Procesadores de Lenguaje
|
|
|
- Raquel Morales Maidana
- hace 9 años
- Vistas:
Transcripción
1 Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013
2 Analizadores sintácticos Los analizadores descendentes: Corresponden a un autómata con pila determinista. Construyen un árbol sintáctico de la raíz hacia las hojas (del símbolo inicial hacia los símbolos terminales). Por ejemplo: el analizador LL o predictivo lee los datos de izquierda a derecha (Left to right) y construye la derivación izquierda (Leftmost). Emplea una pila para mantener un resumen de lo que espera ver a continuación hasta el final de los datos. La recursividad izquierda les puede causar problemas. Los analizadores ascendentes (shift-reduce): Corresponden a un autómata con pila determinista. Construyen un árbol sintáctico de las hojas hacia la raíz (de los terminales hacia el símbolo inicial de la gramática). Por ejemplo: los analizadores LR leen los datos de izquierda a derecha (Left to right) y construyen la derivación derecha (Rightmost). ( al revés ) Emplean una pila para mantener un resumen de lo que llevan visto hasta el momento. Son más eficientes con recursividad izquierda.
3 Planteamiento Suponemos que un analizador léxico nos proporciona el siguiente token cuando pedimos leer uno, o un token nulo (representado por $) en caso de fin de datos. (Algunas referencias incluyen también un nuevo símbolo inicial que deriva en el símbolo inicial seguido del marcador de fin de datos: S S $.) Idea clave: La entrada se deriva del símbolo inicial si y sólo si lo que queda por leer se deriva de lo que hay en la pila.
4 Herramientas conceptuales auxiliares Tres nociones importantes Sobre palabras formadas por símbolos de la gramática, tanto terminales como no terminales. Anulabilidad de una palabra, FIRST de una palabra (terminales por los que puede empezar una parte de la entrada que derive de esa palabra), FOLLOW de una palabra (terminales que pueden aparecer en una entrada válida justo a continuación de una parte de la entrada que derive de esa palabra).
5 AnulabilidadFIRSTFOLLOWUn ejemplo (Anulabilidad, FIRST y FOLLOW) Es decir, capacidad para desaparecer Una palabra es anulable si puede derivar en la palabra vacía. Palabras que contienen algún símbolo terminal: Nunca pueden derivar en la palabra vacía, porque un símbolo terminal que participa en una derivación ya no puede desaparecer de ella. Palabras que sólo contienen símbolos no terminales: λ es anulable; si α y β son anulables, αβ son anulables; si la gramática contiene una regla X α y α es anulable, X es anulable. Lo calculamos de manera iterativa, alternativamente para símbolos no terminales y para partes derechas de las reglas: nada es anulable hasta que se demuestra lo contrario. FIRST(α) = {a α puede derivar en aγ}, donde a es un símbolo terminal y α y γ son palabras formadas por símbolos terminales o no terminales.
6 Gramáticas y lenguajes LL(1) Definición Una gramática libre de contexto G = (V, Σ, S, P) es LL(1) si S lm wx γ wαγ lm wu, S lm wx δ wβδ lm wv, FIRST (u) = FIRST (v) implican α = β, donde u, v, w Σ y X V. Se dice sobre un lenguaje que es LL(1) si se puede generar con una gramática LL(1).
7 Ejemplos Gramáticas LL(1) G = ({S}, {(, )}, S, P = {S (S) λ}) En esta gramática es obvio que la primera producción se usa cuando aparece un paréntesis abierto y la segunda cuando aparece el primer paréntesis cerrado. G = ({S}, {a, b}, S, P = {S aab b, A asaa b}) Una gramática LL(2) que no es LL(1) G = ({S}, {a, b}, S, P = {S absba aa}) Ejemplo de lenguaje que no es LL(k) para ningún k L = {a n cb n n 1} {a n db 2n n 1}
8 El analizador LL descendente El analizador LL está utilizando: un buffer para la entrada una pila, con símbolos terminales y no terminales una tabla de análisis En cada paso, el analizador lee un símbolo del buffer y el símbolo que está en la cima de la pila. si coinciden, el analizador los elimina del buffer y de la pila si en la cima de la pila hay un símbolo terminal distinto, devuelve ERROR (la palabra no está aceptada) si en la cima de la pila hay un símbolo no terminal X, el analizador mira la tabla para ver que regla se debe aplicar, y substituye X por la parte derecha de esa regla. Al principio la pila contiene el símbolo inicial S y el símbolo especial $ (el fondo de la pila).
9 Ejemplo G = ({S, F }, {a, (, )}, S, P) con P dado por las reglas siguientes: 1. S F 2. S (S + F ) 3. F a Table: FIRST y FOLLOW Anulable FIRST FOLLOW S no a, ( +, $ F no a +, ), $ Table: Tabla de análisis ( ) a + $ S F Entrada: w = (a + a)
10 Tabla de análisis Para cada símbolo no terminal X y cada símbolo terminal a, añadimos la regla X α si: a FIRST(α), o α es anulable y a FOLLOW(X ) Si la tabla contiene a lo sumo una regla para cada una de sus celdas, entonces el analizador siempre sabe que regla se debe utilizar en cada momento.
11 La tabla de análisis es un autómata con pila Mode de acceptación: estado final Sea G = (V, Σ, S, P) una gramática LL(1). A = (Q, Σ {$}, Γ, δ, q 0, $, F ) Q = {q 0, q e, q f } {q x x Σ} Γ = V Σ {$} F = {q f } δ(q 0, x, x) = (q 0, λ) para todo x Σ δ(q 0, $, $) = (q f, λ) δ(q 0, x, y) = (q e, λ) para todo x, y Σ {$} con x y δ(q e, x, X ) = (q e, X ) para todo x Σ {$}, X Γ δ(q 0, x, X ) = (q x, α) si X α está en la fila X y columna x δ(q x, λ, X ) = δ(q 0, x, X ) para todo X Γ, x Σ
12 Conflictos FIRST/FIRST conflict (dos alternativas empiezan igual) A XB A X α X β B α β FIRST/FOLLOW conflict (el FIRST y el FOLLOW de un símbolo no terminal anulable tienen algo en común) S Aab S aab ab A a λ Recursividad izquierda E TZ E E + T T Z +TZ λ
13 Conflictos (II)
14 Recursividad Izquierda La bendición del análisis ascendente La maldición del análisis descendente: el recursivo entra en bucle. Garantiza ambigüedad en la tabla LL(1). Frecuentemente se puede resolver el problema cambiando un poco la gramática: E E α 1 E α 2... E α k E β 1 β 2... β m (donde las β no pueden derivar en nada que empiece por E) E es: (β 1 β 2... β m )(α 1 α 2... α k )* Z α 1 Z α 2 Z... α k Z λ E β 1 Z β 2 Z... β m Z
Procesadores de Lenguaje
Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales
Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.
Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en
Autómatas de Pila y Lenguajes Incontextuales
Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia
AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO
Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )
Las Etapas de la Compilación
Las de la Compilación El en la Compilación Universidad de Cantabria Outline 1 El Problema 2 Las y el Qué pasos son necesarios dar para hallar la estructura de un programa? En qué pasos podemos dividirlos
Unidad 4. Autómatas de Pila
Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje
GRAMATICAS LIBRES DEL CONTEXTO
GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.
Equivalencia Entre PDA y CFL
Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede
5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones
1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y
Tema: Autómata de Pila
Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas
El Autómata con Pila: Transiciones
El Autómata con Pila: Transiciones El Espacio de Configuraciones Universidad de Cantabria Esquema Introducción 1 Introducción 2 3 Transiciones Necesitamos ahora definir, paso por paso, como se comporta
Procesadores de lenguaje Tema Análisis sintáctico (Parte II)
Procesadores de lenguaje Tema 3 Análisis sintáctico (Parte II) Salvador Sánchez, Daniel Rodríguez Departamento de Ciencias de la Computación Universidad de Alcalá Resumen Análisis sintáctico ascendente
Expresiones Regulares y Derivadas Formales
y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas
PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07
PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07 1. En qué método de análisis sintáctico puede suceder que en la construcción del árbol de derivación de las posibles expansiones de un símbolo no terminal
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: [email protected]
Un autómata con pila no determinista (APND) es una septupla Q A B F en la que
AUTÓMATAS CON PILA Un autómata con pila no determinista (APND) es una septupla Q A F en la que δ q 0 Q es un conjunto finito de estados A es un alfabeto de entrada es un alfabeto para la pila δ es la función
El Autómata con Pila
El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen
MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.
MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.
Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003
Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación
Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50
INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)
Autómatas Finitos Deterministicos (DFA)
Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes
Construcción de tablas de análisis sintáctico LL(1)
Construcción de tablas de análisis sintáctico LL(1) Universidad de Costa Rica Escuela de Ciencias de la Computación e Informática Diego Centeno Gerardo Cortés Juan Diego Alfaro Resumen. A la medida en
Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo
Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo
Compiladores: Parsing ascendente
Compiladores: Parsing ascendente Francisco J Ballesteros LSUB, URJC Page 1 of 64 Parsing ascendente Normalmente utilizaremos parsers descendentes para problemas pequeños cuando podemos escribir uno predictivo
Gramáticas independientes del contexto. Tema 3: Lenguajes independientes del contexto. Derivaciones. Árbol de derivación
Tema 3: Lenguajes independientes del contexto Gramáticas independientes de contexto (GIC) Conceptos básicos Ambigüedad Ejemplos de GICs Autómatas con pila (AP) Definición de autómata con pila Determinismo
Tema 5 Lenguajes independientes del contexto. Sintaxis
Tema 5 Lenguajes independientes del contexto. Sintaxis 1 Gramáticas independientes del contexto Transformación de gramáticas independientes del contexto Autómatas de pila Obtención de un autómata de pila
Lenguajes y Gramáticas
Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas
Tema 3. Análisis sintáctico descendente
Departamento de Tecnologías de la Información Tema 3 Análisis sintáctico Ciencias de la Computación e Inteligencia Artificial Índice 3.1 Características del análisis sintáctico 3.2 Gramáticas libres de
INAOE. Gramáticas Libres de Contexto. Definición formal de CFGs. Derivaciones usando. Derivaciones. izquierda y. derecha.
s s INAOE en s (INAOE) 1 / 67 Contenido s en s 1 s 2 3 4 5 6 7 8 en s (INAOE) 2 / 67 s s s Hemos visto que muchos lenguajes no son regulares. Por lo que necesitamos una clase más grande de lenguages Las
Procesadores de lenguaje Tema Análisis sintáctico (Parte I)
Procesadores de lenguaje Tema 3 Análisis sintáctico (Parte I) Departamento de Ciencias de la Computación Universidad de Alcalá Resumen Introducción Conceptos básicos Tipos de analizadores Gramáticas independientes
PROGRAMA DE LABORATORIO SECCIÓN: ÁREA A LA QUE PERTENECE: POS-REQUISITO: AUXILIAR:
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS PROGRAMA DE LABORATORIO CÓDIGO: 777 CRÉDITOS: 4 NOMBRE CURSO: ESCUELA: PRE-REQUISITO: Organización de Lenguajes y Compiladores
Computabilidad y Lenguajes Formales: Autómatas de Pila
300CIG007 Computabilidad y Lenguajes Formales: Autómatas de Pila Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Basado en [SIPSER, Chapter 2] Autómatas
Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b*
UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS
Autómatas Deterministas. Ivan Olmos Pineda
Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.
Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto
Expresiones regulares, gramáticas regulares
Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde
Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45
Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales
Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto
Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,
Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42
Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales
Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales
Se prohíbe la reproducción total o parcial de este documento, excepto para uso privado de los alumnos de la asignatura Teoría de Autómatas I de la UNED y los alumnos de asignaturas equivalentes de otras
Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado.
Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 10 Gramaticas Independientes del Contexto Nivel del
Computabilidad y Lenguajes Formales: Autómatas Finitos
300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada
Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I
Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:
Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales
Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción
3. Determinantes. Propiedades. Depto. de Álgebra, curso
Depto de Álgebra curso 06-07 3 Determinantes Propiedades Ejercicio 3 Use la definición para calcular el valor del determinante de cada una de las siguientes matrices: 3 0 0 α A = 5 4 0 A = 6 A 3 = 0 β
Clase 17: Autómatas de pila
Solicitado: Ejercicios 14: Autómatas de pila de GLC M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom [email protected] 1 Contenido Autómata de pila Definición
Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014
Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones
Tema 1.3. Un lenguaje mínimo y su procesador: Restricciones contextuales
Tema 1.3. Un lenguaje mínimo y su procesador: Restricciones contextuales Profesor Federico Peinado Elaboración del material José Luis Sia Federico Peinado Facultad de Informática Universidad Complutense
Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales
Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt [email protected] Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre
Modelos Computacionales
Análisis y Complejidad de Algoritmos Modelos Computacionales Arturo Díaz Pérez El circuito lógico La máquina de estados finitos La máquina de acceso aleatorio La máquina de Turing Compuertas Lógicas Compuerta
LENGUAJES FORMALES Y AUTÓMATAS
LENGUAJES FORMALES Y AUTÓMATAS Departamento de Lenguajes y Sistemas Informáticos Escuela Técnica Superior de Ingeniería Informática Universidad de Sevilla Víctor J. Díaz Madrigal José Miguel Cañete Valdeón
Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta.
Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. (a) Es posible aceptar por stack vacío el lenguaje {0 i 1 j i = j o j = 2i} con un AA determinístico.
PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA
Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.
0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales
6. Autómatas a Pila Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar
Recopilación de ejercicios sobre expresiones regulares en exámenes de Compiladores e intérpretes
Recopilación de ejercicios sobre expresiones regulares en exámenes de Compiladores e intérpretes IG29: Compiladores e intérpretes Segunda sesión de teoría Bloque 1: Modelado Ejercicio 1 Modela mediante
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas
Tema 3.1: Autómatas Finitos Deterministas Luis Peña [email protected] http://www.ia.urjc.es/cms/es/docencia/ic-msal Sumario Tema 3.1: Autómatas Finitos Deterministas. 1. Concepto de AFD 2. Equivalencia
Teoría de Autómatas y Lenguajes Formales. Laura M. Castro Souto
Teoría de Autómatas y Lenguajes Formales Laura M. Castro Souto Primer Cuatrimestre Curso 2000/2001 2 Índice de Tablas 3 4 ÍNDICE DE TABLAS Capítulo 0 Introducción En la asignatura de Teoría de Autómatas
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 3
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 3 1. Equivalencia entre autómatas 1.1. Equivalencia entre AFD y AFN 1.1. Equivalencia entre AFD y AFλ 2. Ejercicios propuestos 1. Equivalencia entre autómatas
Matemáticas. ticas Discretas. Lenguajes y Gramáticas. Tenemos dos clases de lenguaje: Lenguaje Formal
Matemáticas ticas Discretas y Gramáticas y Gramáticas Tenemos dos clases de lenguaje: Lenguaje Natural Lenguaje Formal Lenguaje Formal De acuerdo al diccionario Webster, un lenguaje es un cuerpo de palabras
Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007.
Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Programa de Autómata y Lenguajes Formales Curso: Autómata y Lenguajes Formales Codificación:
Capítulo 5: Traducción Dirigida por Sintaxis
Capítulo 5: Traducción Dirigida por Sintaxis Javier Carvajal Universidad de Costa Rica, Escuela de Ciencias de la Computación e Informática, San José, Costa Rica, [email protected] and
Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]*
Procesadores de lenguaje Ejercicios del Tema 2 Ejercicio 2.1 Sean L = {a, aa, b} y M = {ab, b }. Describe LM y M 3 por enumercaión LM = { aab, ab, aaab, bab, bb } M 3 = { ababab, ababb, abbab, abbb, babab,
Cálculo numérico. Sistemas de ecuaciones lineales.
José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...
Capítulo 7: Expresiones Regulares
Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión
Introducción a Autómatas Finitos
Introducción a e. Universidad de Cantabria Esquema 1 Introducción 2 3 Grafo de λ Transiciones Eliminación de las λ-transiciones 4 El Problema Podemos interpretar un autómata como un evaluador de la función
PRÁCTICAS DE OPENOFFICE CALC
ÍNDICE: PRÁCTICAS DE OPENOFFICE CALC Práctica 1 Práctica 2 Práctica 3 Práctica 4 Práctica 5 Práctica 6 Práctica 7 Práctica 8 Práctica 9 Conocer las operaciones básicas: suma, resta, multiplicación, división,
Minería de Datos. Árboles de Decisión. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria
Minería de Datos Árboles de Decisión Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Otoño de 2012 Twenty questions Intuición sobre los árboles de decisión Juego
Divisibilidad de un número real entre otro
Divisibilidad de un número real entre otro Objetivos Definir (o repasar) el concepto de divisibilidad de un número real entre otro Establecer algunas propiedades básicas de esta relación binaria Requisitos
2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.
U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán
Tema 3: Análisis sintáctico descendente. Cómo funciona el analizador sintáctico?
Tema 3: Análisis sintáctico descendente Procesamiento de Lenguajes Dept. de Lenguajes y Sistemas Informáticos Universidad de Alicante Procesamiento de Lenguajes Tema 3: Análisis sintáctico descendente
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)
13.3. MT para reconocer lenguajes
13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática
Sistemas de ecuaciones lineales dependientes de un parámetro
Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales 1. Estudiar el sistema de ecuaciones según los valores del parámetro a. ax + y + z = a x y + z = a 1 x + (a 1)y + az = a + 3 Resolverlo (si es posible) para a = 1. (Junio
4 o Ingeniería Informática
Esquema del tema 1. Introducción 2. Gramáticas incontextuales 4 o Ingeniería Informática II26 Procesadores de lenguaje Analizador sintáctico 3. Algunas construcciones de los lenguajes de programación 4.
No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:
1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.
Teoría de Lenguajes. Gramáticas incontextuales
Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.
Unidad V Análisis Semántico. M.C. Juan Carlos Olivares Rojas
Unidad V Análisis Semántico M.C. Juan Carlos Olivares Rojas Agenda 5.1 Analizador semántico 5.2 Verificación de tipos en expresiones. 5.3 Conversión de tipos. 5.4 Acciones agregadas en un analizador sintáctico
ANGULOS. La unidad de medida es el grado sexagesimal. La "circunferencia completa " mide 360º (grados sexagesimales). Además considere que.
PREUNIVERSITARIO PROGRAMA DE NIVELACIÓN Y REFORZAMIENTO M 04 PRO-OCTAV@ TEXTO Nº 2 GEOMETRÍA ANGULOS SISTEMAS DE UNIDADES DE MEDIDA: SISTEMA SEXAGESIMAL: La unidad de medida es el grado sexagesimal. La
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
TEMA 1: GEOMETRÍA EN EL ESPACIO
MATEMÁTICA 2do año A y B Marzo, 2012 TEMA 1: GEOMETRÍA EN EL ESPACIO Ejercicio 1: Indica si cada una de las siguientes proposiciones es verdadera o falsa: Por un punto pasa una recta y una sola Dos puntos
1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo.
Capítulo 5 Campos finitos 5.1. Introducción Presentaremos algunos conceptos básicos de la teoría de los campos finitos. Para mayor información, consultar el texto de McEliece [61] o el de Lidl y Niederreiter
GENERADOR DE COMPILADORES BASADO EN
GENERADOR DE COMPILADORES BASADO EN ANALIZADORES ASCENDENTES Memoria del Proyecto de Final de Carrera Ingeniería Informática realizado por Laia Felip Molina y dirigido por Xavier Sánchez Pujades Bellaterra,
Matrices y determinantes. Sistemas de ecuaciones lineales
Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo
Superficies cuádricas
Superficies cuádricas Jana Rodriguez Hertz GAL2 IMERL 9 de noviembre de 2010 definición superficie cuádrica definición (forma cuadrática) una superficie cuádrica está dada por la ecuación: definición superficie
Unidad I: Análisis semántico
Unidad I: Análisis semántico 1.1 Arboles de expresiones Los árboles de expresiones representan el código de nivel del lenguaje en forma de datos. Los datos se almacenan en una estructura con forma de árbol.
Alonso Ramírez Manzanares Computación y Algoritmos 10.03
Recursividad mat-151 1 Ejercicio de recursión: dibujando una regla Queremos dibujar las marcas de diferentes tamaños de una regla. Marcas grandes cada 1/2 cm, marcas más pequeñas cada 1/4 cm... hasta una
Exterior del algoritmo. Entorno. Usuario. Procesador. Escribir. v1 v2 v3. Leer. <acción> {; <acción>}
Bloque II. 2. Objetos y acciones elementales Bloque II. 2. Objetos y acciones elementales Objetivos: Familiarizarse con conceptos de entorno, objeto y tipo Entender qué significa que un objeto sea de un
