Corriente eléctrica. Ley de Ohm.
|
|
|
- Jaime Contreras Ayala
- hace 9 años
- Vistas:
Transcripción
1 Corriente eléctrica. Ley de Ohm.
2 Un conductor en un campo eléctrico: condiciones dinámicas
3 Un conductor en un campo eléctrico: condiciones dinámicas E 0 dentro del conductor. El ciclo continuo de electrones que fluye es una simple representación de un circuito eléctrico, y se da el nombre de corriente eléctrica al flujo de electrones (u otras partículas con carga).
4 Corriente eléctrica i = dq dt + + A i Para que exista corriente eléctrica debe haber un flujo neto de carga por la superficie. La corriente eléctrica tiene una dirección, definida como la dirección del flujo de carga positiva. La corriente es un escalar y no un vector (pues no cumple con las leyes de la adición vectorial). SI ampere (A), 1 A= 1 C/s.
5 Corriente eléctrica q = idt
6 Definición de densidad de corriente j Una magnitud vectorial relacionada es la densidad de corriente. i j = i / r j A Sentido el del un flujo de carga positiva j r = r d A
7 Densidad de corriente y velocidad de desplazamiento r = j env r d
8 r j r v d Materiales óhmicos r j = env r d r = σe r E r r ρ = 1/σ E = ρj r j r E Conductividad eléctrica del material, σ SI, siemens por metro (S/m) 1 siemens = 1 A / V Las unidades de resistividad son ohm.metro, 1 ohm = 1 V / A
9 Materiales óhmicos Las ecuaciones anteriores son válidas sólo en los materiales isotrópicos, cuyas propiedades eléctricas son iguales en todas direcciones.
10
11 Materiales óhmicos En algunos materiales, se comprueba que la resistividad no es constante, sino que depende de la intensidad del campo eléctrico. En otros se comprueba que la resistividad no depende de la intensidad del campo aplicado. Materiales óhmicos. Ley de Ohm: La resistividad (o conductividad) de un material no depende de la magnitud ni de la dirección del campo eléctrico aplicado. E r E = ρ ρ r j j
12 Resistencia R = ρ l A
13 Resistencia All (almost) materials have resistance Those that are call ohmic if V Ohm s Law R holds. A device made to have certain resistance value is call a resistor. I
14 Materiales óhmicos La resistencia de un objeto no depende de la magnitud ni del signo de la diferencia de potencial aplicada. La relación V=iR no es una formulación de la ley de Ohm. Es una ec. que define la resitencia y se aplica tanto a objetos óhmicos como a no óhmicos
15 Materiales óhmicos V, I y R: magnitudes macroscópicas (se aplican a un cuerpo o una región ampliada). Son de utilidad cuando se efectúan mediciones eléctricas en objetos conductores reales. Las magnitudes microscópicas correspondientes son: E, j y ρ (óσ); poseen valores en todos los puntos de un cuerpo. Son de gran importancia cuando se trata del comportamiento fundamental de la materia en la física del estado sólido.
16 Circuitos de corriente directa
17 Corriente eléctrica La dirección de la corriente es aquella que seguirían las cargas positivas, a pesar de que los portadores de carga sean negativos. La bateria mantiene el terminal superior a un potencial V + y el terminal inferior a un potencial V -. En una bateria ideal, la diferencia de potencial V + -V - entre sus terminales no depende de la cantidad de corriente que suministra al circuito.
18 Conservación de la carga En condiciones estacionarias, suponemos que la carga no se acumula ni se fuga desde un punto cualquiera de nuestro alambre idealizado. La corriente eléctrica I es la misma en todas las secciones transversales de un conductor, aunque la superficie transversal puede ser distinta en varios puntos. La densidad de corriente j cambiará al modificarse la sección transversal, pero la corriente i permanecerá inalterada.
19 Conservación de la carga En una unión (nodo) cualquiera de un circuito eléctrico, la corriente total que entra en dicha unión tiene que ser igual a la corriente que sale. Primera Ley de Kirchhoff.
20 Fuerza electromotriz Casi todos los circuitos requieren de una fuente externa de energía para mover una carga eléctrica a través de ellos. Por tanto, el circuito debe contener un dispositivo que mantenga la ddp entre dos puntos. Al dispositivo que realiza esta función en un circuito eléctrico se le llama fuente de la fuerza electromotriz ε, fem.
21 Fuerza electromotriz Cuando una corriente estacionaria ha sido establecida en el circuito de la Fig., una carga dq cruza cualquier sección transversal de él en el tiempo dt. En particular, esta carga entra en la fem por su extremo de bajo potencial y sale por su extremo de alto potencial. La fem debe efectuar el trabajo dw en los portadores de carga (positiva) para obligarlos a ir al punto de potencial más alto. ε = dw / dq J/C=1V
22 Análisis de circuitos
23 La suma algebraica de las diferencias de potencial alrededor de una malla completa de circuito ha de ser cero. Segunda Ley de Kirchhoff.
24
25
26
27 Resistores en serie y en paralelo
28 Resistores en serie y en paralelo En serie: I = I = I 1 2 V = V + V 1 2 V V1 + V2 V1 V2 Req = = + R + R I I I I En paralelo: I = I + I V = V = V I I1 + I2 I1 I2 1 1 = = + + R V V V V R R eq V 1 V 2 V 1 V 2
29 En serie Resistores en serie y en paralelo R = R + R + R +... eq En paralelo = R R R R eq 1 2 3
30 Combinación de resistencias
31 Transferencias de energía en un circuito eléctrico
32 Transferencias de energía en un La ddp entre los terminales c y d es V R =ir A medida que la cantidad de carga dq se desplaza por R de c a d, experimenta un cambio de energía potencial du=dq V R. Esta energía es transferida al resistor, de modo que la potencia que recibe éste es: P R =du/dt=(dq/dt) V R =i V R P 2 P R = i R R ( V = R circuito eléctrico R 2 )
33 Battery power figure One can also obtain this result from the plot of p Where when p load load = R = r R ( R + r ) reaches the maximum value 2 ε 2 battery V load The efficiency of the battery at this point is 50% because efficiency = pload R = p R + r
34 Circuito RC
35 Circuito RC
36 Circuito RC
Corriente eléctrica. Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla
Física Grado en ngeniería de Organización ndustrial Primer Curso Joaquín Bernal Méndez Curso 2011-2012 Departamento de Física Aplicada Universidad de Sevilla Índice ntroducción 2/39 ntroducción Existe
Corriente Eléctrica. La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una
Capitulo 27 Corriente y Resistencia Corriente Eléctrica La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una región del espacio En el SI, la corriente se mide en ampere
Física II CF-342 Ingeniería Plan Común.
Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física
FENÓMENOS DE CORRIENTE DIRECTA. M. Sc Luz Aída Sabogal Tamayo
FENÓMENOS DE CORRIENTE DIRECTA M. Sc Luz Aída Sabogal Tamayo 2016 08-25 TEMÁTICAS Corriente eléctrica y densidad de corriente eléctrica Resistividad, resistencia, conductividad y Regla de Ohm Asociación
Tema 4: Electrocinética
Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías
Capítulo II. Ecuaciones de los circuitos magnéticos
Capítulo II. Ecuaciones de los circuitos magnéticos 2.1. Intensidad de Campo magnético Los campos magnéticos son el mecanismo fundamental para convertir energía eléctrica de corriente alterna de un nivel
Curso de electromagnetismo Test No 3. Circuitos de corriente continua
Curso de electromagnetismo Test No 3. Circuitos de corriente continua Este test contiene problemas sobre los siguientes temas: 1. Resistencia de un conductor 2. Combinación de resistencias 3. Ley de Ohm
Introducción. Corriente y movimiento de cargas
Introducción Cuando se enciende una luz, conectamos el filamento metálico de la bombilla a través de una diferencia de potencial, lo cual hace fluir la carga eléctrica por el filamento de un modo parecido
Circuitos. En el circuito se establece una corriente estable i, y existe una diferencia de potencia V ab
Circuitos Los circuitos eléctricos (caminos cerrados) permiten el transporte de energía para ser utilizada en múltiples dispositivos (lámparas, radio, televisores, etc.). En el circuito se establece una
CIRCUITOS ELECTRICOS EN CORRIENTE DIRECTA. Alicia Ma. Esponda Cascajares Q =
CIRCUITOS ELECTRICOS EN CORRIENTE DIRECTA Alicia Ma. Esponda Cascajares CORRIENTE ELÉCTRICA Corriente Eléctrica: flujo de cargas eléctricas que atraviesan un área transversal por unidad de tiempo. I Q
Tema 1. Circuitos eléctricos de corriente continua.
Tema 1. Circuitos eléctricos de corriente continua. Se simplificarán las ecuaciones del electromagnetismo aplicadas a dispositivos eléctricos que nos interesarán para generar, almacenar, transportar o
Capítulo 27 Corriente y Resistencia
Capítulo 27 Corriente y Resistencia Es como movimiento a Través de un Fluido La fuerza original (en este ejemplo, gravedad) causa movimiento pero eventualmente es cancelada por la fuerza de fricción. Cuando
CORRIENTE CONTINUA ÍNDICE
CORRENTE CONTNUA ÍNDCE 1. ntroducción 2. Resistencia 3. Asociación de resistencias 4. Potencia eléctrica 5. Fuerza electromotriz 6. Leyes de Kirchhoff BBLOGRAFÍA: Cap. 25 del Tipler Mosca, vol. 2, 5ª ed.
1. La corriente eléctrica.
1. La corriente eléctrica. Corriente eléctrica: En sentido amplio, todo movimiento de cargas eléctricas constituye una corriente eléctrica. Sin embargo, se suele denominar corriente eléctrica a un movimiento
DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO
DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO CAMPO ELÉCTRICO El espacio que rodea a un objeto cargado se altera en presencia de la carga. Podemos postular la existencia
Circuitos Simples. e 1. e 2. e 3 I 1 I 2 I 3. Fuente de fem. potencia. Corriente continua. entra sale. lazo 13/05/ :20 FLORENCIO PINELA - ESPOL
Circuitos Simples Fuente de fem R e 1 I 1 e 2 I 2 R potencia Corriente continua I 3 R e 3 I I Vn 0 entra sale lazo FLORENCIO PINELA - ESPOL 1 Qué aprenderemos en este capítulo? Corriente eléctrica: definición
Corriente y Resistencia
Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Corriente y Resistencia La corriente eléctrica La Corriente Eléctrica
Introducción a los circuitos eléctricos
Introducción a los circuitos eléctricos La materia está compuesta por moléculas y éstas por átomos. Los átomos, a su vez, están formados por un núcleo y una corteza. El núcleo consta de partículas con
5.3 La energía en los circuitos eléctricos.
CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones
* Energía en circuitos eléctricos. Ley de Joule.
Tema 2: Electrocinética * Intensidad de corriente eléctrica. * esistencia. Ley de Ohm. * Energía en circuitos eléctricos. Ley de Joule. * Generadores y fem. * Leyes de Kirchhoff. Aplicaciones - Conexiones
Bolilla 9: Corriente Eléctrica
Bolilla 9: Corriente Eléctrica Bolilla 9: Corriente Eléctrica Corriente eléctrica es el flujo de cargas a lo largo de un conductor. Las cargas se mueven debido a una diferencia de potencial aplicada a
LEY DE OHM - CIRCUITOS - RESISTENCIA - INSTRUMENTOS
LEY DE OHM - CICUITOS - ESISTENCIA - INSTUMENTOS Amperímetros y Voltímetros Las dos magnitudes que siempre interesa conocer para un componente de circuito (por ejemplo una resistencia), son la corriente
Tema 5.-Corriente eléctrica
Tema 5: Corriente eléctrica Fundamentos Físicos de la Ingeniería Primer curso de Ingeniería Industrial Curso 2006/2007 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción Corriente eléctrica
Tema 5.-Corriente eléctrica
Tema 5: Corriente eléctrica Fundamentos Físicos de la ngeniería Primer curso de ngeniería ndustrial Curso 2009/2010 Dpto. Física plicada 1 Índice ntroducción Corriente eléctrica Sentido de la corriente
CORRIENTE ELECTRICA. Diferencia de Potencial Eléctrico. Conductores y aislantes
CORRENTE ELECTRCA Diferencia de Potencial Eléctrico. Un objeto de masa m siempre caerá desde mayor altura hasta menor altura. Donde está a mayor altura el objeto posee mayor energía potencial gravitatoria
Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico
Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico 1. Objetivos Comprobación experimental de la ley de Ohm a través de la determinación del valor de una resistencia comercial.
1. Los conductores eléctricos. Las resistencias fijas y variables.
1. Los conductores eléctricos. Las resistencias fijas y variables. La corriente eléctrica continua (DC), se puede explicar como el flujo de electrones por un conductor. Para definir este transporte, se
ASIGNATURA: FÍSICA III
UAP FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III CÓDIGO: 24-211, IV CICLO, 2HR. TEÓRICAS Y 2HR. PRÁCTICAS SESIÓN : 7 (SEMANA 7) TEMA: ELECTRODINÁMICA.
1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación
CIRCUITOS RESISTIVOS: 1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación es un enunciado de la ley de Ohm. Un conductor cumple con la ley de Ohm sólo si su curva V-I es lineal;
B Acumuladores de corriente eléctrica
1 B Acumuladores de corriente eléctrica Condensadores Distintos tipos de condensadores. 2 3 Configuraciones para acoplar condensadores. Pilas y baterías a) Características de las pilas y baterías: Resistencia
Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito.
1 Leyes de Kirchhoff Objetivo Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito. Material 2 Amperímetro Osciloscopio Fluke Generador de onda Computador Fuente
Diseño y Ejecución de una Puesta a Tierra de Baja Resistencia. Qqueshuayllo Cancha, Wilbert Rene.
CAPITULO 1: FUNDAMENTO FISICO DE UNA PUESTA A TIERRA 1.1 Introducción Por puesta a tierra se entiende como la conexión de un conductor eléctrico (electrodo) enterrado en el suelo con la finalidad de dispersar
ELECTRICIDAD Y MAGNETISMO
28-10-2011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA TRES ING. SANTIAGO GONZALEZ LOPEZ CIRCUITOS ELECTRICOS OBJETIVO CARGAS ELECTRICAS EN REPOSO: ELECTROSTATICA CARGAS ELECTRICAS EN MOVIMIENTO: CORRIENTE ELECTRICAS
Tema 4º. Corriente eléctrica
Tema 4º Corriente eléctrica Programa Corriente y densidad de corriente eléctrica. La ecuación de continuidad. Corriente de conducción. Ley de Ohm. Propiedades de conducción en los materiales: Conductores,
TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA
TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA 1. Un conductor esférico de radio a y carga Q es concéntrico con un cascaron esférico más grande de radio b y carga Q, como se muestra en la figura. Encuentre
Unidad. Circuitos eléctricos 5 de corriente continua
Unidad 5 Circuitos eléctricos d i t ti 5 de corriente continua 15.1. 1 El circuito eléctrico A Concepto de energía eléctrica Composición de un átomo. Cationes y aniones. 1 Diferentes métodos para producir
Tema 4: Corriente Eléctrica
1/60 Tema 4: Corriente Eléctrica Fátima Masot Conde Ing. Industrial 2010/11 Tema 4: Corriente Eléctrica 2/60 Índice: 1. Introducción 2. Intensidad de corriente 3. Densidad de corriente 4. Ley de Ohm 5.
ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores
ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta
E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia
Universidad Abierta Interamericana Facultad de Tecnología Informática E.E.S. I Trabajo de Investigación Alumno: Profesor: Cristian La Salvia Lic. Carlos Vallhonrat 2009 Descripción de la investigación...
FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009
FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009 Los circuitos eléctricos instalados en automóviles, casas, fábricas conducen uno de los dos tipos de corriente: Corriente directa
una región a otra. Una misma corriente puede ser producto de cargas positivas que se trasladan en la dirección del campo eléctrico o el mismo
Una corriente es todo movimiento de carga de una región a otra. Una misma corriente puede ser producto de cargas positivas que se trasladan en la dirección del campo eléctrico o el mismo número de cargas
INTERACCIÓN ELÉCTRICA
INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo
Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO
SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares
Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)
Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento
La corriente eléctrica. Juan Ángel Sans Tresserras
La corriente eléctrica Juan Ángel Sans Tresserras E-mail: [email protected] Índice Corriente eléctrica y densidad de corriente Resistencia y ley de Ohm Asociación de resistencias Energía, potencia y ley
ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO
ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO TEMARIO A. ELECTRICIDAD 1. CARGAS ELÉCTRICAS Y LEY DE COULOMB. I Reseña histórica de la electricidad 2. Concepto de carga eléctrica. 3. Tipos de cargas.
ELECTROTECNIA Circuitos de Corriente Continua
ELECTROTECNIA Circuitos de Corriente Continua Juan Guillermo Valenzuela Hernández ([email protected]) Universidad Tecnológica de Pereira Primer Semestre de 2014 Juan Valenzuela 1 Circuito de Corriente
(1) dt dq es la carga que pasa a través de la sección transversal
La corriente y la resisitencia Hasta ahora, se han estudiado muchos casos de la electrostática. Ahora se estudiará la corriente eléctrica que consiste en considerar a las cargas en movimiento. La corriente
Campos Electromagnéticos Estáticos
Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria
Corriente continua (Repaso)
Fundamentos de Tecnología Eléctrica (º ITIM) Tema 0 Corriente continua (epaso) Damián Laloux, 004 Índice Magnitudes esenciales Tensión, corriente, energía y potencia Leyes fundamentales Ley de Ohm, ley
Campos Electromagnéticos Corriente Eléctrica. Profesor: Pedro Labraña Departamento de Física, Universidad del Bío-Bío
Campos Electromagnéticos Corriente Eléctrica Profesor: Pedro Labraña Departamento de Física, Universidad del Bío-Bío Corriente Eléctrica Corriente eléctrica y densidad de corriente, Resistencia y Ley de
Electrotecnia General
Universidad Nacional de Mar del Plata Departamento de Ingeniería Eléctrica Área Electrotecnia Electrotecnia General (para la Carrera Ingeniería Industrial) Leyes Fundamentales Profesor Adjunto: Ingeniero
ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores
ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta
TÉCNICAS Y TEOREMAS PARA EL ANÁLISIS DE CIRCUITOS ELÉCTRICOS
TÉCNICAS Y TEOREMAS PARA EL ANÁLISIS DE CIRCUITOS ELÉCTRICOS UN CIRCUITO ELÉCTRICO ES UNA INTERCONEXIÓN DE ELEMENTOS ELÉCTRICOS. Carga es una propiedad eléctrica de las partículas atómicas de las que se
1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una
1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una sección transversal cualquiera del conductor cada minuto?
5 Aplicaciones de ED de segundo orden
CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos
Dpto de Física UNS Electromagnetismo, Física B y Física II Prof. C Carletti
Problema 1. Un voltaje de corriente continua de 6[V], aplicado a los extremos de un alambre conductor de 1[Km] de longitud y 0.5 [mm] de radio, produce una corriente de 1/6A. Determine: a) La conductividad
CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS
LEYES DE LOS CIRCUITOS ELECTRICOS CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS Con estas leyes podemos hallar las corrientes y voltajes en cada una de las resistencias de los diferentes circuitos de CD.
Figura 1.3.1. Sobre la definición de flujo ΔΦ.
1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de
MÉTODOS DE RESOLUCIÓN DE CIRCUITOS
MÉTODOS DE RESOLUCIÓN DE CIRCUITOS Un circuito eléctrico está formado por elementos activos (generadores) y pasivos (resistencias, condensadores, y bobinas). En muchas ocasiones estos elementos forman
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica
CORRIENTE ELÉCTRICA. Conducción. Convección. Arrastre de cargas en un medio eléctricamente neutro. Un transporte de masa Implica un trasporte de carga
CORRIENTE ELÉCTRICA Movimiento de cargas Corriente eléctrica Conducción Arrastre de cargas en un medio eléctricamente neutro Movimiento de electrones en un hilo conductor Convección Un transporte de masa
Cargas en movimiento. Corriente eléctrica
Cargas en movimiento Corriente eléctrica Naturaleza de la corriente eléctrica: Si unimos dos conductores A y B inicialmente cargados, de potenciales diferentes, a un hilo conductor, se puede observar un
Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo.
Guía de ejercicios supletorio 2do BGU 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. a P A Parámetro Valor Unidad q a -6 µc q b +2 µc q c +1 µc a 50
CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores
CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en
CURSO CERO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA
CURSO CERO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla CIRCUITOS ELECTRICOS CIRCUITOS DE CORRIENTE CONTÍNUA CIRCUITOS DE CORRIENTE
Plan. cuerpo gris factor de forma. Transferencia de Calor p. 1/2
Transferencia de Calor p. 1/2 Plan modos de conducción de calor conducción - ecuación del calor convección radiación estado estacionario, 1D resistencia térmica sistemas con generación de calor aletas,
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO CUESTIONARIO PREVIO PRÁCTICA PLANTEAMIENTO DE UNA RED ELÉCTRICA SENCILLA
CUESTIONARIO PREVIO PRÁCTICA PLANTEAMIENTO DE UNA RED ELÉCTRICA SENCILLA Instrucciones: Responder las siguientes preguntas. 1. Explicar cuál es la utilidad de resolver un sistema de ecuaciones 2. Explicar
GUIA TERCER PARCIAL FÍSICA III GUÍA TERCER PARCIAL 1
GUIA TERCER PARCIAL 1. Qué es electrodinámica? Es la parte de la física y la electricidad que estudia las cargas eléctricas en movimiento y los fenómenos originados por este. 2. Qué son las fuentes de
Tema 5: Corriente Eléctrica
1/45 Tema 5: Corriente Eléctrica Fátima Masot Conde Ing. Industrial 2007/08 Tema 5: Corriente Eléctrica 2/45 Índice: 1. Introducción 2. Intensidad de corriente 3. Densidad de corriente 4. Ley de Ohm 5.
CAPÍTULO I: INTRODUCCIÓN A LA TEORÍA DE CIRCUITOS
Departamento de Ingeniería Eléctrica Fundamentos de Ingeniería Eléctrica CAPÍTLO I: INTRODCCIÓN A LA TEORÍA DE CIRCITOS Juan B. García González Rafael Molina Maldonado Francisco J. Muñoz Gutiérrez Antonio
FISI-3014 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name FISI-3014 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Una resistencia de 330 Ω tiene una banda dorada en la cuarta posición. Su tolerancia
Corriente Directa. La batería se define como fuente de fem
Capítulo 28 Circuitos de Corriente Directa Corriente Directa Cuando la corriente en un circuito tiene una magnitud y una dirección ambas constantes, la corriente se llama corriente directa Como la diferencia
ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1
ELECTROESTÁTICA 1. Naturaleza eléctrica. 2. Interacción electroestática. 3. Campo eléctrico. 4. Energía potencial eléctrica. 5. Potencial eléctrico. 6. Corriente eléctrica continua. 7. Ley de Ohm. 8. Asociación
FÍSICA GENERAL II Programación. Contenidos
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA 1 er Semestre 2011 FÍSICA GENERAL II Programación 1. Control 1: fecha 01 de abril, contenido: Módulos 1, 2 y 3(parcial: determinar diferencias de potencial a partir
ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo.
ENERGIA La energía se define como la capacidad que tiene un sistema para producir trabajo. Tipos de energía almacenada: son aquellos que se encuentran dentro del sistema 1. Energía potencial: es debida
IES RIBERA DE CASTILLA LA CORRIENTE ELÉCTRICA
UNIDAD 9 LA CORRIENTE ELÉCTRICA La intensidad de la corriente. Corriente eléctrica. Conductores. Tipos. Intensidad. Unidades. Sentido de la corriente. Corriente continua y alterna. Resistencia. Resistencia
ASIGNATURA: FÍSICA III
UAP FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III CÓDIGO: 24-211, IV CICLO, 2HR. TEÓRICAS Y 2HR. PRÁCTICAS SESIÓN : 8 (SEMANA 8) TEMA: ELECTRODINÁMICA.
CIRCUITOS EN SERIE Y PARALELO
CIRCUITOS EN SERIE Y PARALELO Objetivos: - Evaluar experimentalmente las reglas de Kirchhoff. - Formular el algoritmo mediante el cual se obtiene la resistencia equivalente de dos o más resistores en serie
DIVISOR DE VOLTAJE Y DIVISOR DE CORRIENTE. Gabriel Orlando Ortiz Zárate Orden SENA C.E.E.T.
DIVISOR DE VOLTAJE Y DIVISOR DE CORRIENTE Gabriel Orlando Ortiz Zárate Orden 40073 SENA C.E.E.T. [email protected] Resumen El presente informe busca mostrar la aplicación de los divisores de voltaje
CORRIENTE ELECTRICA. Presentación extraída de Slideshare.
FISICA II CORRIENTE ELECTRICA Presentación extraída de Slideshare. 1.1 CORRIENTE ELECTRICA CORRIENTE ELECTRICA Moviemiento ordenado y permanente de las partículas cargadas en un conductor, bajo la influencia
Corriente y Resistencia
Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Corriente y Resistencia La corriente eléctrica La Corriente Eléctrica
FIS 1532: Electricidad y Magnetismo
FIS 1532: Electricidad y Magnetismo PROFESOR: Máximo Bañados Horario: Cátedra: L-W Mod 1, Evaluación: El curso será calificado por el trabajo de cátedra y laboratorio, en forma independiente. Ambas partes
ELEMENTOS DE MÁQUINAS Y SISTEMAS
ELEMENTOS DE MÁQUINAS Y SISTEMAS 1.- Circuitos Se denomina circuito eléctrico a un conjunto de elementos conectados entre sí que permiten el paso de la corriente eléctrica, transportando la energía desde
Portal educativo. Visítanos desde
Portal educativo. Visítanos desde www.mastiposde.com Capítulo 27. Corriente y resistencia Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University 2007 Objetivos:
