Utilización de instrumentos de medida de magnitudes
Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.
1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo
CONTENIDO Unidad I. Sistema internacional de Unidades Componentes básicos de circuitos: Que es un Circuito?.
1 CONTENIDO Unidad I Sistema internacional de Unidades Componentes básicos de circuitos: Que es un Circuito?. Circuito Abierto. Circuito Cerrado. Red Eléctrica. Voltaje. Corriente. Carga (Resistencia).
Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 8 - Circuitos Magnéticos y Transformadores. Curso 2018
Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 8 - Circuitos Magnéticos y Transformadores Curso 2018 Contenido de la presentación Bibliografía de referencia Transformador ideal
ELECTROTECNIA Circuitos de Corriente Continua
ELECTROTECNIA Circuitos de Corriente Continua Juan Guillermo Valenzuela Hernández ([email protected]) Universidad Tecnológica de Pereira Primer Semestre de 2014 Juan Valenzuela 1 Leyes de Kirchhoff
5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta.
1 a) Fuerza magnética sobre una carga en movimiento. b) En qué dirección se debe mover una carga en un campo magnético para que no se ejerza fuerza sobre ella? 2 Un electrón, un protón y un átomo de helio
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 7: REGLAS DE KIRCHHOFF Comprobar experimentalmente que en un
Unidad 12. Circuitos eléctricos de corriente continua
Unidad 12. Circuitos eléctricos de corriente continua 1. El circuito eléctrico 2. Magnitudes eléctricas 3. Elementos de un circuito 4. Resolución de problemas complejos 5. Distribución de la energía eléctrica
Resolución de circuitos RLC mediante la aplicación de Transformadas de Laplace
Resolución de circuitos RLC mediante la aplicación de Transformadas de Laplace Cristian Iván Eterovich Estudiante de Ingeniería Electricista/Electrónica/en Sistemas de Computación Universidad Nacional
Ejercicio 1. Utilizando el método de mallas.
Ejercicio 1 Utilizando el método de mallas. Encontrar: a) Los nodos en el circuito. b) Las ramas en el circuito. c) Las tensiones en todos los nodos del circuito. d) Las corrientes por cada una de las
GUIA DIDACTICA DE TECNOLOGIA N º5 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO PRIMERO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO PRIMERO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
1. Conceptos y definiciones más utilizadas en las I.E. 2. Símbolos gráficos 3. Práctica 2 Conceptos y definiciones más utilizadas en las I.E.
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA CIVIL CURSO: INSTALACIONES ELECTRICAS SEMANA 2 Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 1. Conceptos
en una región del espacio en que coexisten un campo magnético B 0,2k T, se pide:
CAMPO MAGNÉTICO. SEPTIEMBRE 1997: 1.- Una partícula cargada se introduce con velocidad v vi en una región del espacio en que coexisten un campo magnético B 0,2k T y un campo eléctrico E 100 j N/C. Calcular
Estudio de fallas asimétricas
Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2018 1.
Electrónica: Electrotecnia y medidas. UNIDAD 1. Leyes de Kirchhoff
Electrónica: Electrotecnia y medidas. UNIDAD 1 Leyes de Kirchhoff Tabla de Contenido Presentación. Divisores de voltaje y corriente. Primera Ley de Kirchhoff. o Pasos para la utilización de la primera
GUIA DIDACTICA DE ACTIVIDADES N _4_ 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S.
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. ESPECIALIDAD ELECTRONICA ONCE PRIMERO 6 DOCENTE(S) DEL AREA: NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA:
BOLETÍN DE TEORÍA CAMPO MAGNÉTICO (trabajo)
BOLETÍN DE TEORÍA CAMPO MAGNÉTICO (trabajo) Teoría 1 Dos espiras circulares se sitúan de la manera indicada en la figura con las intensidades de corriente en los sentidos que se indican. Cómo es la interacción
Tema 13 Modelos de Representación de Diagramas
Tema 13 Modelos de Representación de Diagramas En este tema haremos una revisión rápida de los modelos de representación de diagramas, y su utilidad en la Expresión Gráfica. 13.1 Introducción y Definición
ASIGNATURA: FÍSICA III
UAP FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III CÓDIGO: 24-211, IV CICLO, 2HR. TEÓRICAS Y 2HR. PRÁCTICAS SESIÓN : 8 (SEMANA 8) TEMA: ELECTRODINÁMICA.
GUSTAVO ROBERTO KIRCHHOFF
Los circuitos eléctricos que no tienen componentes ni en serie, ni en paralelo, ni mixto, se solucionan según la regla de se aplican métodos más generales, en lo que el físico alemán GUSTAVO ROBERTO KIRCHHOFF
CONTROL ANALÓGICO I. MODELADO MATEMÁTICOS DE SISTEMAS DE CONTROL Unidad II
CONTROL ANALÓGICO I MODELADO MATEMÁTICOS DE SISTEMAS DE CONTROL Unidad II Modelado de sistemas Con la finalidad de diseñar y analizar el comportamiento dinámico de un sistema físico, es necesario obtener
