Práctica 0. Objetivos
|
|
|
- Gonzalo Flores Giménez
- hace 9 años
- Vistas:
Transcripción
1 Objetivos Práctica 0 MEDIICIIONES Y ERRORES Evaluar la exactitud de la medición en términos del error absoluto y error relativo. Evaluar la precisión de las mediciones, relacionándola con la dispersión de los valores. Examinar los criterios básicos para reportar los resultados experimentales con el número de cifras significativas correspondientes. Aplicar criterios de exactitud y precisión para la selección de un instrumento de medición. Determinar la densidad de una solución problema de NaCl a partir de soluciones de NaCl a diferentes concentraciones. Introducción Sabemos que a través de nuestros sentidos podemos obtener impresiones primarias del mundo que nos rodea, y debido a ello adquirimos conocimientos elementales. Sin embargo, nuestros sentidos son instrumentos de observación limitados ya que por su subjetividad, por lo que son determinaciones puramente cualitativas que dependen de cada persona, pueden conducir a falsas interpretaciones, y sabemos que los hechos existen de manera independiente a cualquier sujeto en particular y al modo como éste los perciba. Las ciencias experimentales están fundamentadas en la obtención de información mediante la observación de fenómenos que ocurren en la naturaleza. Esta información se basa en la determinación cuantitativa de las magnitudes respectivas, lo cual implica la realización de medidas que permiten evidenciar y/o establecer conexiones entre los hechos ocurridos. Al atribuir un valor numérico a un hecho natural, el observador lo transforma de cualitativo, subjetivo y privado en algo cuantitativo, que es objetivo y comunicable. En definitiva, la medida experimental es la base de todo conocimiento científico. Toda medición está sujeta a incerteza, lo que se manifiesta en errores asociados a los valores medidos para los distintos parámetros o propiedades involucrados en un experimento. Existen dos tipos de errores asociados a mediciones: errores aleatorios y errores sistemáticos. Errores Aleatorios son producto de fluctuaciones al azar de las condiciones en que se realiza el experimento y se manifiestan en que al medir varias veces el mismo parámetro bajo supuestamente idénticas condiciones experimentales, se obtienen valores distintos. Bajo la condición que la dispersión en los valores medidos sea aleatoria, estos errores pueden ser tratados con técnicas estadísticas y obtener a partir de un conjunto de mediciones un valor representativo del conjunto. Errores Sistemáticos están asociados a las condiciones en que se realiza el experimento. No tienen fluctuación estadística y su tratamiento y corrección requiere de una cuidadosa revisión del montaje experimental usado. Fuentes habituales de este tipo de errores es el uso de instrumentos de medición incorrectamente calibrados, la suposición equivocada de condiciones experimentales como la presión atmosférica o la temperatura, entre otros. 1
2 Cuando se realiza cualquier medición es necesario considerar que se puede cometer errores y es importante desarrollar habilidades para evaluar los datos y sacar conclusiones que estén realmente justificadas. La mayoría de las técnicas consideradas para la evaluación de datos están basadas en conceptos estadísticos. Cada vez más se reconoce que los métodos estadísticos son eficaces en la planificación de los experimentos que darán la mayor información a partir del mínimo número de mediciones, y para abreviar los datos en tal forma que su significado se presente en forma concisa. Por otro lado y como punto muy importante, no debe esperarse que la estadística disminuya la necesidad de obtener buenas mediciones, tomando en cuenta que los métodos estadísticos son más poderosos cuando se aplican a datos válidos. En esta práctica es imposible examinar los fundamentos de la teoría de probabilidad, en la cual se basa gran parte de la estadística que se aplicará. Aquí debemos aceptar las conclusiones matemáticas y probabilísticas y luego intentar ver como pueden ser útiles. Errores El término error se utiliza para referirse a la diferencia numérica entre el valor medido y el valor real. El valor real de cualquier cantidad es en realidad una abstracción filosófica, algo que el hombre no está destinado a conocer, aunque los científicos sienten que existe y piensan que pueden tener acceso a él, más y más estrechamente, cuando sus medicines llegan a ser más refinadas. Errores determinados Los errores que pueden ser atribuidos a causas definidas, se llaman errores determinados o sistemáticos. De acuerdo con su origen, tienen lugar debido a: a) el método de análisis que refleja las propiedades de los sistemas químicos involucrados, b) la ineptitud del operador c) la avería de los aparatos de medición que no le permiten funcionar de acuerdo a los estándares requeridos. Ejemplos de errores sistemáticos son, el analista tiene una mala técnica en la balanza, el material de vidrio está sucio, etc. Dentro de los errores determinados existe otro tipo, error instrumental, que es muy fácil de determinar en los instrumentos de medida analógica, dicho error se estima de la siguiente forma: 2 Donde A es la apreciación del instrumento y puede determinarse a partir de la diferencia de las lecturas de dos valores marcados en el instrumento y el número de divisiones que existen entre ellos de acuerdo a: En algunos equipos volumétricos, empleados en química, tales como: pipetas volumétricas, el error cometido en la lectura es especificado por el fabricante; los cuales oscilan entre un 0,5% del volumen leído, en equipos de precisión y un 10% en equipos menos precisos. Para los equipos digitales el error instrumental se toma el error en la última cifra que aparece en la pantalla. Así por ejemplo, si en la pantalla aparece 12,04 el error instrumental será ± 0,01 y se debe reportar: 12,04 ± 0,01. 2
3 Errores indeterminados Los errores que se clasifican como indeterminados son aquellos que ocurren a pesar de ser muy cuidadoso y meticuloso. Son errores fortuitos que no pueden reducirse más. Exactitud y Precisión Los términos exactitud y precisión que en una conversación ordinaria se utilizan muchas veces como sinónimos, se deben distinguir con cuidado en relación con los datos científicos ya que no significan lo mismo. Un resultado exacto es aquel que concuerda de cerca con el valor real de una cantidad medida. La comparación se hace con frecuencia basándose en una medida inversa de la exactitud, que es el error (mientras más pequeño es el error, mayor es la exactitud). El error absoluto es la diferencia entre el valor experimental y el valor real. Por ejemplo, si un analista encuentra 20,44% de hierro en una muestra que en realidad contiene 20.34%, el error absoluto (Ea) es 20,44 20,34 0,10% El error se expresa con mucha frecuencia como relativo al tamaño de la cantidad medida, por ejemplo, en porcentaje. Aquí el error relativo (E R ) es 0, ,5 20,34 El término precisión se refiere a la concordancia que tienen entre sí un grupo de resultados experimentales; no tiene relación con el valor real. Los valores precisos pueden ser inexactos, ya que un error que causa desviación del valor real puede afectar todas las mediciones en igual forma y por consiguiente no perjudicar su precisión. La precisión se expresa por lo general en términos de la desviación estándar. Este término se definirá más adelante. Como en el caso del error (mencionado anteriormente), precisión puede expresarse en forma absoluta o relativa. Tratamiento estadístico de muestras finitas Después que se buscaron los errores determinados hasta donde fue posible y se tomaron todas las precauciones y se aplicaron las correcciones, se encuentra que las fluctuaciones restantes en los datos son, por naturaleza, al azar. Los resultados o datos dispersos de una manera al azar se analizan mejor por medio de las poderosas técnicas de la estadística. Nuestro objetivo será ahora mostrar cómo se aplica un pequeño número de estas técnicas y qué información nos proporcionan, más allá de lo que se puede observar o concluir con una inspección simple de los datos. Medidas de tendencia central La tendencia central de un grupo de datos es sencillamente el valor alrededor del cual los resultados individuales tienden a amontonarse. La media, x, es una medida de tendencia central y su cálculo solo implica obtener el promedio de los resultados individuales: Por lo general, la media es la medida más útil de la tendencia central. También existe la mediana, que en un número impar de datos es el dato del medio y la moda que corresponde al dato que más se repite. Hablando en términos generales la mediana y la moda son medidas de tendencia central mucho menos eficientes que la media. 3
4 Medidas de variabilidad Para un número finito de valores, la medida más simple de variabilidad es el rango, el cual es la diferencia entre el valor más grande menos el más pequeño. Al igual que la mediana, el rango es útil algunas veces en la estadística de muestras pequeñas, pero hablando en general, es una medida ineficaz de la variabilidad. Notemos, por ejemplo, que un resultado disparatado ejerce un fuerte impacto sobre el rango. En estadística, la desviación estándar es mucho más significativa que el rango. Para un número finito de valores se utiliza el símbolo s para denotar la desviación estándar. La desviación estándar se calcula empleando la siguiente fórmula: Donde: S = 1 es cada uno de los valores observados es la media es el numero de determinaciones Si N es grande (digamos que 30 o más), entonces, por supuesto, es imperceptible que el término en el denominador sea N-1 (lo cual es estrictamente correcto) o N, recuerde esta premisa al momento de realizar el cálculo directo con la calculadora ya que la mayoría posee ambas formas de dicho cálculo. Cuando la desviación estándar se expresa como un porcentaje de la media, se llama coeficiente de variación, CV o desviación estándar relativa, DSR: 100 La desviación estándar relativa suele proporcionar más información que las desviaciones estándar absolutas ya que permite comparar variaciones de dos o más grupos de datos independientemente de cada una de las medias o promedios. Cifras Significativas y reglas para el cálculo La mayoría de los científicos definen las cifras significativas como sigue: se dice que son cifras significativas todos los números que son seguros. Es importante utilizar sólo cifras significativas al expresar datos y resultados analíticos con el objeto de reportar correctamente el error con el que se realizan las medidas o se obtienen los resultados. El empleo de muchas o muy pocas cifras significativas puede confundir a otra persona respecto a la precisión (repetitividad de una serie de datos) de los datos analíticos. Al momento de reportar un resultado hay que tomar en cuenta el número de cifras significativas que posee la medida de la variabilidad. Así por ejemplo si una media fue 2, y la desviación estándar fue 0, se debe hacer un redondeo y reportar: 2,65 ± 0,06. Igualmente, si hay que pesar 2,65 g de una muestra de Cloruro de Sodio en una balanza con una sensibilidad de 0,01 g, deberá reportarse: 2,65 ±0,01 g 4
5 Procedimiento Experimental Reactivos -Agua destilada -Muestra problema (solución acuosa de cloruro de sodio, NaCl) Materiales y Equipos - Balanza - Pipeta volumétrica de 25 ml - Pipeta Graduada de 10 ml - Cilindro Graduado 25 ml - Cilindro Graduado 10 ml - Erlenmeyer de 125 ml - Termómetro Trabajo Experimental Los siguientes experimentos se realizarán con el propósito de determinar el verdadero volumen medido por el instrumento, a través de la pesada del líquido asociada al volumen leído. Nota: Debe tomar en cuenta la densidad del agua a diferentes temperaturas dada en la Tabla 1 al final de esta guía. Experimento Nº 1 Determine la apreciación y el error de los siguientes instrumentos: Cilindro Graduado 10 ml Cilindro graduado 25 ml Pipeta graduada de 10 ml Termómetro Experimento Nº 2 Tome un cilindro graduado de 25 ml y mida 25 ml de agua destilada. Vierta el líquido en una fiola limpia previamente pesada. Pese el conjunto y determine la masa de agua contenida en la fiola. Determine el volumen medido de agua por el cilindro mediante la fórmula: Donde: D es la densidad del agua a la temperatura del laboratorio. es la masa de agua contenida en la fiola es el volumen de agua medida por el cilindro Realice la experiencia por triplicado. Tome nota de la temperatura del Laboratorio y compare el valor de densidad del agua a obtenido a esa temperatura con el dado en la Tabla 1. Experimento Nº 3 Tome una pipeta volumétrica de 25 ml y mida 25 ml de agua destilada. Determine, al igual que en el experimento anterior, el volumen medido por la pipeta a través de la pesada del agua contenida en la misma. Realice la experiencia por triplicado. 5
6 Experimento Nº 4 1. Rotule 5 vasos de precipitados previamente lavados. Nota: SIEMPRE manipule los vasos con pinzas. 2. Determine la masa de cada uno de los vasos de precipitado perfectamente seco. 3. Pese y agregue a cada vaso la cantidad de NaCl correspondiente a cada vaso, según lo indica en la siguiente tabla: Sustancia Vaso 1 Vaso 2 Vaso 3 Vaso 4 NaCl (g) 0,25 0,50 0,75 1,00 4. A cada vaso vierta 25 ml de agua, medidos con el instrumento que haya resultado más preciso de la experiencia anterior. 5. Agite las soluciones de agua con NaCl, hasta lograr disolver la sal. 6. Mida la temperatura inicial de cada una de las soluciones. 7. Determine la masa de cada vaso con la solución correspondiente. 8. Calcule la masa correspondiente a los 25 ml de cada una de las disoluciones (restando la masa del vaso, de la masa de la solución con el vaso). 9. Calcule la densidad para cada una de las soluciones. 10. Realice el experimento por triplicado. (desde el paso 2 hasta el 9) 11. Tome 25 ml de la solución problema de NaCl y determine su densidad y concentración de acuerdo a las densidades y concentraciones obtenidos para las soluciones anteriores. Nota importante: Tome nota de los datos de densidad de los otros alumnos del curso y realice el tratamiento estadístico correspondiente. Cálculos y Resultados Para cada uno de los experimentos, 2, 3 y 4 determine: La precisión de la medida expresada en función de la desviación estándar y el coeficiente de variación. La exactitud del instrumento en función del error y porcentaje de error. (Tome como valor verdadero el volumen que reporta el fabricante, así para el cilindro graduado y para la pipeta volumétrica el valor verdadero será 25,0 ml). Calcular el error absoluto y la desviación estándar para la densidad de las soluciones analizadas en el experimento 4. Bibliografía Skoog, West y Hollard: (1994) Química Analítica. Edit. Mc. Graw Hill. Daniels, C. Harris (1992) Análisis Químico Cuantitativo. Grupo Editorial Iberoamérica. González A., (1988) Mediciones y errores en el laboratorio. [en línea]. Disponible: [2001, diciembre] 6
7 Presiones de Vapor y densidades del Agua a diferentes temperaturas Temp, Pres Vap Densidad Temp Pres Vap Densidad ( C) (torr) (g/cm 3 ) (g/cm 3 ) ± 1*10-5 ( C) (torr) ± 1* (hielo) 1,95 0, ,04 0, (hielo) 3,01 0, ,82 0, ,58 0, ,70 0, ,93 0, ,66 0, ,29 0, ,73 0, ,69 0, ,90 0, ,10 1, ,18 0, ,54 0, ,56 0, ,01 0, ,07 0, ,51 0, ,69 0, ,05 0, ,44 0, ,61 0, ,32 0, ,21 0, ,88 0, ,84 0, ,51 0, ,52 0, ,04 0, ,23 0, ,38 0, ,99 0, ,54 0, ,79 0, ,7 0, ,63 0, ,1 0, ,53 0, ,1 0, ,48 0, ,6 0, ,48 0, ,8 0, ,54 0, ,9 0, ,65 0, ,00 0, ,83 0, , ,07 0, ,6 0, ,38 0, ,5 0, ,76 0, , ,21 0, , ,74 0, ,35 0,
MANUAL DE PRÁCTICAS DE LABORATORIO I DE QUÍMICA
Página 34 de 95 PRÁCTICA 3. PROPIEDADES EXTENSIVAS: MASA Y VOLUMEN. PROCESO DE MEDICIÓN: CIFRAS SIGNIFICATIVAS, INCERTIDUMBRE Y PRECISIÓN 3.1. OBJETIVO Adquirir destreza en el uso del material empleado
UNESUR Núcleo La Victoria. Práctica 02 Lcda. Martha Ceballos
PRÁCTICA 02 MEDICIONES: CALIBRACIÓN, CÁLCULO DE ERRORES Y REPRESENTACIÓN GRÁFICA Objetivos Medir exactamente los volúmenes vertidos o contenidos en el material volumétrico mediante la calibración. Efectuar
Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:
Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres
Medición: Conjunto de operaciones que tiene por objeto determinar el valor de una magnitud. Metrología: Ciencia de la medición.
Medición: Conjunto de operaciones que tiene por objeto determinar el valor de una magnitud. Metrología: Ciencia de la medición. La metrología incluye todos los aspectos teóricos y prácticos relacionados
TALLER 01 CÁLCULO DE INCERTIDUMBRE PARA MEDICIONES FÍSICAS
TALLER 01 CÁLCULO DE INCERTIDUMBRE PARA MEDICIONES FÍSICAS Objetivo: Aplicar los conceptos teóricos de incertidumbre en el cálculo de la incertidumbre de mediciones físicas. Metodología: Conformar grupos
En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener
ERRORES DE MEDICION Y SU PROPAGACION En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener la magnitud fisica de algun atributo de objetos ( proceso,
Práctica No 1. Análisis estadísticos de los datos termodinámicos
Práctica No 1 Análisis estadísticos de los datos termodinámicos 1. Objetivo general: Aplicación correcta de las herramientas estadísticas en el manejo de propiedades, tales como: presión, temperatura y
CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS
Gestor de Calidad Página: 1 de 5 1. Propósito Establecer una guía para el cálculo de la incertidumbre asociada a las mediciones de los ensayos que se realizan en el. Este procedimiento ha sido preparado
Introducción al tratamiento de datos
Introducción al tratamiento de datos MEDICIÓN? MEDICIÓN Conjunto de operaciones cuyo objetivo es determinar el valor de una magnitud o cantidad. Ej. Medir el tamaño de un objeto con una regla. MEDIR? MEDIR
MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.
LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre
PRÁCTICA No. DETERMINACIÓN DE LA CONSTANTE DE VELOCIDAD Y ORDEN DE UNA REACCIÓN
PRÁCTICA No. DETERMINACIÓN DE LA CONSTANTE DE VELOCIDAD Y ORDEN DE UNA REACCIÓN OBJETIVOS EL ALUMNO Comprenderá la influencia de la concentración en la velocidad de una reacción química. Determinará el
LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción
LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una
FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico.
FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. OBJETIVOS 1. Reconocer las etapas del trabajo científico y elaborar informes
Experimento No. 1: Densidad de Líquidos y Sólidos
UNIVERSIDAD INTERAMERICANA Recinto de Bayamón Departamento de Ciencias Naturales y Matemáticas Química General para Ingenieros: QUIM 2115 Experimento No. 1: Densidad de Líquidos y Sólidos I. Objetivos
CINÉTICA. FACTORES QUE AFECTAN LA VELOCIDAD DE UNA REACCIÓN QUÍMICA
1. INTRODUCCION El área de la química que estudia la velocidad de las reacciones es llamada Cinética Química. La velocidad de reacción se refiere al cambio de concentración de un reactivo o producto en
UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007
UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007 QUIM 3003-3004 MEDIDAS: TRATAMIENTO DE LOS DATOS EXPERIMENTALES I. INTRODUCCIÓN La mayor
Práctica 2. Densidad
Universidad Nacional Autónoma de México Facultad de Química Laboratorio de Química General I 1 Grupo Equipo Práctica 2. Densidad Problema 1 Realizar experimentalmente una curva de calibración que relacione
Las medidas y su incertidumbre
Las medidas y su incertidumbre Laboratorio de Física: 1210 Unidad 1 Temas de interés. 1. Mediciones directas e indirectas. 2. Estimación de la incertidumbre. 3. Registro de datos experimentales. Palabras
PREPARACIÓN DE SOLUCIONES
1. INTRODUCCION Las soluciones se definen como mezclas homogéneas de dos o más especies moleculares o iónicas. Las soluciones gaseosas son por lo general mezclas moleculares. Sin embargo las soluciones
INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES DE ENSAYO
INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES DE ENSAYO 1. Introducción 2. Error e incertidumbre 3. Exactitud y precisión de medida 4. Tipos de medidas 5. Incertidumbre típica o de medida 6. Incertidumbre
Sistemas de Medición. Unidad I: Conceptos básicos de mediciones
Unidad I: Conceptos básicos de mediciones Presentado por: Ing. Alvaro Antonio Gaitán Encargado de Cátedra FEC-UNI 20 de abr de 2015 Ing. Electrónica Objetivos de la Unidad I Describir un proceso de medición
PRÁCTICA 1: CONTROL DE CALIBRACIÓN DEL MATERIAL VOLUMÉTRICO. ELABORÓ: Silvia Citlalli Gama González. REVISÓ: Alain Queré Thorent
PRÁCTICA 1: CONTROL DE CALIBRACIÓN DEL MATERIAL VOLUMÉTRICO. ELABORÓ: Silvia Citlalli Gama González. REVISÓ: Alain Queré Thorent INTRODUCCIÓN: Cuál es la importancia de realizar un control de calibración
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE QUÍMICA FARMACÉUTICA LABORATORIO DE QUÍMICA GENERAL Profesor: Jaime O. Pérez
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE QUÍMICA FARMACÉUTICA LABORATORIO DE QUÍMICA GENERAL Profesor: Jaime O. Pérez Práctica: Determinación de Densidades. Fecha: 24 de noviembre de 2009 DEYMER GÓMEZ CORREA:
3. REQUERIMIENTOS. El estudiante debe tener conocimientos básicos de: - Química General - Laboratorio de Química General 4. OBJETIVOS.
1. IDENTIFICACIÓN Materia: LABORATORIO DE QUIMICA ANALITICA Códigos: SIRE: 6102 EIQ: IQ-5064 Prelación: IQ-5023 - IQ-5032 Ubicación: Cuarto Semestre TPLU: 0-0-3-1 Condición: Obligatoria Departamento: Química
4º E.S.O. FÍSICA Y QUÍMICA 1. MAGNITUDES Y UNIDADES. Dpto. de Física y Química. R. Artacho
4º E.S.O. FÍSICA Y QUÍMICA 1. MAGNITUDES Y UNIDADES R. Artacho Dpto. de Física y Química 1. MAGNITUDES Y UNIDADES Índice CONTENIDOS 1. La investigación científica. 2. Las magnitudes. 3. La medida y su
Teoría de errores. 4 Otro de estos ejemplos pueden ser el de la medición de la densidad de un compuesto sólido o la velocidad de la luz.
1. Preliminar Cuando se realizan mediciones siempre estamos sujetos a los errores, puesto que ninguna medida es perfecta. Es por ello, que nunca se podrá saber con certeza cual es la medida real de ningún
PRÁCTICA 1 HERRAMIENTAS Y OPERACIONES BÁSICAS EN EL LABORATORIO BIOANALÍTICO
PRÁCTICA 1 HERRAMIENTAS Y OPERACIONES BÁSICAS EN EL LABORATORIO BIOANALÍTICO INTRODUCCIÓN Todos los instrumentos de medida que se utilizan en el laboratorio tienen algún tipo de escala para medir una magnitud,
TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO
TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO PROCESO ANALÍTICO Conjunto de operaciones analíticas intercaladas que se
Universidad Metropolitana Centro de Aguadilla Laboratorio de Química. Medidas de Masa y Densidad e Incertidumbre
Universidad Metropolitana Centro de Aguadilla Laboratorio de Química Medidas de Masa y Densidad e Incertidumbre Objetivos: Reconocer la incertidumbre en las medidas Familiarizarse con las medidas de longitud,
PRÁCTICA NÚMERO 12 DILATACIÓN VOLUMÉTRICA DE UN LÍQUIDO
PRÁCTICA NÚMERO 12 DILATACIÓN VOLUMÉTRICA DE UN LÍQUIDO I. Objetivo. Observar el fenómeno de la dilatación térmica de un líquido y medir su coeficiente de dilatación volumétrica. II. Material. 1. 50 ml
Conceptos básicos estadísticos
Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto
Determinación del Peso Molecular por Crioscopía
LABORATORIO DE FISICOQUÍMICA QMC 313 Determinación del Peso Molecular Procedimiento Operativo Estándar Lic. Luis Fernando Cáceres Choque 08/04/2014 Página 2 de 7 Determinación de Peso Molecular Por Crioscopía
PRÁCTICA Nº 3 PREPARACIÓN DE SOLUCIONES ACUOSAS
PRÁCTICA Nº 3 PREPARACIÓN DE SOLUCIONES ACUOSAS OBJETIVOS Preparar soluciones acuosas a partir de la medición directa de reactivos sólidos y líquidos. Preparar soluciones acuosas por dilución. I. ASPECTOS
DETERMINACIÓN DE LA MASA MOLECULAR POR ELEVACIÓN DEL PUNTO DE EBULLICIÓN DE UNA DISOLUCIÓN
DETERMINACIÓN DE LA MASA MOLECULAR POR ELEVACIÓN DEL PUNTO DE EBULLICIÓN DE UNA DISOLUCIÓN OBJETIVO El alumno determinará la masa molecular de un compuesto puro, por elevación del punto de ebullición de
~I~ 1_~4_._1._p_re_la_b_or_at_o_rio 38 [J. Determinación de la masa y temperatura de un wsmatelíaj. ~,="
38 [J Determinación de la masa y temperatura de un wsmatelíaj. ~,=" 1~4.1.prelaboratorio ~I~ 4.1.1. Investigue en su libro de texto, Objetivo No. 1: Qué es masa? Instrumento para medirla. Unidades Qué
1. FUNDAMENTOS TEÓRICOS
DETERMINACIÓN DE LA MASA DE UNA SUSTANCIA 1. FUNDAMENTOS TEÓRICOS CLASIFICACIÓN DE LAS SUSTANCIAS Reactivos: La pureza de los reactivos es de fundamental importancia para la exactitud de los resultados
PRÁCTICA NÚMERO 2 DETERMINACIÓN DE DENSIDAD: MÉTODO DEL PICNÓMETRO
PRÁCTICA NÚMERO 2 DETERMINACIÓN DE DENSIDAD: MÉTODO DEL PICNÓMETRO I. Objetivo Haciendo uso del picnómetro: 1. Determinar la densidad absoluta del agua. 2. Determinar la variación de la densidad con la
OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución.
OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución. FUNDAMENTO TEÓRICO Una disolución es una mezcla homogénea
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE DEPARTAMNETO DE INGENIERIA QUIMICA
Práctica Nº1: Introducción a las técnicas fundamentales del Laboratorio Químico En el laboratorio existen una variedad materiales, y cada uno de ellos debe ser utilizado apropiadamente. Por esta razón,
Profesora: Ana María Gallardo Suárez. Características de los INSTRUMENTOS DE MEDIDA PRACTICA Nº 1 CURSO: 3 ESO. Recursos ana.fjb.
Características de los INSTRUMENTOS DE MEDIDA PRACTICA Nº 1 CURSO: 3 ESO Recursos ana.fjb.es Introducción Los instrumentos de medida están definidos por una serie de características que debes conocer para
PROPIEDADES DE LA MATERIA. Nombre del Alumno: Profesor: Grupo:
PROPIEDADES DE LA MATERIA Nombre del Alumno: Profesor: Grupo: 2. Espacio sugerido: Laboratorio de usos múltiples. 3. Desempeños y habilidades. 1. Identifica problemas, formula preguntas de carácter científico
DETERMINACIÓN DE LA DENSIDAD DE DISOLUCIONES Y SÓLIDOS
U N A M DIVISIÓN DE CIENCIAS BÁSICAS LABORATORIO DE QUÍMICA Práctica: DETERMINACIÓN DE LA DENSIDAD DE DISOLUCIONES Y SÓLIDOS Objetivos El alumno: 1. Preparará una disolución utilizando el material de vidrio
Determinación de la Masa Molar del Magnesio
Determinación de la Masa Molar del Magnesio Introducción teórica Como en muchas reacciones químicas, los reactivos o sus productos o ambos son gases, es más común medir éstos en función del volumen usando
COLEGIO DE BACHILLERES DEL ESTADO DE TLAXCALA
COLEGIO DE BACHILLERES DEL ESTADO DE TLACALA DIRECCIÓN ACADÉMICA DEPARTAMENTO DE BIBLIOTECAS Y LABORATORIOS. MANUAL DE ACTIVIDADES EPERIMENTALES DE: PRUEBAS FÍSICAS I (QUINTO SEMESTRE) SEMESTRE 2009-B
Elaborado por: M.I. Susana Norzagaray Plasencia
Elaborado por: COMPETENCIA PRÁCTICA 6 PREPARACIÓN DE DISOLUCIONES ACUOSAS: COMPOSICION PORCENTUAL Y PARTES POR MILLON Conocer las diferentes formas de expresar la concentración de las disoluciones acuosas
NMX-EE ENVASE-VIDRIO. CAPACIDAD. MÉTODOS DE PRUEBA. PACKAGING-GLASS. CAPACITY. TEST METHODS. NORMAS MEXICANAS. DIRECCION GENERAL DE NORMAS.
NMX-EE-187-1985. ENVASE-VIDRIO. CAPACIDAD. MÉTODOS DE PRUEBA. PACKAGING-GLASS. CAPACITY. TEST METHODS. NORMAS MEXICANAS. DIRECCION GENERAL DE NORMAS. PREFACIO En la elaboración de esta Norma participaron
Fundamentos de Estadística y Simulación Básica
Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión
Determinación del contenido de carbonato de calcio (CaCO 3 ) en una muestra comercial
Determinación del contenido de carbonato de calcio (CaCO 3 ) en una muestra comercial Autores: Olivia Zamora Martínez y Alberto Colín Segundo Revisores 1. INTRODUCCIÓN Los equilibrios ácido-base son bastante
DETERMINACIÓN DE LA DENSIDAD DE UN LÍQUIDO
DETERMINACIÓN DE LA DENSIDAD DE UN LÍQUIDO M. C. Q. Alfredo Velásquez Márquez Objetivos de la práctica El alumno: 1. Preparará una disolución utilizando el material de vidrio adecuado. 2. Determinará la
MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas
OBJETIVOS MEDICIÓN Declarar lo que es una medición, error de una medición, diferenciar precisión de exactitud. Reportar correctamente una medición, con las cifras significativas correspondientes utilizando,
DETERMINACIÓN PORCENTUAL DE NaHCO 3 EN TABLETAS EFERVESCENTES
DETERMINACIÓN PORCENTUAL DE NaHCO EN TABLETAS EFERVESCENTES Objetivos. Evaluar la importancia de las reacciones de formación de gases en análisis cuantitativo.. Determinar el contenido de bicarbonato de
TERMOQUÍMICA. ENTALPÍA DE DISOLUCIÓN
TERMOQUÍMICA. ENTALPÍA DE DISOLUCIÓN M. C. Q. Alfredo Velásquez Márquez Objetivos de la práctica El alumno: 1. Conocerá el concepto sobre el cual se basa el funcionamiento de las compresas instantáneas
CONCEPTOS DE ERROR Y TOLERANCIA
UNIVERSIDAD AUTÓNOMA CHAPINGO DEPARTAMENTO DE IRRIGACIÓN Cap 1. Introducción (Definiciones y conceptos básicos) CONCEPTOS DE ERROR Y TOLERANCIA Profesor: M. C. Fco. Raúl Hernández Saucedo 1 Conceptos de
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
Tabla 1. Incertidumbres típicas en la calibración de recipientes volumétricos por el método gravimétrico. (Son consideradas como referencia).
4. CALIBRACIÓN DE MATERIAL VOLUMÉTRICO 1.- OBJETIVO Realizar la calibración de material volumétrico por el método gravimétrico, para calcular el volumen, estimar la incertidumbre asociada y la trazabilidad
MATERIAL VOLUMETRICO. Establecer los criterios y la metodología que se utilizarán para el verificado del material volumétrico.
Página de 9. OBJETIVO Establecer los criterios y la metodología que se utilizarán para el verificado del material volumétrico. 2. CAMPO DE APLICACIÓN Aplica para el verificado de aparatos volumétricos,
Mediciones Eléctricas
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 1 TEORIA DE ERRORES Cuando se mide una cantidad, ya directa, ya
Introducción a la Teoría de Errores
Introducción a la Teoría de Errores March 21, 2012 Al medir experimentalmente una magnitud física (masa, tiempo, velocidad...) en un sistema físico, el valor obtenido de la medida no es el valor exacto.
Prácticas Integrales I Año Lectivo 2007-2008 Modulo I Procedimientos e instrumentación Básica en el Laboratorio
Práctica N 2 Mediciones y Tipos de Errores 1.- Objetivos: Seleccionar el instrumento más apropiado para realizar una medición considerando su precisión y exactitud. Realizar transformaciones de unidades
ANÁLISIS CUANTITATIVO POR WDFRX
ANÁLISIS CUANTITATIVO POR WDFRX El análisis cuantitativo se obtiene mediante la medida de las intensidades de las energías emitidas por la muestra. Siendo la intensidad de la emisión (número de fotones)
MANUAL DE PRÁCTICAS DE LABORATORIO
INSTITUTO TECNOLÓGICO SUPERIOR DE LIBRES MANUAL DE PRÁCTICAS DE LABORATORIO CIENCIAS BASICAS ASIGNATURA: Fundamentos de Física CLAVE: ALC- 1010 ELABORÓ M.C. Martha Irene Bello Ramírez Libres, Puebla FORMATO
VOLUMEN MOLAR PARCIAL DE UNA MEZCLA BINARIA
Práctica VOLUMEN MOLAR PARCIAL DE UNA MEZCLA BINARIA. INTRODUCCIÓN Las magnitudes termodinámicas como la entropía S, energía interna E, volumen V ó entalpía H son magnitudes extensivas, que dependen de
ERRORES. Identificar las causas de errores en las medidas. Expresar matemáticamente el error de una medida cm cm cm 4 12.
ERRORES OBJETIVOS Identificar las causas de errores en las medidas.. lasificar los errores según sus causas. Expresar matemáticamente el error de una medida. Determinar el error del resultado de una operación
Parte I. Medidas directas. Uso e interpretación de instrumentos
Parte I. Medidas directas. Uso e interpretación de instrumentos Desarrollo experimental Material y equipo 3 Instrumentos diferentes para medir longitud (también puede ser otra dimensión) 5 Objetos diferentes
Universidad Nacional Autónoma de México Facultad de Química Laboratorio de Química General I Grupo Equipo Nombre: Nombre: Nombre: Nombre: Nombre:
Universidad Nacional Autónoma de México Facultad de Química Laboratorio de Química General I Grupo Equipo Práctica 0. Ejemplos de mezcla homogénea y heterogénea Texto original: Dra. Laura María Gasque
PRÁCTICA NÚMERO 4 DETERMINACIÓN DEL CALOR ESPECÍFICO
PRÁCTICA NÚMERO 4 DETERMINACIÓN DEL CALOR ESPECÍFICO I. Objetivo Determinar el calor específico de algunos materiales sólidos, usando el calorímetro y como sustancia cuyo valor de calor específico es conocido.
UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO
UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO MEDIDAS DE TENDENCIA CENTRAL Y DE DISPERSIÓN PARA DATOS NO AGRUPADOS MATERIAL DIDACTICO SOLO VISION ASIGNATURA QUE CORRESPONDE: ESTADISTICA
PRÁCTICA N 1 Determinación de Densidad en los Alimentos
1 1. Objetivos PRÁCTICA N 1 Determinación de Densidad en los Alimentos Determinar la densidad de diferentes muestras de alimentos utilizando el picnómetro. Determinar la densidad de diferentes muestras
COEFICIENTES DE DILATACIÓN
PRÁCTICA 3 COEFICIENTES DE DILATACIÓN OBJETIVO Determinación del coeficiente de dilatación del agua a temperatura ambiente utilizando un picnómetro. Determinación del coeficiente de dilatación lineal de
UNIDAD EDUCATIVA IBARRA
Datos Informativos: Curso: 1 BI Criterio a Evaluar: Laboratorio de Ciencias Experimentales Biología (NM) CP: Compromiso personal E: Exploración A: Análisis EV: Evaluación C: Comunicación 1 TEMA: HIDRÓLISIS
CONSTANTE DE EQUILIBRIO. DISOLUCIÓN DEL KNO 3. Grupo: Equipo: Fecha: Nombre(s):
CONSTANTE DE EQUILIBRIO. DISOLUCIÓN DEL KNO 3. Grupo: Equipo: Fecha: Nombre(s): I. OBJETIVO GENERAL Estudiar el equilibrio de una reacción de disolución para determinar las propiedades termodinámicas asociadas
Cuantificación de incertidumbre en mediciones analíticas
Cuantificación de incertidumbre en mediciones analíticas Steve Acco Garcia Lima, 21 de Mayo del 2014 Magnitud Conceptos básicos Propiedad de un fenómeno, cuerpo o sustancia, que puede expresarse cuantitativamente
Unidad 3: Incertidumbre de una medida
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 3: Incertidumbre de una medida Universidad Politécnica de Madrid 12 de abril de 2010
- Magnitudes y unidades - El S.I. de unidades - Medida y error. Física Física y química 1º 1º Bachillerato
- Magnitudes y unidades - El S.I. de unidades - Medida y error Física Física y química 1º 1º Bachillerato Magnitud Es todo aquello que puede ser medido Medición Medir Conjunto Es comparar de actos una
LABORATORIO DE QUÍMICA ANALÍTICA I LQ-218. Práctica de Laboratorio No. 9
UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA DEPARTAMENTO DE QUÍMICA LABORATORIO DE QUÍMICA ANALÍTICA I LQ-218 Práctica de Laboratorio No. 9 COMPETENCIAS A LOGRAR:
Práctica 1. Separación de Mezclas Protocolo 2
Equipo: Preguntas a responder al final de la sesión Práctica 1. Separación de Mezclas Protocolo 2 Qué tipo de mezcla se te proporcionó y cómo lo determinaste? Cuántos y cuáles son los métodos de separación
Introducción al estudio de las mediciones
y fluidos 1.0 Medición Una medición es el resultado de una operación humana de observación mediante la cual se compara una magnitud con un patrón de referencia. Por ejemplo, al medir el diámetro de una
PRÁCTICA 1 TÉCNICAS DE LABORATORIO LABORATORIO DE QUÍMICA ANALÍTICA MATERIALES Y EQUIPOS
PRÁCTICA 1 LABORATORIO DE QUÍMICA ANALÍTICA TÉCNICAS DE LABORATORIO MATERIALES Y EQUIPOS Materiales Equipos Reactivos 5 monedas Balanza Analítica KMNO 4 Pieza problema Termómetro Pinza Vaso de Precipitado
PRÁCTICA # 01 PREPARACIÓN DE DISOLUCIONES
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA AVIACIÓN MILITAR VENEZOLANA U.E.A.M LIBERTADOR ASIGNATURA: QUÍMICA PROF(A): ANGÉLICA RODRÍGUEZ MARBELIS MELENDEZ CURSO: 4to
LA MEDIDA. Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura...
LA MEDIDA IES La Magdalena Avilés. Asturias Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura... etc. Medir una magnitud consiste en compararla
LABORATORIO DE QUÍMICA ANALÍTICA I LQ-218. Práctica de Laboratorio No. 3 CALIBRACIÓN DE MATERIAL VOLUMÉTRICO ANALÍTICO
UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA DEPARTAMENTO DE QUÍMICA LABORATORIO DE QUÍMICA ANALÍTICA I LQ-218 Práctica de Laboratorio No. 3 COMPETENCIAS A LOGRAR:
Determinación de la Solubilidad de una Sal
LABORATORIO DE FISICOQUÍMICA QMC-313 Determinación de la Solubilidad de una Sal Procedimiento Operativo Estándar Lic. Luis Fernando Cáceres Choque 10/10/2014 Determinación de la solubilidad de sales en
Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos. Cómo cumplir con requisitos de la ISO 15189
Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos Cómo cumplir con requisitos de la ISO 15189 Calidad en mediciones químicas Validación de métodos Estoy midiendo lo que intentaba
1.- La materia y clasificación. La materia es cualquier cosa que ocupa un espacio y tiene masas Estados: sólido, líquido, gaseoso
La Química La Química se encarga del estudio de las propiedades de la materia y de los cambios que en ella se producen. La Química es una ciencia cuantitativa y requiere el uso de mediciones. Las cantidades
CRITERIOS Y RECOMENDACIONES. DETERMINACIÓN DE LA INCERTIDUMBRE DE MEDIDA DE AGENTES QUÍMICOS Incertidumbre del volumen de aire muestreado
CRITERIOS Y RECOMENDACIONES DETERMINACIÓN DE LA INCERTIDUMBRE DE MEDIDA DE AGENTES QUÍMICOS Incertidumbre del volumen de aire muestreado CR-04/2008 Autoras: Begoña Uribe Ortega Mª José Quintana San José
TEXTO PARA ELABORAR EL INFORME DE LABORATORIO. Objetivo de la clase: Redactar un texto académico a partir de información disciplinar.
TEXTO PARA ELABORAR EL INFORME DE LABORATORIO Objetivo de la clase: Redactar un texto académico a partir de información disciplinar. I. Instrucciones: a) Lea el siguiente texto, que servirá de base para
ESTADÍSTICA I Código: 8219
ESTADÍSTICA I Código: 8219 Departamento : Metodología Especialidad : Ciclo Básico Prelación : Sin Prelación Tipo de Asignatura : Obligatoria Teórica y Práctica Número de Créditos : 3 Número de horas semanales
Teoría de errores -Hitogramas
FÍSICA I Teoría de errores -Hitogramas Autores: Pablo Iván ikel - e-mail: [email protected] Ma. Florencia Kronberg - e-mail:[email protected] Silvina Poncelas - e-mail:[email protected] Introducción:
Semana 6 Bimestre I Número de clases 16 18
Semana 6 Bimestre I Número de clases 16 18 Clase 16 Prácticas de laboratorio Actividad 1 Normas de seguridad y medición Conoce las normas de laboratorio y aprende a medir! 1 Normas de laboratorio Use prenda
VALIDACIÓN DE MÉTODOS DE ANÁLISIS VALIDACIÓN DE MÉTODOS 1
VALIDACIÓN DE MÉTODOS DE ANÁLISIS VALIDACIÓN DE MÉTODOS 1 Índice 1. Por qué validar un método de análisis? 2. Cuándo validar un método de análisis? 3. Validación de métodos de análisis. 3.1. Selectividad
PRÁCTICA 1. Mediciones
PRÁCTICA 1 Mediciones Objetivo General El alumno determinará la incertidumbre de las mediciones. Objetivos particulares 1. El alumno determinará las incertidumbres a partir de los instrumentos de medición..
GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.
GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos
Práctica No 4. Calor latente de vaporización
Práctica No 4 Calor latente de vaporización 1. Objetivo general: Determinación del calor latente de vaporización. 2. Objetivo específicos: 1) Operar correctamente un calorímetro de vapor. 2) Establecer
DETERMINACION DEL PM. DE LA FRUCTOSA
1. INTRODUCCIÓN Las propiedades coligativas de las soluciones son aquellas que dependen del número (cantidad) pero no del tipo de partículas de soluto en una cantidad dada de disolvente, las principales
