[CONDUCTIVIDAD TÉRMICA]
|
|
|
- Álvaro Ramírez Aranda
- hace 9 años
- Vistas:
Transcripción
1 Curso Conductividad Térmica D.Reyman U.A.M. Curso Curso Página 1
2 Conductividad Térmica. Ley de Fourier Es un proceso de transporte en el que la energía migra en respuesta a un gradiente de temperatura. Como temperatura y E c están relacionados, la relajación hacia el equilibrio implicará un transporte de energía cinética de la zona de alta a la de baja temperatura. Flujo de calor ( J q ) Ley de Fourier dq/dt=-k A dt/dx K (constante de conductividad térmica) es una propiedad intensiva cuyos valores dependen de P,T y naturaleza o composición Para gases, K aumenta al aumentar T Unidades de K (J K -1 m -1 s -1 ) Conducción térmica es debida a colisiones moleculares de moléculas cercanas. No existiendo un transporte de moléculas. Metales buenos conductores del calor y la mayoría de los no metales son malos conductores del calor. Los gases son muy poco conductores del calor debido a la baja densidad de moléculas. Para líquidos y sólidos, K puede aumentar o disminuir al aumentar T. Además de por conducción, el calor se puede transferir por convección y radiación. Convección: el calor se transfiere mediante corrientes de flujo entre regiones a diferentes temperaturas. El flujo convectivo se origina por diferencias de presión o densidad en el fluido y se debe distinguir del movimiento molecular desordenado que hay en la conducción térmica de los gases. En la transferencia de calor por radiación, un cuerpo caliente emite ondas electromagnéticas que son absorbidas por otro más frío. Le ecuación de Fourier sólo es aplicable en ausencia de convección y radiación. Teoría cinética de la conductividad térmica de los gases. Un tratamiento riguroso es extremadamente complejo matemática y físicamente. Nuestro tratamiento está basado en colisiones entre moléculas que son esferas que no interaccionan entre ellas. Supondremos que la presión del gas no es muy alta ni muy baja. Curso Página 2
3 A presiones altas, las fuerzas intermoleculares toman importancia y la fórmula del recorrido libre (λ) no se puede aplicar. A presiones bajas, λ se hace comparable o mayor que las dimensiones del recipiente y las colisiones con las paredes adquieren importancia.. Por tanto, el tratamiento sólo es aplicable a presiones tales que se cumple d<<<λ <<<L, siendo d el diámetro molecular y L la dimensión más pequeña del recipiente. Suposiciones de partida: 1. Moléculas como esferas rígidas de diámetro d, sin fuerzas atractivas 2. Velocidad de cada molécula <v> y recorre λ entre colisiones sucesivas 3. Dirección arbitraria tras la colisión. 4. En cada colisión se ajusta la energía molecular, tomando la media del plano de colisión T 1 T 2 T 1 >T 2 X 0 Para calcular K debemos conocer el flujo de calor a través del plano X. El flujo neto de calor a través del plano x 0 en el tiempo dt es dq= ε I dn I ε D dn D dn I es el número de moléculas que atraviesan desde la izquierda del plano x 0 en el tiempo dt. ε I es la energía media del plano izquierdo. dn D es el número de moléculas que atraviesan desde la derecha del plano x 0 en el tiempo dt. ε D es la energía media del plano derecho. Suponemos que no hay convección, dn i =dn d Como ya deducimos en el capítulo de teoría cinético molecular de gases, el número de moléculas que chocan con una pared en el tiempo dt puede expresarse como: 1 4 Las moléculas que viajan desde la derecha o izquierda han viajado una distancia media λ desde su última colisión. Las moléculas atraviesan el plano x 0 a varios ángulos. Haciendo un promedio de los ángulos, se encuentra que la distancia Curso Página 3
4 media perpendicular desde el plano x 0 al punto de la última colisión es 2/3λ (vease Fisicoquímica Levine, volumen 2, quinta edición, pag. 613). Con esta aproximación simplificamos el sistema, de manera que, a partir de aquí, podemos considerar que todas la moléculas que están del lado izquierdo, están situadas en el plano de energía ε - que se encuentra a una distancia -2/3 λ de x 0. Las moléculas que están del lado derecho, están situadas en el plano ε + que se encuentra a una distancia 2/3 λ de x 0. ε - ε + X 0-2/3λ X0 x 0 +2/3λ De manera que donde Energía de una molécula Como no hay fuerzas intermoleculares, le energía total del sistema es: La energía interna molar 1, donde,, es la capacidad calorífica molar a volumen constante ( ver anexo 1). Por tanto,, de aquí que , Curso Página 4
5 como siendo 3, Comparando con la ley de Fourier: 3, ya que / 1 3 8, , 8 Sorprendentemente, la conductividad térmica es independiente de la presión. La razón física de esta independencia cabe buscarla en la compensación de dos factores: a mayor P, mayor número de transportadores y menor λ. mayor presión mayor número de transportadores mayor presión menor λ Es decir, aumentando la presión aumentamos el número de transportadores pero éstos recorrerán una distancia menor entre colisiones de manera que no podrán transportar la energía a grandes distancias por lo que ambos efectos se contrarrestarán. Experimentalmente se confirma este resultado siempre que P no sea ni extremadamente alta ni baja. A presiones bajas, en este caso K es proporcional a P En cuanto a la dependencia de K con la temperatura, se observa experimentalmente una dependencia mayor que la obtenida teóricamente ( T ½ ). Este comportamiento lo podemos relacionar con la suposición de que las Curso Página 5
6 moléculas son esferas rígidas. Las moléculas son de hecho más blandas que rígidas y además se atraen entre sí incluso a distancias bastante significativas. Experimental Teórica Los experimentos sobre transferencia de energía intermolecular en moléculas poliatómicas muestran que la energía vibracional y rotacional no se transfiere tan fácilmente como la energía traslacional. La capacidad calorífica es la suma de una parte traslacional, otra rotacional y otra vibracional.,,,,, 3 2,, Thermally_Agitated_Molecule.gif ( píxeles; tamaño de archivo: 158 KB; tipo MIME: image/gif) Debido a que hemos partido de unas suposiciones que son sin duda inexactas (las suposiciones 1y 2 son falsas, la suposición 3 es inexacta, ya que desoues de la colision es más probable que una molécula se mueva en una dirección próxima a la que tenía antes de la colisión y la suposición 4 no es mala para la energía traslacional pero inexacta para rotaciones y vibraciones) el coeficiente numérico de la ecuación, es incorrecto. Un tratamiento teórico más riguroso suponiendo al gas formado por esferas rígidas monoatómicas da (Levine):, gases monoatómicos La extensión a gases poliatómicos es un problema muy difícil que todavía no ha sido resuelto completamente. Si tenemos en cuenta :,,,, el tratamiento para gases poliatómico da (vease Fisicoquímica Levine, volumen 2, quinta edición, pag.614 ):, gases poliatómicos Curso Página 6
7 Conductividad térmica en líquidos y sólidos. Todas las formas de materia condensada tienen la posibilidad de transferir calor mediante conducción térmica, mientras que, generalmente, la convección térmica sólo resulta posible en líquidos y gases. De hecho los sólidos transfieren calor básicamente por conducción térmica, mientras que para gradientes de temperatura importante los líquidos y los gases transfieren la mayor parte del calor por convección. La conductividad térmica es elevada en metales y en general en cuerpos continuos, y es baja en los gases y en materiales iónicos, siendo muy baja en algunos materiales especiales como la fibra de vidrio, que se denominan por eso aislantes térmicos. La conductividad térmica es nula en el vacío ideal y muy baja en ambientes donde se ha practicado un vacío elevado. En sólidos como en líquidos, las constantes de conductividad térmica sólo es posible obtenerlas experimentalmente y para ello es habitual utilizar Ley de Fourier. En la tabla que se muestra a continuación se indican los valores que toman las propiedades térmicas de algunos materiales junto con su densidad. Material Densidad (kg/m 3 ) Calor específico (J/(kg K)) Agua ,58 Aluminio Bronce Carbón (antracita) ,238 Cinc Cobre Estaño Glicerina ,29 Hierro Litio ,2 Níquel ,3 Oro ,2 Plata Plomo Poliestireno ,157 Conductividad térmica (W/(m K)) De estos datos, observamos que, en el caso de líquidos y sólidos, no existe una relación tan clara, entre el calor específico y la densidad con la constante de conductividad térmica, como en el caso de los gases. amos a detenernos en un experimento diseñado para medir la conductividad térmica de una barra metálica. En éste, los extremos de la barra metálica se Curso Página 7
8 mantienen a temperaturas fijas poniéndolos en contacto con dos líquidos en ebullición (cambio de estado temperatura constante) La barra metálica se coloca en posición vertical, el extremo inferior se calienta con vapor del agua en ebullición, el extremo superior se pone en contacto con un líquido volátil en ebullición. De este modo, ambos extremos de la barra mantienen su temperatura invariable durante todo el proceso de medida. El vapor de agua se escapa por un tubo vertical, que es refrigerado con agua fría. Parte del vapor se condensa y regresa al depósito inferior. La barra metálica en posición vertical, se envuelve con material aislante excepto por sus extremos, para evitar las pérdidas de calor por su superficie lateral. El extremo inferior, se calienta con vapor de agua a T A =100º C, la barra conduce el calor hacia el extremo superior que está en contacto con un líquido volátil a su temperatura de ebullición T B. El vapor sale por un tubo curvado que se refrigera con agua fría, el vapor se condensa y líquido resultante se acumula en un tubo graduado, que mide el volumen de líquido que se condensa a medida que transcurre el tiempo. A partir de la medida del volumen de líquido volátil condensado durante un determinado tiempo, se obtiene el valor de la conductividad térmica de la barra metálica. La ley de Fourier afirma que hay una proporcionalidad entre el flujo de energía J (energía por unidad de área y por unidad de tiempo), y el gradiente de temperatura dt/dx. Siendo d la longitud de la barra y (T A -T B ) la diferencia de temperaturas entre sus extremos. La cantidad de calor Q que llega al extremo superior de la barra en el tiempo t es J S t, siendo S el área de la sección de la barra. Este calor se emplea en evaporar una masa m de líquido volátil en el tiempo t. Conocemos calor de vaporización es L v de dicho líquido (calor necesario para pasar 1 kg de sustancia del estado líquido al estado gaseoso a la temperatura del cambio de estado). Curso Página 8
9 Q=m L v Esta masa m de líquido que se ha convertido en vapor a la temperatura T B de ebullición pasa por un tubo refrigerado con agua fría. La condensación del vapor da lugar a un volumen V=m/ρ de líquido. Siendo ρ la densidad del líquido volátil. Obtenemos finalmente, la siguiente fórmula a partir de la cual despejamos la conductividad K de la barra metálica. Fuente: Koshkin N. I., Shirkévich M.G.. Manual de Física Elemental. Editorial Mir 1975 Curso Página 9
TRANSFERENCIA DE CALOR
Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel
Física y Química. 2º ESO. LA MATERIA Y SUS PROPIEDADES La materia. La materia es todo aquello que tiene masa y ocupa un espacio.
La materia es todo aquello que tiene masa y ocupa un espacio. Es materia por tanto el plástico, el carbón, la madera, el aire, el agua, el hierro, etc. y no lo es la alegría, la tristeza, la velocidad,
TEMPERATURA Y CALOR. Oxford 2º ESO
TEMPERATURA Y CALOR Oxford 2º ESO TEMPERATURA Temperatura: de un cuerpo es la magnitud que expresa la agitación térmica de sus partículas que lo forman relacionado con su energía cinética, E c. E c partículas
QUÉ ES LA TEMPERATURA?
1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente
TEMPERATURA. E c partículas agitación térmica Tª
TEMPERATURA Y CALOR TEMPERATURA Temperatura: de un cuerpo es la magnitud que expresa la agitación térmica de sus partículas que lo forman relacionado con su energía cinética, E c. E c partículas agitación
La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y
RADIACIÓN La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y la superficie que absorba o emita la energía.
ALUMNO: AUTORA: Prof. Ma. Laura Sanchez
h ALUMNO: AUTORA: Prof. Ma. Laura Sanchez 3.1 Temperatura A menudo solemos confundir calor con temperatura, cuando decimos hoy hace calor, ó el helado está frío nos estamos refiriendo a sensaciones térmicas
Unidad 16: Temperatura y gases ideales
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010
Módulo II Trasferencia del Calor
Módulo II Trasferencia del Calor Bibliografía Recomendada Fundamentals of Heat and Mass Transfer Incropera DeWitt Editorial Wiley Transferencia de Calor B. V. Karlekar Transferencia de Calor J. P. Holman
PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES
PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES 1. OBJETIVO En esta práctica se determina la conductividad térmica del cobre y del aluminio midiendo el flujo de calor que atraviesa una barra de cada uno
TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR
TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar
Conceptos previos: tener la misma temperatura
Conceptos previos: Un termómetro mide la temperatura. Dos cuerpos en equilibrio térmico deben tener la misma temperatura *las escalas de temperatura Celsius y Fahrenheit se basan en la temperatura de congelación
CALOR Y TEMPERATURA CALOR
CALOR Y TEMPERATURA El calor y la temperatura no son sinónimos, podemos decir que están estrictamente relacionados ya que la temperatura puede determinarse por la cantidad de calor acumulado. El calor
Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II
Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso 2010-2011 Índice
ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O
ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O Calor y temperatura 1ª) Qué es la energía térmica? La energía térmica es la energía que posee un cuerpo (o un sistema material) debido al movimiento
UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO
UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO 1. LOS ESTADOS DE AGREGACIÓN DE LA MATERIA. CAMBIOS DE ESTADO Una misma sustancia
TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D.
TEMPERATURA Y CALOR Tomás Rada Crespo Ph.D. Temperatura y Calor Tengo Calor!!!! Tengo Frio!!!! Este café esta frío!!!! Uff qué temperatura!!!! Esta gaseosa esta caliente!!!! En el lenguaje cotidiano, es
Módulo 2: Termodinámica. mica Temperatura y calor
Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad
P V = n R T LEYES DE LOS GASES
P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac
DINÁMICA DE LAS MARCAS DE FUEGO
DINÁMICA DE LAS MARCAS DE FUEGO Dentro de esta disciplina, la identificación y análisis correcto de estas señales de la combustión supone conocer que marcas producen los tres tipos de transmisión de calor,
Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.
Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen
UNIDAD 7: ENERGY (LA ENERGÍA)
REPASO EN ESPAÑOL C.E.I.P. GLORIA FUERTES UNIDAD 7: ENERGY (LA ENERGÍA) NATURAL SCIENCE 6 La energía está por todos sitios en el Universo y es indestructible. La energía se transfiere de átomo en átomo,
Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología
Medición de la conductividad térmica de materiales sólidos conductores Leonel Lira Cortés Laboratorio de Propiedades Termofísicas División Termometría, Área Eléctrica Centro Nacional de Metrología INTRODUCCION
Práctica No 13. Determinación de la calidad de vapor
Práctica No 13 Determinación de la calidad de vapor 1. Objetivo general: Determinar la cantidad de vapor húmedo generado a presión atmosférica. 2. Marco teórico: Entalpía del sistema: Si un sistema consiste
Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1
1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad
Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales
Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla LA CANTIDAD DE SUSTANCIA EN QUÍMICA UNIDAD 6: Los gases ideales 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA DE LA
T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera
1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?
Teoría cinética de los gases.
. Con la finalidad de interpretar las propiedades macroscópicas de los sistemas gaseosos en función del comportamiento microscópico de las partículas que los forman, los fisicoquímicos estudian detalladamente
Líquido. Sólido. Gas Plasma. educacionsanitariaymas.blogspot.com.
Líquido Sólido www.juntadeandalucia.es educacionsanitariaymas.blogspot.com Gas Plasma www.palimpalem.com En el estado sólido las moléculas se encuentran muy juntas, tienen mucha cohesión. Las partículas
EFECTO DEL CALOR SOBRE LA MATERIA
EFECTO DEL CALOR SOBRE LA MATERIA MATERIA: es todo aquello que ocupa un lugar en el espacio y tiene masa LOS EFECTOS QUE PRODUCE EL CALOR SOBRE LA MATERIA SE PUEDEN CLASIFICAR EN: * CAMBIOS FÍSICOS. *
PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA
PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar
Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales
Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla ASPECTOS CUANTITATIVOS DE LA QUÍMICA UNIDAD 2: Los gases ideales ÍNDICE 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA
La energía interna. Nombre Curso Fecha
Ciencias de la Naturaleza 2.º ESO Unidad 10 Ficha 1 La energía interna La energía interna de una sustancia está directamente relacionada con la agitación o energía cinética de las partículas que la componen.
convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección
convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)
Sol.: el cuerpo ha aumentado su energía potencial en J.
Energía y trabajo Todos los sistemas físicos poseen energía aunque no se esté produciendo ninguna transformación en ellos. Esta energía se transfiere de unos cuerpos a otros, esta transferencia produce
GUIA N o 2: TRANSMISIÓN DE CALOR Física II
GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos
Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO
TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA
ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval
CUADERNILLO DE FÍSICA. TERCER GRADO. I.- SUBRAYE LA RESPUESTA CORRECTA EN LOS SIGUIENTES ENUNCIADOS. 1.- CUANDO DOS CUERPOS CON DIFERENTE TEMPERATURA SE PONEN EN CONTACTO, HAY TRANSMISIÓN DE: A) FUERZA.
LA ENERGÍA. Transferencia de energía: calor y trabajo
LA ENERGÍA Transferencia de energía: calor y trabajo La energía es una propiedad de un sistema por la cual éste puede modificar su situación o estado, así como actuar sobre otro sistema, transformándolo
TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y
TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?
ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y
I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO
DISEÑO DE CÁMARAS FRIGORÍFICAS
DISEÑO DE CÁMARAS FRIGORÍFICAS OBJETIVO Velocidad de extracción de Calor velocidad de ingreso de calor El aire en el interior debe ser mantenido a temperatura constante de diseño. El evaporador es diseñado
MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.
1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.
SOLUCIONES QUÍMICAS. Concentración:
SOLUCIONES QUÍMICAS Las soluciones son sistemas homogéneos formados básicamente por dos componentes. Solvente y Soluto. El segundo se encuentra en menor proporción. La masa total de la solución es la suma
A continuación se detallan cada una de las propiedades coligativas:
PREGUNTA (Técnico Profesional) Se prepara una solución con 2 mol de agua y 0,5 mol de un electrolito no volátil. Al respecto, cuál es la presión de vapor a 25 ºC de esta solución, si la presión del agua
MEDICIÓN DE CONDUCTIVIDAD TÉRMICA
MEDICIÓN DE CONDUCTIVIDAD TÉRMICA Introducción: Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción
Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física
Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales
UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA
UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIVERSIDAD CATÓLICA DE SALTA FAC. DE CS AGRARIAS Y VETERINARIAS AÑO 2008 Farm. Pablo F. Corregidor 1 TEMPERATURA 2 TEMPERATURA Termoreceptores: Externos (piel)
El calor y la temperatura
2 El calor y la temperatura Contenidos Índice 1 2 3 4 Energía térmica Medida de la temperatura Propagación del calor Equilibrio térmico 1. Energía térmica Se denomina energía térmica a la energía cinética
CARÁCTERÍSTICAS DE LOS GASES
DILATACIÓN EN LOS GASES - CARACTERÍSTICAS DE LOS GASES - PRESIÓN EN LOS GASES: CAUSAS Y CARACTERÍSTICAS - MEDIDA DE LA PRESIÓN DE UN GAS: MANÓMETROS - GAS EN CONDICIONES NORMALES - DILATACIÓN DE LOS GASES
ESTADOS DE LA MATERIA
ESTADOS DE LA MATERIA M en C Alicia Cea Bonilla 1 Existen tres estados de la materia: sólido, líquido y gaseoso, dependiendo de la distancia entre sus partículas, de las fuerzas de atracción entre éstas
3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO
TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona
A. CARACTERÍSTICAS DE LA ESTRELLA LLAMADA SOL.
A. CARACTERÍSTICAS DE LA ESTRELLA LLAMADA SOL. El sol es una estrella como todas las estrellas que vemos, relativamente pequeña. Su diámetro es de aprox. 1.391.000 kilómetros y está a una distancia de
LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases
LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría
ENERGÍA TÉRMICA ACTIVIDAD:
ENERGÍA TÉRMICA El calor es una forma de energía que se manifiesta en la velocidad (energía cinética) que presentan las moléculas de las sustancias. La temperatura es la expresión de la velocidad promedio
1. MEDIDA Y MÉTODO CIENTÍFICO
1. MEDIDA Y MÉTODO CIENTÍFICO 1. Introduce un recipiente con agua caliente en el congelador del frigorífico. Observa y describe lo que sucede con el tiempo. En la superficie libre del agua aparece una
La masa del cubo se mediría con una balanza. Para medir su volumen, mediríamos la 3
CIENCIAS DE LA NATURALEZA SOLUCIONES DE LA PÁGINA 7 La masa del cubo se mediría con una balanza. Para medir su volumen, mediríamos la 3 longitud de la arista y la elevaríamos al cubo (l ). Si el cubo de
FISICOQUIMICA. La energía total de un sistema puede ser: externa, interna o de tránsito. CLASIFICACION TIPOS DETERMINACION Energía Potencial:
FISICOQUIMICA ENERGIA: No puede definirse de forma precisa y general, sin embargo, puede decirse que es la capacidad para realizar trabajo. No se puede determinar de manera absoluta, solo evaluar los cambios.
La materia. Los gases
1 La materia. Los gases 1 La materia y sus estados de agregación Características de los estados de la materia La materia se puede presentar en varios estados de agregación: sólido, líquido y gas, que tienen
Clase 2. Estructura de la Atmósfera
Clase 2 Estructura de la Atmósfera Preguntas claves 1. Qué es la presión y temperatura? 2. Cómo varían con la altura? 3. Cuál es la estructura de la atmósfera? La física y dinámica de la atmósfera puede
DEPARTAMENTO DE FISICA CATEDRA DE TERMODINAMICA DETERMINACION DEL CALOR ESPECÍFICO DETERMINACION DEL CALOR ESPECÍFICO
En este apunte, se describen dos experiencias que nos permiten determinar los calores latentes de cambio de estado del agua: el calor de fusión y el calor de vaporización. Cambios de estado Normalmente,
Práctica No 5. Capacidad calorífica de un sólido
Práctica No 5 Capacidad calorífica de un sólido 1. Objetivo general: Determinación de la capacidad calorífica especifica de un sólido en un proceso a presión constante. 2. Objetivos específicos: 1) Identificar
BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA
BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría
CAPÍTULO 4 RESULTADOS Y DISCUSIÓN
CAPÍTULO 4 RESULTADOS Y DISCUSIÓN 4.1 Verificación del código numérico Para verificar el código numérico, el cual simula la convección natural en una cavidad abierta considerando propiedades variables,
LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas.
LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. Química 1º bachillerato La materia 1 1. TEORÍA ATÓMICA DE DALTON
Propiedades de la materia que nos rodea
Propiedades de la materia que nos rodea Propiedades generales La masa: Cantidad de materia que tiene un objeto, se mide en Kg en el SI. DOS SUSTANCIAS DIFERENTES PUEDEN TENER IGUAL MASA NO SIRVE PARA DIFERENCIAR
Capítulo 17. Temperatura. t(h) = 100 h h 0
Capítulo 17 Temperatura t(h) = 100 h h 0 h 1 00 h 0 rincipio cero de la termodinámica. Temperatura empírica. La temperatura empírica de un sistema en equilibrio termodinámico se puede asignar mediante
UNIVERSIDAD TECNOLÓGICA DE PUEBLA
Térmica PRÁCTICA 7: Capacidad térmica específica de metales OBJETIVO: Identificar algunos metales de trabajo. Determinar cualitativamente el valor de la capacidad térmica específica de algunos metales
HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica
HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión
1 Nociones fundamentales sobre la teoría del frío
Nociones fundamentales sobre la teoría del frío 1 1.1 Introducción El concepto de frío es muy relativo. Aquí, en invierno, decimos que hace frío si la temperatura ambiente está a +10 o C. En cambio, en
PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]
Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y
Electricidad y calor
Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley
Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora
Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley
FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN
1 Física y Química 3º Curso Educación Secundaria Obligatoria Curso académico 2015/2016 FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 2 Física y Química 3º Curso Educación Secundaria Obligatoria
Práctica No 9. Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura.
Práctica No 9 Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura. 1. Objetivo general: Establecer empíricamente una escala de temperatura, aplicándose
Ley de enfriamiento de Newton considerando reservorios finitos
Ley de enfriamiento de Newton considerando reservorios finitos María ecilia Molas, Florencia Rodriguez Riou y Débora Leibovich Facultad de Ingeniería, iencias Exactas y Naturales Universidad Favaloro,.
Tema 5.-Corriente eléctrica
Tema 5: Corriente eléctrica Fundamentos Físicos de la Ingeniería Primer curso de Ingeniería Industrial Curso 2006/2007 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción Corriente eléctrica
FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 2. El Primer Principio de la Termodinámica
María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 2 El Primer Principio de la Termodinámica Esquema Tema 2. Primer Principio de la Termodinámica 2.1 Primer Principio
CALEFACCIÓN TEMA I. DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA
DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA CALEFACCIÓN TEMA I. CONCEPTOS FÍSICOS BÁSICOS. MANUEL ROCA SUÁREZ JUAN CARRATALÁ FUENTES
Equilibrio físico. Prof. Jesús Hernández Trujillo. Facultad de Química, UNAM. Equilibrio físico/j. Hdez. T p.
Equilibrio físico/j. Hdez. T p. 1/34 Equilibrio físico Prof. Jesús Hernández Trujillo [email protected] Facultad de Química, UNAM Equilibrio físico/j. Hdez. T p. 2/34 Interacciones intermoleculares
LABORATORIO DE FENÓMENOS COLECTIVOS
LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,
El calor y la temperatura
Unidad 3 El calor y la temperatura DPTO. BIOLOGÍA-GEOLOGÍA BELÉN RUIZ GONZÁLEZ LA ENERGÍA TÉRMICA Lee la primera columna de la página 39 y contesta a continuación las siguientes preguntas: De qué está
Física y Química 1º Bach.
Física y Química 1º Bach. Leyes de los gases. Teoría cinético-molecular 05/11/10 DEPARTAMENTO FÍSICA E QUÍMICA Nombre: OPCIÓN 1 1. Observa el aparato de la Figura. Si la temperatura del aceite se eleva
Tema 4: Electrocinética
Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías
MATERIA: FÍSICA 1. PARA CONVERTIR CENTÍMETROS A PULGADAS SE DEBE MULTIPLICAR POR: 2. PARA CONVERTIR KILOGRAMOS EN LIBRAS SE DEBE MULTIPLICAR POR:
MATERIA: FÍSICA 1. PARA CONVERTIR CENTÍMETROS A PULGADAS SE DEBE MULTIPLICAR POR: a. 0.3937 b. 0.5423 c. 0.2345 d. 0.1726 2. PARA CONVERTIR KILOGRAMOS EN LIBRAS SE DEBE MULTIPLICAR POR: a. 2.208 b. 2.235
Dónde: -Por una superficie de 1 m 2, -Por un grosor de 1 m, -Cuando la diferencia de temperatura entre las dos caras es de 1 K.
Aislamiento térmico Aislamiento térmico es la capacidad de los materiales para oponerse al paso del calor por conducción a través de ellos. Se evalúa por la resistencia térmica que tienen. La medida de
UNIDAD I. EL MUNDO EN QUE VIVIMOS
ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas
Sistemas de refrigeración: compresión y absorción
Sistemas de refrigeración: compresión y absorción La refrigeración es el proceso de producir frío, en realidad extraer calor. Para producir frío lo que se hace es transportar calor de un lugar a otro.
LA MATERIA: ESTADOS DE AGREGACIÓN
LA MATERIA: ESTADOS DE AGREGACIÓN 1. PROPIEDADES DE LA MATERIA Materia: es todo aquello que existe, tiene masa y ocupa un volumen, los distintos tipos de materia se llaman sustancias. El sistema material
ESTADOS DE AGREGACIÓN DE LA MATERIA
LA MATERIA LA MATERIA Materia es todo aquello que ocupa un lugar en el espacio y tiene masa. La madera, el agua, el corcho, la sal,.. Son clases diferentes de materia. Las clases de materia que se utilizan
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE:
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS APLICACIONES DEL PRINCIPIO DE PASCAL. OBSERVAR LA
GUIA SÍNTESIS CIENCIAS NATURALES. Nombre: Fecha: / /
COLEGIO VÍCTOR DOMINGO SILVA Ciencias naturales 6º Básico Miss María Cid Suazo GUIA SÍNTESIS CIENCIAS NATURALES Nombre: Fecha: / / OBJ. 1: Reconocer una cadena alimenticia de 4 eslabones y sus funciones.
Tc / 5 = Tf - 32 / 9. T = Tc + 273
ENERGIA TERMICA Energía Interna ( U ) : Es la energía total de las partículas que lo constituyen, es decir, la suma de todas las formas de energía que poseen sus partículas; átomos, moléculas e iones.
Corriente, Resistencia y Fuerza Electromotriz
Corriente Corriente, Resistencia y Fuerza Electromotriz La unidad de corriente en MKS es:1 Ampere(A)=1 C s La dirección de la corriente es la dirección de movimiento de las cargas positivas Corriente Eléctrica
EL CALOR Y LA TEMPERATURA
EL CALOR Y LA TEMPERATURA Prof.- Juan Sanmartín 4º Curso de E.S.O. 1 INTERCAMBIO DEL CALOR COMO FORMA DE TRANSFERENCIA DE ENERGÍA Pese a que los cambios que pueden producirse en los sistemas son muy variados,
Principios de Medida - Temperatura. James Robles Departamento de Instrumentación Huertas College Junior College
James Robles Departamento de Instrumentación Huertas College Junior College En esta Presentación: Definición de temperatura Tipos de Transferencia de Calor Unidades de medida de temperatura Conversión
CALOR Y TEMPERATURA, SON LO MISMO?
CALOR Y TEMPERATURA, SON LO MISMO? Los términos de calor y temperatura se emplean con mucha frecuencia en nuestra vida cotidiana, pero qué significan? Suponiendo que hiciéramos el experimento, que está
FENÓMENOS DE TRANSPORTE
FENÓMENOS DE TRANSPORTE UNIDAD I CONTENIDO LEY CERO DE LA TERMODINÁMICA LEY CERO DE LA TERMODINÁMICA Cuando tocamos un objeto, el sentido del tacto nos proporciona la sensación que calificamos como caliente
