1.-/ ESCALAS DE INTEGRACIÓN DE LOS CIRCUITOS LÓGICOS SSI, MSI, LSI Y VLSI

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.-/ ESCALAS DE INTEGRACIÓN DE LOS CIRCUITOS LÓGICOS SSI, MSI, LSI Y VLSI"

Transcripción

1 1.-/ ESCALAS DE INTEGRACIÓN DE LOS CIRCUITOS LÓGICOS SSI, MSI, LSI Y VLSI La rapidez del desarrollo tecnólogico ha dado lugar a que se puedan integrar simultáneamente en un mismo dispositivo un número determinado de puertas entre sí, que realizan una función concreta, así a principio de los años sesenta llegó la aparición del circuito integrado A partir de entonces se han ido mejorando las técnicas de fabricación de forma espectacular, hasta llegar a la actualidad, donde es posible encontrar en una superficie de algo más de 1 cm cuadrado cientos de miles de puertas lógicas. Dependiendo del número de elementos puertas que se encuentren integrados en el chip se dice que ese circuito está dentro de una determinada escala de integración. Las escalas que aquí vamos a tratar son las siguientes: SSI (Short Scale Integration): Es la escala de integración mas pequeña de todas, y comprende a todos aquellos integrados compuestos por menos de 12 puertas MSI (Médium Scale Integration): Esta escala comprende todos aquellos integrados cuyo número de puertas oscila ente 12 y 100 puertas. Es común en sumadores, multiplexores,... Estos integrados son los que se usaban en los primeros ordenadores aparecidos hacia LSI (Large Scale Integration): A esta escala pertenecen todos aquellos integrados que contienen más de 100 puertas lógicas (lo cual conlleva unos 1000 componentes integrados individualmente), hasta las mil puertas. Estos integrados realizan una función completa, como es el caso de las operaciones esenciales de una calculadora o el almacenamiento de una gran cantidad de bits. La aparición de los circuitos integrados a gran escala, dio paso a la construcción del microprocesador. Los primeros funcionaban con 4 bits (1971) e integraban unos transistores; rápidamente se pasó a los de 8 bits (1974) y se integraban hasta transistores. Posteriormente aparecieron los microprocesadores de circuitos integrados VLSI VLSI: (Very Large Scale Integration) de 1000 a puertas por circuito integrado, los cuales aparecen para consolidar la industria de los integrados y para desplazar definitivamente la tecnología de los componentes aislados y dan inicio a la era de la miniaturizacion de los equipos apareciendo y haciendo cada vez mas común la manufactura y el uso de los equipos portatiles. 2.-/CARACTERÍSTICAS GENERALES DE LAS PUERTAS INTEGRADAS Las caraterísticas funcionales de los circuitos integrados a tener en cuenta en el proceso de diseño, montaje, comprobación y uso, son las siguientes: 2.1.-/TENSIÓN DE ALIMENTACIÓN Y TOLERANCIA La tensión típica de los circuitos de los circuitos integrados es de 5 v. Dicha tensión es común en las series TTL, cuya tensión oscila entre 4 75 y 5 25 v, requiriendo de esta forma una fuente de alimentación bien filtrada y estabilizada. Las puertas CMOS

2 poseen un margen de alimentación mucho más amplio (entre 3 y 18 v), y no requieren ni estabilidad ni ausencia de rizado en estas / TEMPERATURA MÁXIMA DE TRABAJO: Existe un intervalo de temperaturas para el cual está garantizado el funcionamiento de los circuitos integrados digitales: el intervalo "normal" de funcionamiento va de -40ºC a 85ºC para CMOS y de 0ºC a 70ºC en TTL (en ambos casos con indicativo 74). Existen, además, series denominadas "militares" para aplicaciones que requieren mayor rango de temperaturas, de -55ºC a 125ºC se distinguen porque su numeración empieza por 54 y su encapsulado es cerámico. Ha de tenerse en cuenta que las características de una puerta lógica varían fuertemente con la temperatura; en general empeoran al aumentar la temperatura, lo cual se refleja en reducción de los márgenes de ruido y de la velocidad de trabajo y en aumento del consumo. El mismo circuito desprende calor, como consecuencia de la disipación de la energía que utiliza en su funcionamiento, y causa una elevación de su propia temperatura que, en ocasiones, puede ser importante. Por ello, el diseño de un sistema digital ha de tener en cuenta el rango de temperaturas en el que va a trabajar y, si es preciso, debe incluir un mecanismo de refrigeración adecuado. Otra indicación de temperatura que proporcionan los catálogos es el rango que soportan los circuitos integrados para su almacenamiento, que suele ser de -65ºC a 150ºC 2.3.-/ FAN OUT: Este término se emplea para indicar el máximo número de entradas que se pueden conectar a un determinado circuito. Está relacionado directamente con la máxima corriente que puede circular por la salida de un determinado circuito digital, expresada en unidad de carga (la corriente máxima que circula por una entrada de la puerta básica de la familia lógica considerada). Si una puerta tiene un fan-out de 15, lo que nos quiere decir es que no se pueden conectar más de 10 entradas a esa salida (siempre de la misma familia) La familia lógica TTL tiene un fan-out de 10, mientras que la familia lógica CMOS tiene un fan-out de / NIVELES DE TENSIÓN DE ENTRADA Y SALIDA: Dada una determinada familia lógica con una alimentación concreta, existirán una serie de valores de tensión para la entrada mediante los cuales ésta podrá discernir el valor de voltaje que por ella introduzca interpretándolo como nivel bajo, "0" lógico o nivel alto, "1" lógico. A la salida sucede igualmente, es decir, habrá dos niveles de tensión que delimitarán el estado Alto o Bajo de ella.

3 Cualquier valor comprendido entre +2,5 y la alimentación (=+5V) apli-cada a la entrada de una puerta lógica, ésta lo interpretará como un "1" lógico. Por lo que existe un valor mínimo para la tensión del estado alto que denominamos VIHmin. (El valor máximo para el nivel alto en la entrada coincide aproximadamente con la alimentación). Igual podemos decir que, cuando la tensión en una de sus entradas está comprendida entre 0 y +1,5 V., la puerta interpretará que se trata de un "0" lógico; por lo tanto existe un valor máximo de tensión a la entrada que representa un "0" lógico y que denominamos VILmax. Para la salida, en 0: una puerta que responde con un nivel alto ("1" lógico) el valor de la tensión estará comprendido entre +3 y +5V. Cuando el valor de la tensión de salida está comprendido entre 0 y +1 voltio, se interpreta que hay un "0" lógico, por lo que valor máximo a la salida para niveles bajos VOLmax es de 1V y entra dentro de los valores admitidos a la entrada como niveles bajos. Con un valor de tensión la entrada, comprendido entre +1,5 y +2,5 V no hay garantía de que la puerta lo interprete correctamente. A la salida, una puerta que dé una tensión, comprendida entre +1 y +3 V no funciona de manera correcta dado que puede entregar un valor a la entrada de la siguiente puerta, dentro de un rango prohibido / MARGEN DE RUIDO El ruido es un tema de vital importancia, que se debe tener presente en el diseño de sistemas electrónicos, tanto analógicos como digitales. En muchas ocasiones, el ruido es fuente de problemas para el diseñador, ya que no es fácil conocer el origen del mismo y sus efectos sobre el equipo o sistema diseñado. Se entiende por ruido toda perturbación no voluntaria que pueda modificar de forma inadecuada los niveles de salida de un integrado, es decir, que aparezca en una salida un nivel de tensión alto cuando debería ser bajo o viceversa. Las fuentes de ruido más importantes suelen ser: Ruido ambiental, radiado en las cercanías del sistema digital. Algunos ejemplos son: motores con escobillas, contactores, relés, máquinas de soldadura, etc. Ruido exterior al sistema digital, que se acopla por la fuente de alimentación. Picos en la alimentación provocados por cambios bruscos de consumo. Por ejemplo, conmutaciones sobre líneas de alterna o continua con cargas fuertes. Ruido acoplado en conexiones o- líneas cercanas. Ruido producido por reflexiones y oscilaciones en líneas mal adaptadas. Los tipos de acoplo entre las fuentes de ruido y el circuito susceptible a él son: Acoplo por impedancia común. Acoplo magnético o inductivo. Acoplo electrostático Acoplo por radiación El ruido se puede presentar en un sistema digital de dos formas: Como una tensión de variación aleatoria, pero con una cierta componente continua (o pulsos de larga duración) que se suma algebráicamente a los niveles de las tensiones del circuito sacando a éstas de sus márgenes permitidos Este tipo de ruido se denomina ruido en continua (D. C.) o analógico.

4 Como impulsos de menor duración que, según su amplitud, pueden ser interpretados como niveles altos o como bajos. Este tipo de ruido, cuyo camino de acoplo suele ser capacitivo, se denomina ruido en alterna (A. C.). En determinados casos, cuando el nivel de ruido es del orden de magnitud de la señal eléctrica, esta puede llegar a ser enmascarada con el con-siguiente mal funcionamiento del circuito, como veremos a continuación: Supongamos que a la salida de la puerta A, hay un "0" lógico, esto significa que la tensión en ese punto puede ser cualquier valor comprendido entre 0 y +1 Voltio, como a la entrada de la puerta B cualquier valor comprendido entre 0 y +1,5 Voltios. Lo interpreta como "0" lógico estaría dentro del margen de seguridad, pero si la puerta A generase una cantidad de ruido mayor a 0,5 Voltios, o la entrada a la puerta B lo captase, significaría esto que la entrada de la puerta B se encontraría con una tensión mayor de +1,5 Voltios que es la VILmax que nos garantiza el buen funcionamiento del circuito; luego podemos decir que el margen de ruido permitido (en las peores condiciones) es de 0,5 V. O lo que es lo mismo, la inmunidad al ruido para niveles bajos es de 0,5 V. Como el ruido puede hacer que la señal eléctrica aumente o disminuya su valor como indica la figura anterior para un nivel alto de salida en la puerta A de +3 V está dentro del margen de entrada aceptado por la puerta B no estaría garantizado, por lo que igualmente la inmunidad al ruido a nivel alto sería también 0,5 V. Resumiendo podemos decir que los márgenes entre VOLmax, VILmax por un lado y VOHmin, VIHmin por otro han de ser lo más grande posible posible al objeto de que un circuito sea lo más inmune posible al ruido y tenga las máximas garantías de funcionamiento / TIEMPO DE PROPAGACIÓN MEDIO: Definimos como tiempo de propagación el tiempo transcurrido desde que la señal de entrada pasa por un determinado valor hasta que la salida reacciona a dicho valor. vamos a tener dos tiempos de propagación: Tplh = Tiempo de paso de nivel alto a bajo: es el tiempo entre un determinado punto del impulso de entrada y el correspondiente impulso de salida, cuando la salida cambia de 0 a 1. Tphl = Tiempo de paso de nivel bajo a alto: es el tiempo entre un determinado punto del impulso de entrada y el correspondiente impulso de salida, cuando la salida cambia de 1 a 0. Como norma se suele emplear el tiempo medio de propagación, que se calcula como: Tpd = (Tphl + Tplh)/ / DISIPACIÓN DE POTENCIA

5 Teniendo presente que los niveles de tensión de entrada y salida de los circuitos digitales pueden adoptar dos valores perfectamente definidos (L o H) y la disipación de potencia para cada uno de estos dos estados es diferente, la disipación de potencia en circuitos digitales se define bajo las condiciones de un ciclo de trabajo del 50 %; es decir, trabajando en un régimen en que la mitad del tiempo hay niveles bajos y la otra mitad niveles altos. Si se llama PL, a la potencia disipada cuando hay un nivel bajo Y PH a la potencia disipada ante un nivel alto, se tendrá que la potencia media total, PT, valdrá: Cuanto menor sea el consumo por puerta lógica, para una determinada tecnología de fabricación, mayor será el número de puertas que se podrán integrar sobre un mismo chip sin superar los límites de disipación del sustrato del mismo. De ahí la importancia, para altas densidades de integración, de que la disipación de potencia sea lo menor posible. Desde el punto de vista global de un equipo digital, la potencia disipada es un parámetro importante (que depende del consumo de cada uno de los elementos que lo constituyen), que deberá reducirse en la medida de lo posible, ya que ello supone minimizar los costos de refrigeración, fuente de alimentación y líneas de distribución. En algunas tecnologías apenas existe consumo de energía cuando los niveles de tensiones no varían, pero sí que existe cuando se producen transiciones de nivel alto a bajo o viceversa. En estos casos es común distinguir entre disipación de potencia en condiciones estáticas (sin transiciones entre niveles) y en condiciones dinámicas (con transición de niveles). En este último caso la disipación de potencia depende fuertemente de la rapidez de las transiciones de niveles, es decir, de la frecuencia de las señales involucradas. 3.-/ FAMILIA TTL La familia lógica transistor-transistor es la más usada. Todos los fabricantes de cierta importancia tienen una línea de productos TTL y, en general, los Cl TTL son producidos por casi todas las compañías. La familia TTL consta a su vez de las siguientes subfamflias: TTL estándar TTL de baja potencia o bajo consumo TTL de alta velocidad TTL Schottky TTL Schottky de baja potencia TTL es estandar El circuito funciona con una alimentación única de + 5V, ± 5 % y es compatible con todos los circuitos de otras subfamilias TTL, así como también con la familia lógica DTL. Tiene un retraso típico de 10 ns, temperatura de trabajo de 0ºC a 70ºC, fan-out de 10, margen de ruido en estado 0 y en 1 de 400 mv, una potencia de disipación de 10 mw or puerta y una frecuencia maxima para los flip-flop de 35 MHz. Corresponde a la serie SN de Texas, conocida y utilizada mundialmente.

6 TTL de baja potencia " LPTTL, serie L) Tiene un retraso de propagación típico de 33 ns, una potencia de consumo por puerta de 1 mw y una frecuencia máxima de 3 MHz de funcionamiento para los flip-flop. Su empleo se especializa en aplicaciones de bajo consumo y mínima disipación. TTL de alta velocidad (HTTL, Serie SN 54 H174 H) Los parámetros típicos de esta subfamilia son: retraso en la propagación por puerta de 6 ns, consumo de 22 mw por puerta y frecuencia operativa máxima de flip-flop de 50 MHz. TTL Schottky (STTL, Serie SN 54 S/74/S) El circuito TTI, Schottky ha sido uno de los más recientes desarrollos y constituye el más rápido de las subfamilias TTL, aproximándose su velocidad a la familia lógica ECL. Se caracterizan por su rapidez, ya que no almacenan cargas y porque son muy sencillos de fabricar. El circuito es similar al TTL de alta velocidad, pero la base de cada transistor está conectada al colector a través de un diodo de Schottky. El diodo actúa como desviador de] exceso de corriente de base cuando el transistor se activa, y guarda una carga almacenada, evitando la saturación de los transistores. La ausencia de-una carga almacenada reduce el tiempo del cambio del transistor y aumenta la velocidad del circuito. La subfamilia Schottky tiene una propagación típica de 3 ns, un consumo de 19 mw y una frecuencia máxima de flip-flop de 125 MHz. TTL Schottky de baja potencia- (LSTTL, Serie 54 LS174 LS) El circuito TTL Schottky de baja potencia es el Uiás reciente de la familia TTL y con él se ha intentado llegar a un compromiso entre la velocidad y la potencia consumida.. Tiene una propagación típica de 10 ns (igual que la TTL estándar) y un consumo por puerta de sólo 2 mw, con una frecuencia máxima de flip-flop de 35 MHz. FAMILIA CMOS La familia lógica de MOS complementarios está caracterizada por su bajo consumo. Es la más reciente de todas las grandes familias y la única cuyos componentes se construyen mediante el proceso MOS. El elemento básico de la CMOS es un inversor. Los transistores CMOS tienen características que los diferencian notablemente de los bipolares: Bajo consumo, puesto que una puerta CMOS sólo consume 0,01 mw en condiciones estáticas (cuando no cambia el nivel). Si opera con frecuencias elevadas comprendidas entre 5 y 10 MHz, el consumo es de 10 mw. Los circuitos CMOS poseen una elevada inmunidad al ruido, normalmente sobre el 30 y el 45 % del nivel lógico entre el estado 1 y el 0. Este margen alto sólo es comparable con el de la familia HTL.

7 Con las ventajas reseñadas, la familia CMOS se emplea en circuitos digitales alimentados por baterías y en sistemas especiales que tienen que funcionar durante largos períodos de tiempo, con bajos niveles de potencia. La elevada inmunidad al ruido es la ventaja principal para su aplicación en los automatismos industriales. Las desventajas que sobresalen en la familia CMOS son su baja velocidad, con un retardo típico de 25 a 50 ns o más, especialmente cuando la puerta tiene como carga un elemento capacitivo; también hay que citar que el proceso de fabricación es más caro y complejo y, finalmente, la dificultad del acoplamiento de esta familia con las restantes. Una característica muy importante de la familia CMOS es la que se refiere al margen de tensiones de alimentación, que abarca desde los 3 a los 15 V, lo que permite la conexión directa de los componentes de dicha familia con los de la TTL, cuando se alimenta con 5 V a los circuitos integrados CMOS. La serie 4000 de circuitos integrados CMOS es muy popular y consta, entre otros, de los siguientes modelos Dos puertas NOR de 3 entradas y un inversor puertas NOR de 2 entradas puertas NOR de 4 entradas puertas NAND de 2 entradas puertas NAND de 4 entradas biestables tipo D registros de desplazamiento de 4 bits Divisor-contador de décadas con 10 salidas Contador binario de 14 etapas puertas NAND de 3 entradas puertas NOR de 3 entradas bíestables J-K Decodificador BCD/decimal Registro de desplazamiento con entrada serie/paralelo y salida paralelo registros D RS con puertas NOR RS con puertas NAND buffer inversores Multiplexor/demultiplexor analógico de 8 canales multiplexores/demultiplexores de 4 canales Una puerta NAND de 8 entradas inversores puertas EOR de 2 entradas puertas OR de 2 entradas puertas OR de 4 entradas puertas AND de 2 entradas. Dentro de la familia CMOS, se ha citado la serie 4000, que se caracteriza por tener una tensión de alimentación de 3 a 18 V, un consumo por puerta de 2,5 nw y un tiempo de propagación por puerta de 40 ns. En el mismo grupo hay dos subfamilias, cada vez más empleadas, que son:

8 HCMOS (CMOS de Alta Velocidad), con tensión de alimentación éntre 2 y 6 V, consumo de 2,5 nw y tiempo de retraso de 9 ns. Es la serie 74HC. HCMOS (CMOS de alta velocidad y compatible con TTL), con tensión de alimentación de 5 V, consumo de 2,5 nw y tiempq de retraso por puerta de 9 ns.. Es la serie 74HCT. Así como cuando se trabaja con puertas TTL si una entrada no utilizada se deja sin polarizar actúa como entrada con nivel alto, en las de tecnología CMOS se deben de unir directamente a la alimentación o a masa, según se desee se comporten con nivel alto o bajo, respectivamente. A continuación se exponen los valores más relevantes de los parámetros de la familia CMOS, alimentada a 5 V, y los de la TTL.

Introducción al álgebra de Boole. Operaciones lógicas básicas. Propiedades del álgebra de Boole. a b a+b

Introducción al álgebra de Boole. Operaciones lógicas básicas. Propiedades del álgebra de Boole. a b a+b Introducción al álgebra de Boole Muchos componentes utilizados en sistemas de control, como contactores y relés, presentan dos estados claramente diferenciados (abierto o cerrado, conduce o no conduce).

Más detalles

Los rangos de salidas esperados varían normalmente entre 0 y 0.4V para una salida baja y de 2.4 a 5V para una salida alta.

Los rangos de salidas esperados varían normalmente entre 0 y 0.4V para una salida baja y de 2.4 a 5V para una salida alta. FAMILIAS LOGICAS DE CIRCUITOS INTEGRADOS Una familia lógica es el conjunto de circuitos integrados (CI s) los cuales pueden ser interconectados entre si sin ningún tipo de Interface o aditamento, es decir,

Más detalles

TECNOLOGÍA DE LOS SISTEMAS DIGITALES

TECNOLOGÍA DE LOS SISTEMAS DIGITALES TECNOLOGÍA DE LOS SISTEMAS DIGITALES ESCALAS DE INTEGRACIÓN TECNOLOGÍAS SOPORTES FAMILIAS LÓGICAS FAMILIAS LÓGICAS BIPOLAR MOS BICMOS GaAs TTL ECL CMOS NMOS TRANSMISIÓN DINÁMICOS PARÁMETROS CARACTERÍSTICOS

Más detalles

TECNOLOGÍA PUERTAS LÓGICAS

TECNOLOGÍA PUERTAS LÓGICAS Tema 48 Educación Secundaria magister TECNOLOGÍA PUERTAS LÓGICAS 1. Puertas lógicas: concepto y características. 2. Técnicas de diseño y simplificación de funciones lógicas. 3. Puertas lógicas integradas:

Más detalles

1. Introducción. 2. Familias Lógicas

1. Introducción. 2. Familias Lógicas 1. Introducción Por el rápido progreso de las tecnologías de los IC s digitales, la integración ha llegado a grandes escalas pasando de pequeña escala (SSI) hasta la integración de Giga Escala (GSI). La

Más detalles

CAPITULO IV FAMILIAS LÓGICAS

CAPITULO IV FAMILIAS LÓGICAS FAMILIAS LÓGICAS CAPITULO IV FAMILIAS LÓGICAS FAMILIAS LÓGICAS Una familia lógica es un grupo de dispositivos digitales que comparten una tecnología común de fabricación y tienen estandarizadas sus características

Más detalles

Introducción a los Sistemas Digitales. Tema 1

Introducción a los Sistemas Digitales. Tema 1 Introducción a los Sistemas Digitales Tema 1 Qué sabrás al final del tema? Diferencia entre analógico y digital Cómo se usan niveles de tensión para representar magnitudes digitales Parámetros de una señal

Más detalles

PUERTAS LOGICAS. Objetivo específico Conectar los circuitos integrados CI TTL Comprobar el funcionamiento lógico del AND, OR, NOT, NAND y NOR

PUERTAS LOGICAS. Objetivo específico Conectar los circuitos integrados CI TTL Comprobar el funcionamiento lógico del AND, OR, NOT, NAND y NOR Cód. 25243 Laboratorio electrónico Nº 5 PUERTAS LOGICAS Objetivo Aplicar los conocimientos de puertas lógicas Familiarizarse con los circuitos integrados Objetivo específico Conectar los circuitos integrados

Más detalles

Compuertas Lógicas. Apunte N 2

Compuertas Lógicas. Apunte N 2 Compuertas Lógicas Apunte N 2 C o m p u e r t a s Lógicas Las compuertas lógicas son dispositivos que operan con estados lógicos y funcionan igual que una calculadora, de un lado ingresan los datos, ésta

Más detalles

TEMA 7. FAMILIAS LOGICAS INTEGRADAS

TEMA 7. FAMILIAS LOGICAS INTEGRADAS TEMA 7. FAMILIAS LOGICAS INTEGRADAS http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 Aniversary: http://www.flickr.com/photos/ieee25/with/289342254/ TEMA 7 FAMILIAS

Más detalles

Anexo V: Amplificadores operacionales

Anexo V: Amplificadores operacionales Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas

Más detalles

PRACTICA Nº3: FAMILIAS LOGICAS

PRACTICA Nº3: FAMILIAS LOGICAS PRACTICA Nº3: FAMILIAS LOGICAS El objetivo de esta práctica es comprobar el funcionamiento de los inversores básicos bipolar y MOS, observando sus características de transferencia y midiendo sus parámetros.

Más detalles

MANUAL COMPLETO TTL I N D I C E

MANUAL COMPLETO TTL I N D I C E I N D I C E - CARACTERÍSTICAS DE LOS CIRCUITOS DIGITALES - ESCALAS DE INTEGRACIÓN DE LOS CIRCUITOS DIGITALES - SSI, MSI, LSI, VLSI. MANUAL COMPLETO TTL - FAMILIAS LOGICAS DE LOS CIRCUITOS DIGITALES - CARACTERÍSTICAS

Más detalles

INDICE. XIII Introducción. XV 1. Introducción a la técnica digital 1.1. Introducción

INDICE. XIII Introducción. XV 1. Introducción a la técnica digital 1.1. Introducción INDICE Prologo XIII Introducción XV 1. Introducción a la técnica digital 1.1. Introducción 1 1.2. Señales analógicas y digitales 1.2.1. Señales analógicas 1.2.2. Señales digitales 2 1.3. Procesos digitales

Más detalles

DIFERENCIA, VENTAJAS Y DESVENTAJAS DE INSTRUMENTOS ANALÓGICOS Y DIGITALES

DIFERENCIA, VENTAJAS Y DESVENTAJAS DE INSTRUMENTOS ANALÓGICOS Y DIGITALES DIFERENCIA, VENTAJAS Y DESVENTAJAS DE INSTRUMENTOS ANALÓGICOS Y DIGITALES En general los parámetros que caracterizan un fenómeno pueden clasificarse en Analógicos y Digitales, se dice que un parámetro

Más detalles

Comprobar la funcionalidad de un lista determinada de circuitos integrados existentes en el laboratorio de digitales, a través de microcontroladores,

Comprobar la funcionalidad de un lista determinada de circuitos integrados existentes en el laboratorio de digitales, a través de microcontroladores, Comprobar la funcionalidad de un lista determinada de circuitos integrados existentes en el laboratorio de digitales, a través de microcontroladores, una pantalla GLCD para presentación de menús y resultados

Más detalles

ÍNDICE 1. EL SISTEMA DE NUMERACIÓN BINARIO, BASE DE LA ELECTRÓNICA DIGITAL............................. 1 Introducción.......................................... 1 Sistemas de numeración decimal y binario..................

Más detalles

CAPITULO I INTRODUCCIÓN. Diseño Digital

CAPITULO I INTRODUCCIÓN. Diseño Digital CAPITULO I INTRODUCCIÓN Diseño Digital QUE ES DISEÑO DIGITAL? UN SISTEMA DIGITAL ES UN CONJUNTO DE DISPOSITIVOS DESTINADOS A LA GENERACIÓN, TRANSMISIÓN, PROCESAMIENTO O ALMACENAMIENTO DE SEÑALES DIGITALES.

Más detalles

Lógica TTL. Electrónica Digital 1 er Curso de Ingeniería Técnica Industrial (Electrónica Industrial) 2.2. Familias lógicas: Lógica TTL. El BJT.

Lógica TTL. Electrónica Digital 1 er Curso de Ingeniería Técnica Industrial (Electrónica Industrial) 2.2. Familias lógicas: Lógica TTL. El BJT. Electrónica Digital 1 er Curso de Ingeniería Técnica Industrial (Electrónica Industrial) 2.2. Familias lógicas: Lógica TTL Dr. Jose Luis Rosselló Grupo Tecnología Electrónica Universidad de las Islas Baleares

Más detalles

Familias Lógicas. José Antonio Morfín Rojas Universidad Iberoamericana, Ciudad de México Departamento de Ingeniería Ingeniería Electrónica

Familias Lógicas. José Antonio Morfín Rojas Universidad Iberoamericana, Ciudad de México Departamento de Ingeniería Ingeniería Electrónica Familias Lógicas José Antonio Morfín Rojas Universidad Iberoamericana, Ciudad de México Departamento de Ingeniería Ingeniería Electrónica Los circuitos integrados digitales son un conjunto de resistencias,

Más detalles

INDICE 1. Operación del Computador 2. Sistemas Numéricos 3. Álgebra de Boole y Circuitos Lógicos

INDICE 1. Operación del Computador 2. Sistemas Numéricos 3. Álgebra de Boole y Circuitos Lógicos INDICE Prólogo XI 1. Operación del Computador 1 1.1. Calculadoras y Computadores 2 1.2. Computadores digitales electrónicos 5 1.3. Aplicación de los computadores a la solución de problemas 7 1.4. Aplicaciones

Más detalles

Electrónica Básica. Familias Lógicas. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC

Electrónica Básica. Familias Lógicas. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC Electrónica Básica 1 Familias Lógicas Electrónica Digital José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC Familias lógicas 2 Basadas en transistores de efecto de campo CMOS:

Más detalles

Otras Familias Lógicas.

Otras Familias Lógicas. Electrónica Digital II Otras Familias Lógicas. Elaborado Por: Luis Alfredo Cruz Chávez. Prof.: Carlos Alberto Ortega Grupo 3T2 - EO Familias lógicas. Una familia lógica de dispositivos circuitos integrados

Más detalles

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

TEMA 7 INTRODUCCION A LA ELECTRONICA DIGITAL. FAMILIAS LOGICAS

TEMA 7 INTRODUCCION A LA ELECTRONICA DIGITAL. FAMILIAS LOGICAS TEMA 7 INTRODUCCION A LA ELECTRONICA DIGITAL. FAMILIAS LOGICAS Profesores: Germán Villalba Madrid Miguel A. Zamora Izquierdo 1 CONTENIDO Introducción Valores Lógicos Márgenes de Ruido Fan Out Inversor

Más detalles

Parámetros eléctricos Parámetros eléctricos de los Sistemas Digitales

Parámetros eléctricos Parámetros eléctricos de los Sistemas Digitales Parámetros eléctricos Parámetros eléctricos de los Sistemas Digitales Dr. Jose Luis Rosselló Grupo Tecnología Electrónica Universidad de las Islas Baleares! Introducción! Parámetros estáticos! Parámetros

Más detalles

DIODOS SEMICONDUCTORES DE POTENCIA

DIODOS SEMICONDUCTORES DE POTENCIA DIODOS SEMICONDUCTORES DE POTENCIA Los diodos de potencia son de tres tipos: de uso general, de alta velocidad (o de recuperación rápida) y Schottky. Los diodos de uso general están disponibles hasta 6000

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

Universidad de Alcalá

Universidad de Alcalá Universidad de Alcalá Departamento de Electrónica CONVERSORES ANALÓGICO-DIGITALES Y DIGITALES-ANALÓGICOS Tecnología de Computadores Ingeniería en Informática Sira Palazuelos Manuel Ureña Mayo 2009 Índice

Más detalles

CIRCUITO INTEGRADOS DIGITALES. Ing. Wilmer Naranjo 1

CIRCUITO INTEGRADOS DIGITALES. Ing. Wilmer Naranjo 1 CIRCUITO INTEGRADOS DIGITALES Ing. Wilmer Naranjo 1 CARACTERISTICAS BÁSICAS DE LOS CIRCUITOS INTEGRADOS DIGITALES Son una colección de resistores, diodos y transistores fabricados sobre una pieza de material

Más detalles

Electrónica Digital. Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas

Electrónica Digital. Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas Electrónica Digital Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández 2001 Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas UNIVERSIDAD DE LA LAGUNA ii ÍNDICE Lección 0. Introducción...1

Más detalles

Manual sobre Motores a Pasos (Stepper motors)

Manual sobre Motores a Pasos (Stepper motors) Manual sobre Motores a Pasos (Stepper motors) Los motores a pasos o paso a paso son ideales en la construcción de mecanismos donde se requieren movimientos con exactitud. Estos motores son dispositivos

Más detalles

Problemas propuestos Dados los parámetros estáticos típicos de las puertas TTL y de las puertas 4000 CMOS y suponiendo Vcc = 5V. Está garantizado el

Problemas propuestos Dados los parámetros estáticos típicos de las puertas TTL y de las puertas 4000 CMOS y suponiendo Vcc = 5V. Está garantizado el Dados los parámetros estáticos típicos de las puertas TTL y de las puertas 4000 MOS y suponiendo Vcc = 5V. Está garantizado el correcto funcionamiento del circuito si se conectan las salidas de puertas

Más detalles

INDICE Capitulo 1. Álgebra de variables lógicas Capitulo 2. Funciones lógicas

INDICE Capitulo 1. Álgebra de variables lógicas Capitulo 2. Funciones lógicas INDICE Prefacio XV Capitulo 1. Álgebra de variables lógicas 1 1.1. Variables y funciones 1 1.2. Variables lógicas 2 1.3. Valores de una variable lógica 2 1.4. Funciones de una variable lógica 3 1.5. Funciones

Más detalles

Tema 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES 1.1. SISTEMAS DIGITALES

Tema 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES 1.1. SISTEMAS DIGITALES Tema 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES 1.1. SISTEMAS DIGITALES Se puede definir un sistema digital como cualquier sistema de transmisión o procesamiento de información en el cual la información se

Más detalles

&217$'25(6',*,7$/(6. Figura 1.

&217$'25(6',*,7$/(6. Figura 1. &217$'25(6',*,7$/(6 En casi todos los tipos de equipo digital se encuentran flip-flops programados o conectados como contadores, usándose no solamente como contadores sino como equipo para dar la secuencia

Más detalles

Interpretación de las hojas de datos de diodos

Interpretación de las hojas de datos de diodos 1 Interpretación de las hojas de datos de diodos En las hojas de datos dadas por el fabricante de cualquier dispositivo electrónico encontramos la información necesaria como para poder operar al dispositivo

Más detalles

DISEÑO Y CONSTRUCCIÓN DE MICRORROBOTS

DISEÑO Y CONSTRUCCIÓN DE MICRORROBOTS Seminario Departamento de Electrónica (Universidad de Alcalá) DISEÑO Y CONSTRUCCIÓN DE MICRORROBOTS CNY-70: Sensor reflectivo de infrarrojos (www.vishay.com) ALUMNO: VÍCTOR MANUEL LÓPEZ MANZANO 5º curso

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

Registros de desplazamiento

Registros de desplazamiento Registros de desplazamiento Definición de registro de desplazamiento básico Tipos de registro de desplazamiento Configuraciones específicas Aplicaciones más típicas VHDL Ejercicio propuestos Definición

Más detalles

Generación 1. Características. Estaban construidos con electrónica de válvulas. Se programaban en lenguaje de máquina.

Generación 1. Características. Estaban construidos con electrónica de válvulas. Se programaban en lenguaje de máquina. Generación 1 La primera generación de computadoras abarca desde el año 1945 hasta el año 1958, época en que la tecnología electrónica era base de bulbos, o tubos de vació, y la comunicación era en términos

Más detalles

Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones

Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones Práctica 1 Transistor BJT Región de Corte Saturación Aplicaciones Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 1, Segundo Semestre

Más detalles

circuitos digitales números binario.

circuitos digitales números binario. CIRCUITOS DIGITALES Vamos a volver a los circuitos digitales. Recordemos que son circuitos electrónicos que trabajan con números, y que con la tecnología con la que están realizados, estos números están

Más detalles

Práctica 5. Generadores de Señales de Reloj y Flip-flops

Práctica 5. Generadores de Señales de Reloj y Flip-flops 5.1 Objetivo Práctica 5 Generadores de Señales de Reloj y Flip-flops El alumno conocerá y comprobará el funcionamiento de dispositivos empleados en la lógica secuencial y dispositivos con memoria basados

Más detalles

TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES

TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES Exponer los conceptos básicos de los fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre sistemas digitales y sistemas analógicos.

Más detalles

FAMILIA LÓGICA CMOS ÍNDICE PÁGS. 1. Introducción...3

FAMILIA LÓGICA CMOS ÍNDICE PÁGS. 1. Introducción...3 FAMILIA LÓGICA CMOS Alumno: José Antonio Sáez Muñoz Asignatura: Fundamentos Tecnológicos de los Computadores Profesor: Don Andrés Roldán Curso: 1º de Ingeniería Informática Grupo A 1 FAMILIA LÓGICA CMOS

Más detalles

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos...

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos... Contenido 1. Concepto de amplificación de señales en los circuitos de control.... 2 2. Amplificadores estáticos.... 2 2.1. Amplificadores magnéticos... 2 2.2. Amplificadores electrónicos.... 3 3. Amplificadores

Más detalles

Tema 14: Sistemas Secuenciales

Tema 14: Sistemas Secuenciales Tema 14: Sistemas Secuenciales Objetivos: (CONTADORES) Introducción. Características de los contadores. Contadores Asíncronos. Contadores Síncronos. 1 INTRODUCCIÓN Los contadores son sistemas secuenciales

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.1

Más detalles

Sistemas Combinacionales y Sistemas Secuenciales

Sistemas Combinacionales y Sistemas Secuenciales y Prof. Rodrigo Araya E. raraya@inf.utfsm.cl Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 y 1 2 3 y Contenido Al hablar de sistemas, nos referimos

Más detalles

Facultad de Ingeniería Eléctrica

Facultad de Ingeniería Eléctrica Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes Materia: Laboratorio de Electrónica Digital I Práctica Número 6 Compuertas TTL especiales Objetivo: Comprobación del funcionamiento

Más detalles

Tema 1: Características reales circuitos digitales. Electrónica Digital Curso 2015/2016

Tema 1: Características reales circuitos digitales. Electrónica Digital Curso 2015/2016 Tema 1: Características reales circuitos digitales Electrónica Digital Curso 2015/2016 Circuito integrado Un circuito integrado (chip o microchip): Es una pastilla pequeña de material semiconductor (Silicio),

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

Por qué la industria de los computadores tiene como principal materia prima al silicio?

Por qué la industria de los computadores tiene como principal materia prima al silicio? MOTIVACIÓN DEL ESTUDIO DE LOS TRANSISTORES: Qué son y para qué sirven? Por qué la industria de los computadores tiene como principal materia prima al silicio? Ya sé cómo a partir de las puertas lógicas

Más detalles

b) Frecuencia nominal. La frecuencia (medida en Hz) del sistema de potencia para el cual el banco del capacitor es diseñado.

b) Frecuencia nominal. La frecuencia (medida en Hz) del sistema de potencia para el cual el banco del capacitor es diseñado. 4. Características de los capacitores Como ya se menciono anteriormente los elementos de compensación son necesarios para la adecuada operación de sistemas eléctricos de potencia. Estos pueden clasificarse

Más detalles

Sistemas Electrónicos Digitales

Sistemas Electrónicos Digitales Sistemas Electrónicos Digitales Profesor: Carlos Herrera C. I. Unidad COMPUERTAS LOGICAS Las compuertas lógicas son dispositivos que operan con aquellos estados lógicos Binarios y que funcionan igual que

Más detalles

Fuentes de corriente

Fuentes de corriente Fuentes de corriente 1) Introducción En Electrotecnia se estudian en forma teórica las fuentes de corriente, sus características y el comportamiento en los circuitos. Desde el punto de vista electrónico,

Más detalles

PUERTAS LOGICAS. Una tensión alta significa un 1 binario y una tensión baja significa un 0 binario.

PUERTAS LOGICAS. Una tensión alta significa un 1 binario y una tensión baja significa un 0 binario. PUERTAS LOGICAS Son bloques de construcción básica de los sistemas digitales; operan con números binarios, por lo que se denominan puertas lógicas binarias. En los circuitos digitales todos los voltajes,

Más detalles

ES B1. Aviso: ESPAÑA 11. Número de publicación: Número de solicitud: G01K 7/01 ( )

ES B1. Aviso: ESPAÑA 11. Número de publicación: Número de solicitud: G01K 7/01 ( ) 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 2 42 299 Número de solicitud: 12273 1 Int. CI.: G01K 7/01 (06.01) 12 PATENTE DE INVENCIÓN B1 22 Fecha de presentación: 23.02.12

Más detalles

RESISTENCIAS NO LINEALES INTRODUCCIÓN

RESISTENCIAS NO LINEALES INTRODUCCIÓN RESISTENCIAS NO LINEALES INTRODUCCIÓN Existen resistencias cuyo valor óhmico no es constante, sino que dependen de una magnitud no mecánica externa a ellas, como la temperatura, la tensión o la intensidad

Más detalles

ANEXO VI-Requisitos esenciales específicos de los contadores de gas y dispositivos de conversión volumétrica

ANEXO VI-Requisitos esenciales específicos de los contadores de gas y dispositivos de conversión volumétrica ANEXO VI-Requisitos esenciales específicos de los contadores de gas y dispositivos de conversión volumétrica Los requisitos pertinentes aplicables del anexo IV, los requisitos específicos del presente

Más detalles

En primer instancia sólo le había pedido al circuito inverso que cumpliera con la tabla lógica. e s 1 0 0 1

En primer instancia sólo le había pedido al circuito inverso que cumpliera con la tabla lógica. e s 1 0 0 1 El diodo semiconductor que presenta dos estados bien diferenciados de conducción y no conducción, podría comportarse como dispositivo aceptable en la fabricación de circuitos digitales. Se muestra a continuación

Más detalles

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2 J 1. n este ejercicio se trata de estudiar el funcionamiento del transistor de la figura 1 para distintos valores de la tensión V I. Para simplificar el análisis se supondrá que la característica de entrada

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

Tabla de contenidos. 1 Lógica directa

Tabla de contenidos. 1 Lógica directa Tabla de contenidos 1 Lógica directa o 1.1 Puerta SI (YES) o 1.2 Puerta Y (AND) o 1.3 Puerta O (OR) o 1.4 Puerta OR-exclusiva (XOR) 2 Lógica negada o 2.1 Puerta NO (NOT) o 2.2 Puerta NO-Y (NAND) o 2.3

Más detalles

Técnicas de diseño para Compatibilidad Electromagnética. En teoría, teoría y práctica son lo mismo. En la práctica, no lo son - A. Einstein.

Técnicas de diseño para Compatibilidad Electromagnética. En teoría, teoría y práctica son lo mismo. En la práctica, no lo son - A. Einstein. Técnicas de diseño para Compatibilidad Electromagnética En teoría, teoría y práctica son lo mismo. En la práctica, no lo son - A. Einstein. Agenda Qué es compatibilidad electromagnética (EMC)? Elementos

Más detalles

ANEXO VII-Requisitos esenciales específicos de los contadores de energía eléctrica activa

ANEXO VII-Requisitos esenciales específicos de los contadores de energía eléctrica activa ANEXO VII-Requisitos esenciales específicos de los contadores de energía eléctrica activa Los requisitos pertinentes aplicables del Anexo IV, los requisitos específicos del presente Anexo y los procedimientos

Más detalles

Circuitos Electrónicos

Circuitos Electrónicos Circuitos Electrónicos Esquemas del 1 er Parcial eptiembre 2010 José Manuel uero eboul 2º Curso Ingeniero de Telecomunicación E.. Ingenieros de evilla TEMA 1. INTODUCCIÓN A LA ELECTÓNICA DIGITAL. CICUITO

Más detalles

I. RESULTADOS DE APRENDIZAJE. Implementar un circuito de control de arranque con aplicación de los temporizadores.

I. RESULTADOS DE APRENDIZAJE. Implementar un circuito de control de arranque con aplicación de los temporizadores. UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO II-15 CONTROL DE MOTORES ELÉCTRICOS GUÍA DE LABORATORIO # 3 NOMBRE DE LA PRÁCTICA: ARRANQUE SECUENCIAL,

Más detalles

Ing. Jose Luis Apaza Gutierrez COMPUERTAS LÓGICAS

Ing. Jose Luis Apaza Gutierrez COMPUERTAS LÓGICAS LABORATORIO # 2 Realización: 06-09-2011 COMPUERTAS LÓGICAS 1. OBJETIVOS Los objetivos de este laboratorio es que Usted, aprenda a: Realizar circuitos lógicos sencillos con compuertas cuádruples y Hex.

Más detalles

Práctica Nº 5 AMPLIFICADORES OPERACIONALES.

Práctica Nº 5 AMPLIFICADORES OPERACIONALES. Práctica Nº 5 AMPLIFICADORES OPERACIONALES. 1. INTRODUCCION. El concepto original del amplificador operacional procede del campo de los computadores analógicos, en los que comenzaron a usarse técnicas

Más detalles

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA. TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.

Más detalles

Familias Lógicas. 3.1 Características Generales

Familias Lógicas. 3.1 Características Generales Familias Lógicas 3.1 Características Generales Una familia lógica es un conjunto de circuitos integrados que implementan distintas operaciones lógicas compartiendo la tecnología de fabricación y en consecuencia,

Más detalles

Informe. Proyecto de. Electrónica. Tema: Temporizador con LM 555. Alumno: Guevara, Andrés

Informe. Proyecto de. Electrónica. Tema: Temporizador con LM 555. Alumno: Guevara, Andrés UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE FILOSOFIA, HUMANIDADES Y ARTES DEPARTAMENTO DE FÍSICA Y QUÍMICA CÁTEDRA: ELECTRÓNICA GENERAL Informe Proyecto de Electrónica Tema: Temporizador con LM 555 Alumno:

Más detalles

KIT LUCES SECUENCIALES REVERSIBLES CON 16 LEDS. Luces secuenciales con efecto de scanner o simulador de alarma.

KIT LUCES SECUENCIALES REVERSIBLES CON 16 LEDS. Luces secuenciales con efecto de scanner o simulador de alarma. KIT LUCES SECUENCIALES REVERSIBLES CON 16 LEDS Luces secuenciales con efecto de scanner o simulador de alarma. Tabla de Contenido DEFINICIÓN FUNCIONAMIENTO LISTA DE PARTES ENSAMBLE REFERENCIAS DEFINICIÓN

Más detalles

Registros y contadores

Registros y contadores Universidad Rey Juan Carlos Registros y contadores Norberto Malpica norberto.malpica@urjc.es Ingeniería de Tecnologías Industriales Registros y contadores 1 Esquema 1. Concepto de registro. 2. Registros

Más detalles

Fibra óptica (Calculos) Ing. Waldo Panozo

Fibra óptica (Calculos) Ing. Waldo Panozo Fibra óptica (Calculos) Ing. Waldo Panozo Cálculos de enlace - Requerimientos Ancho de banda: La fibra óptica proporciona un ancho de banda significativamente mayor que los cables de pares (UTP / STP)

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magnitudes mecánicas Introducción Sensores potenciométricos Galgas extensiométricas Sensores piezoeléctricos Sensores capacitivos Sensores inductivos Sensores basados en efecto Hall Sensores

Más detalles

Índice. de maniobra. 4. Sobretensiones transitorias. página. 4.1 Principio fundamental del corte 4/3

Índice. de maniobra. 4. Sobretensiones transitorias. página. 4.1 Principio fundamental del corte 4/3 Índice página 4.1 Principio fundamental del corte 4/3 4.2 Criterios del buen funcionamiento de un aparato de corte 4/3 4.3 Sobretensiones transitorias en alta tensión 4/4 4.4 Sobretensiones transitorias

Más detalles

COMPONENTES ELECTRÓNICOS

COMPONENTES ELECTRÓNICOS UD 2.- COMPONENTES ELECTRÓNICOS 2.1. RESISTENCIA FIJA O RESISTOR 2.2. RESISTENCIAS VARIABLES 2.3. EL RELÉ 2.4. EL CONDENSADOR 2.5. EL DIODO 2.6. EL TRANSISTOR 2.7. MONTAJES BÁSICOS CON COMPONENTES ELECTRÓNICOS

Más detalles

EL MOTOR ELÉCTRICO (I)

EL MOTOR ELÉCTRICO (I) 1 EL MOTOR ELÉCTRICO (I) Contenidos 1. El motor trifásico. Fundamentos 2. Constitución del motor trifásico 3. Par motor y par resistente. Velocidad 4. Intensidades de corriente de un motor trifásico 5.

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

Circuitos lógicos secuenciales Continuamos con los circuitos lógicos secuenciales.

Circuitos lógicos secuenciales Continuamos con los circuitos lógicos secuenciales. Circuitos lógicos secuenciales Continuamos con los circuitos lógicos secuenciales. RESETABLE JK FLIP FLOP Muchas veces se requiere flip-flops tipo JK que puedan ser Set y Reset a estados conocidos, antes

Más detalles

Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes. Materia: Laboratorio de Electrónica Digital I

Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes. Materia: Laboratorio de Electrónica Digital I Facultad de Ingeniería Eléctrica Laboratorio de Electrónica Ing. Luís García Reyes Materia: Laboratorio de Electrónica Digital I Práctica Número 5 Características eléctricas de la familia TTL Objetivo:

Más detalles

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento

Más detalles

Potencia. Diseño de bajo consumo. 1. Introducción y motivación. Leakage Current: Moore s Law Meets Static Power. Indice

Potencia. Diseño de bajo consumo. 1. Introducción y motivación. Leakage Current: Moore s Law Meets Static Power. Indice Leakage Current: Moore s Law Meets Static Power Leakage Current: Moore s Law Meets Static Power. IEEE Computer, vol. 36, no. 1, Dec. 003, pp. 65-77. Potencia. Diseño de bajo consumo. María Luisa López

Más detalles

Microchip Tips & Tricks...

Microchip Tips & Tricks... ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. Soluciones para aplicaciones de 3V Tip 117 Conversor de nivel de +3V3 a +5V con un MOSFET Para manejar cualquier

Más detalles

IEE 2712 Sistemas Digitales

IEE 2712 Sistemas Digitales IEE 2712 Sistemas Digitales Clase 6 Objetivos educacionales: 1. Saber aplicar el método de mapas de Karnaugh para 5 o más variables y para situaciones no-importa. 2. Conocer la implementación práctica

Más detalles

FAMILIAS LÓGICAS. ECL,MOS, CMOS, BICMOS.

FAMILIAS LÓGICAS. ECL,MOS, CMOS, BICMOS. FAMILIAS LÓGICAS. ECL,MOS, CMOS, BICMOS. 1. Lógica de emisores acoplados: Amplificador diferencial El circuito posee dos entradas v 1 y v 2 y dos salidas v O 1 y v O 2. Dada la simetría del circuito, al

Más detalles

Guia para examen de Sistemas Embebidos I Para primer parcial Febrero 2013 Revisión 2 Ing. Julio Cesar Gonzalez Cervantes

Guia para examen de Sistemas Embebidos I Para primer parcial Febrero 2013 Revisión 2 Ing. Julio Cesar Gonzalez Cervantes Qué significa ALU? Arithmetic Logic Unit Guia para examen de Sistemas Embebidos I Para primer parcial Febrero 2013 Revisión 2 Ing. Julio Cesar Gonzalez Cervantes que operaciones realiza un ALU? suma, resta,

Más detalles

SENSORES CAPACITIVOS

SENSORES CAPACITIVOS SENSORES CAPACITIVOS Los sensores capacitivos son interruptores electrónicos que trabajan sin contacto. Estos sensores aprovechan el efecto que tienen los materiales como el papel, vidrio, plástico, aceite,

Más detalles

LABORATORIO N 04: Compuertas Básicas, Universales y Especiales

LABORATORIO N 04: Compuertas Básicas, Universales y Especiales LORTORIO N 04: Compuertas ásicas, Universales y Especiales 1. OJETIVOS. - Verificar experimentalmente la operación de las compuertas digitales básicas: ND, OR y NOT. - Verificar experimentalmente la operación

Más detalles

DISPOSITIVOS ELECTRÓNICOS II

DISPOSITIVOS ELECTRÓNICOS II CURSO 2010- II Profesores: Miguel Ángel Domínguez Gómez Despacho 222, ETSI Industriales Camilo Quintáns Graña Despacho 222, ETSI Industriales Fernando Machado Domínguez Despacho 229, ETSI Industriales

Más detalles

Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 15-12-2010 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE LOS COMPUTADORES I. TEMA 5 Introducción n a los Sistemas Digitales

ESTRUCTURA Y TECNOLOGÍA A DE LOS COMPUTADORES I. TEMA 5 Introducción n a los Sistemas Digitales ESTRUCTURA Y TECNOLOGÍA A DE LOS COMPUTADORES I TEMA 5 Introducción n a los Sistemas Digitales TEMA 5. Introducción n a los Sistemas Digitales 5.1 Sistemas Digitales 5.2 Sistemas Combinacionales 5.3 Sistemas

Más detalles

PROBLEMA DE LA DISIPACIÓN TÉRMICA EN COMPONENTES

PROBLEMA DE LA DISIPACIÓN TÉRMICA EN COMPONENTES TEMA 7 PROBLEMA E LA ISIPACIÓN TÉRMICA EN COMPONENTES 1. GENERALIAES. 2 2. EVACUACIÓN EL CALOR PROUCIO. 3 2.1. Evolución de la T j con el tiempo. 3 2.2. Ley de Ohm térmica. 4 2.3. Circuitos térmicos en

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio

Más detalles

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos Prácticas Laboratorio Práctica 2: Diodos Ernesto Ávila Navarro Práctica 2: Diodos (Montaje y medida en laboratorio) Índice: 1. Material de prácticas 2. Medida de las características del diodo 2.2. Diodo

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: ARQUITECTURA DE COMPUTADORAS FECHA DE ELABORACIÓN: ENERO 2005 ÁREA DEL PLAN DE ESTUDIOS: AS (

Más detalles