1. Sobre una masa puntual de 3 Kg actúa. fuerza horizontal de 4 Kp y luego se. durante un tiempo de 2 s. una fuerza

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Sobre una masa puntual de 3 Kg actúa. fuerza horizontal de 4 Kp y luego se. durante un tiempo de 2 s. una fuerza"

Transcripción

1 1. Sobre una masa puntual de 3 Kg actúa durante un tiempo de 2 s. una fuerza constante dada por: F = 4i - 3j (S.I.) Calcular:a)Impulso de la fuerza actuante. b)momento lineal al cabo de los 2 s si el momento lineal inicial era de p =12j (S.I.). fuerza horizontal de 4 Kp y luego se suprime qué distancia total recorrerá el bloque hasta detenerse? Hacer el mismo cálculo suponiendo que la fuerza de 4 Kp forme un ángulo de 30º con la horizontal. c)velocidad del cuerpo al cabo de dicho tiempo. d)posición del móvil si su vector de posición inicial era: r 0 = (1/3)i + 2j e)momento angular respecto al origen al cabo de 2 s. 4. Sobre un cuerpo de masa 2 Kg actua durante 2 s una fuerza variable F = 4ti - 2j. Si el cuerpo se encuentra inicialmente en reposo en el punto P (1,1), determinar al cabo de esos 2 s la aceleración, velocidad, posición y momento lineal del cuerpo. 2. Tres bloques A, B y C de masas respectivas 2, 3 y 4 Kg se encuentran en contacto uno a continuación de otro sobre una superficie horizontal sin rozamiento. Qué fuerza constante aplicada a C comunica al sistema una aceleración de 2 m/s 2?. Qué fuerza ejerce A sobre B y B sobre A?. Qué fuerza ejerce B sobre C?. 5. Mediante el siguiente experimento deseamos medir el valor de g en un determinado lugar. De los extremos de un hilo de masa despreciable que pasa por una polea penden dos masas de 100 g cada una. A la masa de la derecha se le agregan 5 g y el sistema adquiere una aceleración de 0.24 m/s 2. Indicar el valor de g y la 3. Sobre una superficie horizontal se tensión del hilo. encuentra un bloque de 8 Kg de masa. Los coeficientes de rozamiento estático y dinámico entre el bloque y la superficie son, respectivamente, 0,28 y 0,25. Qué sucederá si al bloque se le aplica una fuerza horizontal de 2 Kp?. Si durante un tiempo de 2 s actua una 6. En la parte superior de un plano incliando de 30º con la horizontal se coloca una polea. A los extremos de un hilo que pasa por la polea se sujetan dos masas de 2 Kg como se indica en la figura. Estudiar el movimiento del sistema si µ = 0.2

2 aceleración constante de 1 m/s 2 d) 7. Un bloque de masa m, descansa sobre un vehículo de masa M. Si el coeficiente de desciende aceleración con rozamiento entre el bloque y el vehículo es constante de 1 µ 0, encontrar la fuerza mínima que, m/s 2 e) Si la aplicada sobre el vehículo, provoque el deslizamiento del bloque. masa del ascensor es de 500 Kg determinar en cada caso la tensión del cable. 8. Un hombre de 80 Kg de masa salta desde la cornisa de una ventana que está situada 0,5 m sobre un patio de cemento. Al caer no dobla las rodillas y su movimiento es detenido en una distancia de 2 cm. Qué fuerza media ejercerá el cemento sobre su esqueleto?. Si el hombre salta desde una cornisa de 1,5 m del suelo, pero flexiona sus rodillas de forma que su centro de gravedad desciende una altura adicional h, después de que sus pies toquen el suelo. Cuánto debe valer dicha altura h para que la fuerza media ejercida por el suelo sea solo tres veces su peso?. 9. Un niño de 30 Kg se encuentra en un ascensor. Determinar en cada uno de los casos siguientes la fuerza que ejerce el niño sobre el suelo del ascensor cuando éste: a) está en reposo b) asciende con velocidad constante de 3 m/s c) asciende con 10. Un hombre se eleva sobre una plataforma en la que permanece de pie con una aceleración de 5 m/s 2, por medio de una polea y una cuerda de masa despreciable. El hombre tiene una masa de 100 Kg y la plataforma 50 Kg. Determinar la tensión en cada una de las cuerdas y la fuerza de contacto ejercida por el hombre sobre la plataforma. 11. Un hombre tira de dos trineos enlazados entre si, tirando de una cuerda que forma un ángulo de 30º con la horizontal, y a continuación aplica una fuerza de 120 N. Las masas de los trineos son idénticas entre si y de valor 15 Kg. El coeficiente de rozamiento de los trineos con

3 el suelo es O.02. Encontrar: a) aceleración de los trineos y tensión en la cuerda que los une b) fuerza que debe ejercer el hombre para que se muevan uniformemente. horizontal, en el punto más elevado de su trayectoria, en el punto en que alcanza de nuevo la horizontal y al cabo de 10 s de producirse el lanzamiento. 12. Un automóvil de 1000 Kg marcha por una carretera con velocidad de 108 Km/h. El coeficiente de rozamiento neumáticos carretera es 0.3. Calcular el radio mínimo de la curva que podrá tomar sin derrapar. Si la curva es de 100 m qué peralte debe tener para que a dicha velocidad el coche no derrape. 15. Se deja caer libremente un cuerpo de 10 g. Supuesta nula la resistencia del aire y cuando su velocidad es v = 20 m/s, se le opone una fuerza que detiene su caida al cabo de 4 s. a) Cuál debe ser esa fuerza? b) Qué espacio ha recorrido hasta el momento en que se aplica esa fuerza? c) Qué espacio total ha recorrido hasta el momento que se detiene?. 13. Un cuerpo de 4 Kg de masa gira atado al extremo de una cuerda, de 5 m de longitud y de masa despreciable, describiendo una circunferencia en un plano vertical, de manera que la tensión de la cuerda sea mínima cuando el cuerpo pasa por el punto superior de su trayectoria. Calcular la tensión de la cuerda cuando el cuerpo se encuentra en una posición cualquiera definida por el ángulo ß girado desde su posición 16. Un bloque de 5 Kg está sostenido por una cuerda y es arrastrado hacia arriba con una aceleración de 2 m/s 2 Se pide: a) la tensión de la cuerda b) si después de iniciarse el movimiento la tensión se reduce a 49 N qué clase de movimiento tendrá lugar? c) Si se afloja la cuerda por completo se observa que el bloque continua moviéndose, recorriendo 2 m antes de detenerse qué velocidad tenía?. superior. 17. Calcular la aceleración del sistema de 14. Calcular el momento lineal de un proyectil de masa 10 Kg y velocidad 100 m/s que forma un ángulo de 45º con la la figura, sabiendo que no hay rozamiento y que la masa de los bloques es de 8 y 4 Kg respectivamente.

4 18. Con ayuda de una cuerda se hace girar un cuerpo de 1 Kg en una circunferencia vertical de 1 m de radio, cuyo centro está describe la superficie de un cono. Hallar el tiempo que tarda el cuerpo en efectuar una evolución completa. situado a 10,8 m por encima del suelo (ver figura). La cuerda se rompe cuando el 21. Calcular la velocidad mínima que tiene que tener un motorista que trabaja en el "tubo de la muerte" para que no se caiga. Diámetro del tubo 10 m. Coeficiente de rozamiento entre las ruedas y la pared 0.5. móvil está en el punto más bajo de la trayectoria (entonces la tensión era de 11.2 Kp).Calcular: a)la velocidad que tenía el cuerpo en el momento de romperse la cuerda b)el tiempo que tarda en llegar al suelo c)la velocidad en el instante en que choca con el suelo. 22. Un bloque de acero cúbico flota sobre mercurio: a) Qué fracción del volumen del bloque sobresale del mercurio?. b) Si vertemos agua sobre el mercurio qué fracción de arista cubriría el agua si el bloque queda justamente cubierto por el agua? D Hg = 13,6 g/cm 3, D acero = 7,8 19. Un bloque se encuentra en reposo g/cm 3 y D agua = 1 g/cm 3 (ver figura) sobre un plano inclinado que forma un ángulo Θ con la horizontal. Conforme va inclinándose el plano, el cuerpo comienza a deslizar para un ángulo Θ 0. Calcular el valor del coeficiente de rozamiento estático entre el cuerpo y el plano. 20. Sea una masa puntual m que gira en un círculo horizontal con una velocidad constante v en el extremo de una cuerda de longirud L. Al girar el cuerpo la cuerda 23. Tres bloques están unidos entre si como se muestra en la figura, sobre una superficie horizontal sin rozamiento y se tira de ellos hacia la derecha con una

5 fuerza T 3 = 60 N. Si las masas m 1, m 2 y m 3 son respectivamente 10, 20 y 30 Kg hallar las tensiones T 1 y T 2. alrededor de un eje vertical con una celeridad constante ω rev/s. La pared del embudo forma un ángulo Θ con la horizontal. Si el coeficiente de rozamiento 24. Un cuerpo inicialmente en reposo en x 0 se mueve en linea recta bajo la acción de una fuerza F = -(k/x 2 ). Demostrar que su velocidad en x es v 2 =(2k/m)[(1/x) - (1/x 0 )]. estático entre el cubo y el embudo es µ y el centro del cubo está a una distancia r del eje de rotación, cuáles son los valores máximo y mínimo de ω para los que el bloque no se moverá con respecto al embudo?. 28. Las masas A y B de la figura son, 25. Dos bloques unidos por una cuerda que pasa por una polea de masa despreciable y sin rozamiento, descansan sobre planos lisos como se indica en la figura. Cuál es la aceleración de los bloques? Y la tensión de la cuerda?. respectivamente 10 Kg y 5 Kg. El coeficiente de rozamiento entre A y la mesa es 0,2. Hallar la masa mínima de C que evitará el movimiento de A. Calcular la aceleración del sistema si A se separa del mismo. 26. Una masa m colocada sobre una mesa está unida a una masa M suspendida mediante una cuerda que pasa por un agujero en la mesa. Encontrar las condiciones (v y r) en las que debe girar m para que M quede en reposo. 27. Un cubo muy pequeño de masa m se coloca en el interior de un embudo que gira 29. Sobre una partícula de masa m actúa una fuerza F = mti. Si para t=1, v=0 y r=i

6 determinar la ecuación del movimiento. ángulo con la vertical de 12, calcular la tensión del hilo y la aceleración del 30. La fuerza que actúa sobre una partícula de 3 g de masa es F = (5 - t 2 )i + 2tj dinas. vehículo. Considerar la masa del péndulo m. Si inicialmente la partícula está en reposo sobre el origen de coordenadas, hayar su posición y velocidad para t=3 s. 31. En una de las ramas de una máquina de Atwood se ha introducido un muelle tal que se alarga 2 cm al ponerle un peso de 100 N. Si las masas son de 12 y 14 Kg respectivamente, calcúlese el alargamiento que sufre dicho muelle. 32. De un sistema formado por un cuerpo de 1 Kg sobre un plano horizontal con coeficiente de rozamiento entre el cuerpo y el plano µ=0,6 se coloca un resorte del que se tira con una fuerza de 5 N. Calcúlese el alargamiento del muelle si su constante de elasticidad es K=400N/m. 34. Calcular la aceleración del sistema de la figura y la tensión del hilo en A y B. 35. Calcular el ángulo con que se ha de inclinar el motorista para poder tomar la curva a la velocidad máxima cuando no hay peralte. Datos: µ = 0.7, radio curvatura = 100 m, M = 200 Kg. 36. Un motorista va por una pista de 20 m de radio y un peralte de 60. Suponiendo que no hay rozamiento A qué velocidad debe rodar?. 37. Una fuerza de de 25 N empuja por un plano horizontal, dos objetos de 3 y 2 Kg, respectivamente. El coeficiente de 33. Un péndulo que cuelga del techo de una furgoneta que se mueve sobre una linea rectilinea en horizontal forma un rozamiento es de 0,2. Calcular la fuerza que ejerce un objeto sobre el otro. 38. Calcular l

7 a aceleración del objeto de la figura si su masa es de 2 Kg. y la fuerza que se aplica de 12 N forma un ángulo con la horizontal de Tenemos un objeto de masa m sobre un 41. Calcular la velocidad mínima con que ha de entrar el objeto de la figura en el rizo para seguir su camino sin caerse. 42. Un péndulo tiene un periodo de 2 s en la superficie terrestre. Determinar el plano inclinado de 30 sobre la horizontal. Calcular la aceleración mínima y máxima con que debería moverse el plano para que el cuerpo no resbale sobre él. µ = 0,5. periodo si su longitud se hiciese doble. Calcular lo mismo en un lugar en que la aceleración de la gravedad fuera la quinta parte de su valor actual. 43. Un resorte tiene un periodo de oscilación de π/3 s cuando de él se cuelga un objeto de 2 Kg. Calcular la K en el sistema C.G.S. y el alargamiento cuando, tiramos del muelle por la parte superior y 40. Entre los dos objetos de la figua hay un coeficiente de rozamiento de 0.4 y con el hacemos que todo el sistema se mueva hacia arriba con una aceleración de 3 m/s 2. suelo horizontal de 0.2. Calcular la fuerza F con que se debe empujar el conjunto para que el objeto pequeño no caiga. M=5Kg, m=1kg. 44. Calcular el alargamiento del resorte de la figura si su constante es de 200 N/m. No

8 hay fricción. empotrado en el bloque? 45. Hacer el mismo cálculo considerando un coeficiente de rozamiento de Una granada que cae verticalmente explota en dos fragmentos iguales cuando se halla a una altura de m. Su 46. Dos masas de 6 y 9 Kg se encuentran separadas 3 m. Dónde está situado su centro de masas?. velocidad antes de la explosión era de 50 m/s. Cuál es la posición del centro de masa 10 s después de la explosión?. 47. Tres masas iguales se encuentran situadas en los vértices de un triángulo equilátero de lado a. Determinar la posición del centro de masas. 52. Un resorte dispara dos carros en direcciones opuestas. Determinar la relación entre sus velocidades en función de sus masas respectivas. 48. Hallar la posición del centro de masas de un hilo delgado y homogéneo en forma de arco de circunferencia cuya amplitud es π y radio R. 53. Una explosión separa un cuerpo inicialmente en reposo en tres partículas de masas 5, 2 y 10 Kg, respectivamente. La primera sale con una velocidad de 8 m/s en dirección N, la segunda con 15 m/s en 49. Determinar la posición del centro de masas de una barra uniforme de sección dirección E. Cuánto valen las componentes de la velocidad del tercer trozo? constante, longitud L y masa M. 54. Un vagón de 1400 Kg en vacío se 50. Un proyectil de 15 g. de masa se mueve con una velocidad de 400 m/s en dirección a un bloque de madera en reposo cuya masa es de 500 g. Si el bloque de madera puede moverse sin rozamiento: a) Cuál es la velocidad final del conjunto bloque proyectil después de que este último quede mueve horizontalmente a 12 Km/h.Su plataforma interior tiene una superficie de 2 m 2 y lleva descubierta la cara superior. De pronto comienza a llover a razón de 0,1 ml/cm 2 s. Calcular: a) la velocidad del vagón cuando se llenó de agua.(capacidad 3,5 m 3 ). b) ecuación de la velocidad en

9 función del tiempo desde que empieza a llover. 55. Calcular el momento angular de una partícula de 2 Kg de masa situada en la posición (3,2,0) que se mueve con una velocidad (2,-1,0) respecto al origen de coordenadas. 56. Una partícula de 5 Kg de masa está situada en el punto (-1,2). Otra de 10 Kg está en (2,4). La velocidad de la primera es (0,4) y la de la segunda (6,0). Calcular el momento angular del sistema respecto al origne y respecto al centro de masas. Determinar la energía cinética del sistema. 57. Dos bolas de masas 5 y 10 Kg respectivamente chocan cuando se mueven en la misma dirección y sentidos opuestos con velocidades de 3 y 1 m/s. Determinar la velocidad de cada una de ellas si el choque es perfectamente elástico. 58. Calcular la velocidad de una bala de masa 5 g que al chocar con un péndulo balístico de 5 Kg y quedar incrustada en él hace que el conjunto se eleve 10 cm por encima de su posición inicial.

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto 1 1. EJERCICIOS 1.1 Una caja se desliza hacia abajo por un plano inclinado. Dibujar un diagrama que muestre las fuerzas que actúan sobre ella.

Más detalles

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre

Más detalles

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO 5. DINÁMICA FORMULARIO 5.1) Una grúa de puente, cuyo peso es P = 2x10 4 N, tiene un tramo de L = 26 m. El cable, al que se cuelga la carga se encuentra a una distancia l = 10 m de uno de los rieles. Determinar

Más detalles

1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg.

1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. Ejercicios de física: cinemática y dinámica 1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. 2º Calcular la masa de un cuerpo que aumenta

Más detalles

DINÁMICA DEL PUNTO Solución: Solución: Solución: Solución: Solución: Solución:

DINÁMICA DEL PUNTO Solución: Solución: Solución: Solución: Solución: Solución: DINÁMICA DEL PUNTO 1.- Se aplica una fuerza constante de 25 N a un cuerpo de 5 Kg, inicialmente en reposo. Qué velocidad alcanzará y qué espacio habrá recorrido al cabo de 10 segundos? Solución: v = 50

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO

RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO 1. Una persona arrastra una maleta ejerciendo una fuerza de 400 N que forma un ángulo de 30 o con la horizontal. Determina el valor numérico de las componentes

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas 1(8) Ejercicio nº 1 Una fuerza de 45 N actúa sobre un cuerpo de 15 kg, inicialmente en reposo, durante 10 s. Calcular la velocidad final del cuerpo. Ejercicio nº 2 Sobre un cuerpo de 75 kg actúa una fuerza

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.

Más detalles

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar

Más detalles

Ejercicios Dinámica. R. Tovar.

Ejercicios Dinámica. R. Tovar. Ejercicios Dinámica. R. Tovar. 1.- La figura muestra a un hombre que tira de una cuerda y arrastra un bloque m 1 = 5 [kg] con una aceleración de 2 [m/s 2 ]. Sobre m 1 yace otro bloque más pequeño m 2 =

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

Física 4º E.S.O. 2014/15

Física 4º E.S.O. 2014/15 Física 4º E.S.O. 2014/15 TEMA 5: Dinámica Ficha número 9 1.- Un automóvil de 800 kg que se desplaza con una velocidad de 72 km/h frena y se detiene en 8 s. Despreciando la fuerza de rozamiento, calcula:

Más detalles

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica.

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica. 1. Un objeto experimenta una aceleración de 3 m/s cuando sobre él actúa una fuerza uniforme F 0. a) Cuál es su aceleración si la fuerza se duplica? b) Un segundo objeto experimenta una aceleración de 9

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g 1. res bloques A, B y C de masas 3, 2 y 1 kg se encuentran en contacto sobre una superficie lisa sin rozamiento. a) Qué fuerza constante hay que aplicar a A para que el sistema adquiera una aceleración

Más detalles

Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS. (1 er Q.:prob impares, 2 ndo Q.:prob pares)

Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS. (1 er Q.:prob impares, 2 ndo Q.:prob pares) Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Una placa circular homogénea de radio r tiene un orificio circular cortado en ella de radio r/2

Más detalles

EJERCICIOS DE MOMENTO LINEAL, IMPULSO Y COLISIONES

EJERCICIOS DE MOMENTO LINEAL, IMPULSO Y COLISIONES SEXTO TALLER DE REPASO 2015-01 EJERCICIOS DE MOMENTO LINEAL, IMPULSO Y COLISIONES 1. Dos carros, A y B, se empujan, uno hacia el otro. Inicialmente B está en reposo, mientras que A se mueve hacia la derecha

Más detalles

BOLETÍN EJERCICIOS TEMA 2 FUERZAS

BOLETÍN EJERCICIOS TEMA 2 FUERZAS BOLETÍN EJERCICIOS TEMA 2 FUERZAS 1. Al aplicar una fuerza de 20 N sobre un cuerpo adquiere una aceleración de 4 m/s 2. Halla la masa del cuerpo. Qué aceleración adquirirá si se aplica una fuerza de 100

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

I.E.S. Juan Gris Departamento de Física y Química Física y Química 1º Bachillerato

I.E.S. Juan Gris Departamento de Física y Química Física y Química 1º Bachillerato Unidad 3: Dinámica 3.1 Fuerza o interacción: Características de las fuerzas. Carácter vectorial. Efectos dinámico y elástico de una fuerza. Ley de Hooke. Dinamómetros. Tipos de fuerzas: a distancia, por

Más detalles

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO 1. Una bola de boliche de 7 kg se mueve en línea recta a 3 m/s. Qué tan rápido debe moverse una bola de ping-pong de 2.45 gr. en

Más detalles

Problemas de Física I

Problemas de Física I Problemas de Física I DINÁMICA DEL SÓLIDO RÍGIDO (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Dos partículas de masas m 1 y m 2 están unidas por una varilla de longitud r y masa despreciable. Demostrar

Más detalles

PROBLEMAS CINEMÁTICA

PROBLEMAS CINEMÁTICA 1 PROBLEMAS CINEMÁTICA 1- La ecuación de movimiento de un cuerpo es, en unidades S.I., s=t 2-2t-3. Determina su posición en los instantes t=0, t=3 y t=5 s y calcula en qué instante pasa por origen de coordenadas.

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A:

INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A: INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A: DOCENTE: ING. ALEXANDER CABALLERO FECHA DE ENTREGA:

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS UNIVERSIDAD NACIONAL DE SAN LUIS ACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS ÍSICA I Ing. Electromecánica - Ing. Electrónica - Ing. Industrial - Ing. Química - Ing. Alimentos - Ing. Mecatrónica TRABAJO

Más detalles

Sólido Rígido. Momento de Inercia 17/11/2013

Sólido Rígido. Momento de Inercia 17/11/2013 Sólido ígido Un sólido rígido es un sistema formado por muchas partículas que tiene como característica que la posición relativa de todas ellas permanece constante durante el movimiento. A B El movimiento

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =

Más detalles

A) Composición de Fuerzas

A) Composición de Fuerzas A) Composición de Fuerzas 2. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos fuerzas de la misma dirección y sentido contrario de 5 N y 12 N. b) Dos

Más detalles

TALLER N 2 - DINÁMICA DE LA PARTÍCULA

TALLER N 2 - DINÁMICA DE LA PARTÍCULA TALLER N 2 - DINÁMICA DE LA PARTÍCULA 1. 2. 3. 4. 5. 6. a) Muestre que el movimiento circular para una partícula donde experimenta una aceleración angular α constante y con condiciones iniciales t = 0

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 Para recuperar la asignatura Física y Química 1º de bachillerato debes: Realizar en un cuaderno las actividades de refuerzo

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas Los objetos reales de la naturaleza están formados por un número bastante grande de masas puntuales que interactúan entre sí y con los demás objetos. Cómo podemos describir el movimiento

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo 1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio

Más detalles

1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. Figura Nº 2. FiguraNº 1. FiguraNº 3 FiguraNº 4

1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. Figura Nº 2. FiguraNº 1. FiguraNº 3 FiguraNº 4 1 1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. FiguraNº 1 Figura Nº 2 FiguraNº 3 FiguraNº 4 2. Una bolsa de cemento de 325 N de peso cuelga de tres

Más detalles

F F α. Curso de Preparación Universitaria: Física Guía de Problemas N o 4: Dinámica: Rozamiento, fuerzas elásticas

F F α. Curso de Preparación Universitaria: Física Guía de Problemas N o 4: Dinámica: Rozamiento, fuerzas elásticas Curso de Preparación Universitaria: ísica Guía de Problemas N o 4: Dinámica: Rozamiento, fuerzas elásticas Problema 1: Un cajón de 50 kg está en reposo sobre una superficie plana. Si el coeficiente de

Más detalles

PROBLEMAS PROPUESTOS DE ROTACIÓN

PROBLEMAS PROPUESTOS DE ROTACIÓN PROBLEMAS PROPUESTOS DE ROTACIÓN 1. Una bicicleta de masa 14 kg lleva ruedas de 1,2 m de diámetro, cada una de masa 3 kg. La masa del ciclista es 38 kg. Estimar la fracción de la energía cinética total

Más detalles

1- Una masa de 2 kg y otra de 200 kg tienen el mismo momento lineal, 40 kg m/s. Determina la energía cinética de cada una.

1- Una masa de 2 kg y otra de 200 kg tienen el mismo momento lineal, 40 kg m/s. Determina la energía cinética de cada una. PROBLEMAS MOMENTO LINEAL Y ENERGÍA 1- Una masa de 2 kg y otra de 200 kg tienen el mismo momento lineal, 40 kg m/s. Determina la energía cinética de cada una. Resp: 400 J / 4 J 2- Una fuerza de 1 N actúa

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una pared. Si en el instante inicial

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

Ejercicios de Física 4º de ESO

Ejercicios de Física 4º de ESO Ejercicios de Física 4º de ESO 1. Sobre un cuerpo actúan dos fuerzas de la misma dirección y sentidos contrarios de 36 y 12 N Qué módulo tiene la fuerza resultante? Cuál es su dirección y su sentido? R

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial. Temas Selectos de Física I. Grupo: Fecha: Firma:

Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial. Temas Selectos de Física I. Grupo: Fecha: Firma: Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial Temas Selectos de Física I Atividades para preparar Portafolio de evidencias Elaboro: Enrique Galindo Chávez. Nombre:

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

Física IA (Prof. Sergio Vera) Dinámica 2do.2015

Física IA (Prof. Sergio Vera) Dinámica 2do.2015 1-Un arma acelera un proyectil de 5.0 kg desde el reposo hasta una rapidez de 4.0 10 3 m/s. La fuerza neta que acelera el proyectil es 4.9 10 5 N. Cuánto tiempo le requiere al proyectil alcanzar esa rapidez?

Más detalles

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS?

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS? EQUIVALENCIAS 1 kgf = 9.8 N 1 kp = 1 kgf 1 kp = 9.8 N 1 dina = 1x10-5 N 1 lbf = 4.44 N 1 pdl = 0.1382 N Kgf = kilogramos fuerza kp = kilopondio N = Newton dina = dina lbf = libra fuerza pdl = poundal CONVERSIONES:

Más detalles

GUÍA Nº4: Sistema de partículas

GUÍA Nº4: Sistema de partículas Junio - 014 GUÍA Nº4: Sistema de partículas PROBLEMA 1: Tres partículas inicialmente ocupan las posiciones determinadas por los extremos de un triángulo equilátero, tal como se muestra en la figura. a)

Más detalles

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N DINÁMICA 1. Sobre una masa de 2Kg actúan tres fuerzas tal como se muestra en la figura. Si la aceleración del bloque es a = -20i m/s 2, determinar: a) La fuerza F 3. Rpta. (-120i-110j)N b) La fuerza resultante

Más detalles

PROBLEMAS DE TRABAJO Y ENERGÍA

PROBLEMAS DE TRABAJO Y ENERGÍA 1 PROBLEMAS DE TRABAJO Y ENERGÍA 1- Una caja de 10 kg descansa sobre una superficie horizontal. El coeficiente de rozamiento entre la caja y la superficie es 0,4. Una fuerza horizontal impulsa la caja

Más detalles

Examen Dinámica 1º Bach Nombre y Apellidos:

Examen Dinámica 1º Bach Nombre y Apellidos: Examen Dinámica 1º Bach Nombre y Apellidos: 1. Sobre una masa m actúa una fuerza F produciéndole una aceleración a. Dos fuerzas F, formando un ángulo de 90º, actúan sobre la misma masa y le producen una

Más detalles

Guía 5. Leyes de Conservación

Guía 5. Leyes de Conservación I. Energía mecánica Guía 5. Leyes de Conservación 1) Un bloque de 44.5 Kg resbala desde el punto más alto de un plano inclinado de 1,5 m de largo y 0,9 m de altura. Un hombre lo sostiene con un hilo paralelamente

Más detalles

TALLER 5 FISICA LEYES DE NEWTON

TALLER 5 FISICA LEYES DE NEWTON TALLER 5 FISICA LEYES DE NEWTON 1. Un automóvil de 2000 kg moviéndose a 80 km/h puede llevarse al reposo en 75 m mediante una fuerza de frenado constante: a) Cuanto tiempo tardara en detenerse? b) Cual

Más detalles

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm.

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. 2.- Una fuerza actúa sobre un cuerpo que tiene una masa de 5 Kg, la velocidad

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo A. Pregunta 2.- Un objeto está unido a un muelle horizontal de constante elástica 2 10 4 Nm -1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una

Más detalles

LEYES FUNDAMENTALES DE LA DINÁMICA

LEYES FUNDAMENTALES DE LA DINÁMICA LEYES FUNDAMENTALES DE LA DINÁMICA 1. a) Para las siguientes situaciones, identifica y dibuja las fuerzas que actúan sobre los objetos móviles: b) Indica si son verdaderas o falsas las siguientes afirmaciones

Más detalles

TALLER DE REFUERZO FISICA ONCE

TALLER DE REFUERZO FISICA ONCE TALLER DE REFUERZO ESTUDIANTE: GRADO FECHA: ACTIVIDAD NUMERO 2 1. En el instante que un automóvil parte del reposo con aceleración constante de 2 m/s 2, otro automóvil pasa a su lado con velocidad constante

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática 1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un

Más detalles

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h? UNIDAD 5. DINÁMICA 4º ESO - CUADERNO DE TRABAJO - FÍSICA QUÍMICA Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Más detalles

EXAMEN FINAL DE FÍSICA

EXAMEN FINAL DE FÍSICA EXAMEN FINAL DE FÍSICA 1 er parcial Lic. En Química 7 - febrero 00 CUESTIONES PROBLEMAS 1 3 4 5 Suma 1 Suma Total APELLIDOS.NOMBRE.GRUPO. Cuestiones (1 punto cada una) 1. Qué energía hay que proporcionar

Más detalles

TRAAJO Y ENERGÍA TRAAJO Y ENERGÍA 1.- En el gráfico de la figura se representa en ordenadas la fuerza que se ejerce sobre una partícula de masa 1 kg y en abcisas la posición que ocupa ésta en el eje x.

Más detalles

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 NOMBRE APELLIDOS FÍSICA y QUÍMICA 1º DE BACHILLERATO NA 1DA GLOBAL 1ª EVALUACIÓN 015-16 CONTESTAR: 1 ó ; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 1- Sobre un cuerpo cuya masa es m = 5,0 kg, actúan una fuerza hacia

Más detalles

Ejercicios. Movimiento horizontal

Ejercicios. Movimiento horizontal U.E.C. Agustiniano Cristo Rey Cátedra de Física. Cuarto año C de Bachillerato Prof.: Rosa Fernández Guía orientada a los temas más importantes para la prueba de revisión Ejercicios Movimiento horizontal

Más detalles

Cuadernillo de Física (Actividades orientativas para el examen)

Cuadernillo de Física (Actividades orientativas para el examen) Cuadernillo de Física (Actividades orientativas para el examen) A.1 El vector de posición de un punto móvil viene dado por: r = 2ti + t 2 /2 j. a) Representa la trayectoria entre los instantes t=0 y t=4s

Más detalles

C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas

C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas Repaso general Física Mecánica ( I. Caminos Canales y Puertos) 1. El esquema de la figura representa

Más detalles

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30)

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30) SEGUNDA EVALUACIÓN DE FÍSICA Marzo 18 del 2015 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSION

Más detalles

PROBLEMAS Y CUESTIONES DE DINÁMICA FÍSICA Y QUÍMICA de 1º de bachillerato

PROBLEMAS Y CUESTIONES DE DINÁMICA FÍSICA Y QUÍMICA de 1º de bachillerato PROBLEMAS Y CUESTIONES DE DINÁMICA FÍSICA Y QUÍMICA de 1º de bachillerato 1 PROBLEMAS 1. Un cuerpo de 5 kg de masa descansa sobre una superficie horizontal. El coeficiente de rozamiento estático es de

Más detalles

Guía 4: Leyes de Conservación: Energía

Guía 4: Leyes de Conservación: Energía Guía 4: Leyes de Conservación: Energía NOTA : Considere en todos los casos g = 10 m/s² 1) Imagine que se levanta un libro de 1,5 kg desde el suelo para dejarlo sobre un estante situado a 2 m de altura.

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4.

1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. TALLER DE DINÁMICA 1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. Respuestas: (T1 =37 N; T2=88 N; T 3 =77 N; T4=139

Más detalles

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA 1. Halla la energía potencial gravitatoria de un libro de 500 gramos que se sitúa a 80 cm de altura sobre una mesa. Calcula la energía cinética

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS 1.- a.- Un hombre rema en un bote contra corriente, de manera que se encuentra en reposo respecto a la orilla. Realiza trabajo? b.- Se realiza trabajo cuando se

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

SISTEMA DE PARTÍCULAS

SISTEMA DE PARTÍCULAS SISTEMA DE PARTÍCULAS 1. Una masa de arcilla de 0,2kg se lanza horizontalmente con una rapidez de 5m/s contra un bloque de 2,3kg que está inicialmente en reposo sobre una superficie lisa. Si la arcilla

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 9

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 9 FÍSIC GENEL I - 2014 GUI DE TBJOS PÁCTICOS Nº 9 Problema 1: Un disco macizo, de masa M, radio y espesor e, puede girar sin rozamiento alrededor de un eje que pasa por el punto de su circunferencia. El

Más detalles

Física I F-123 PF1.7 Año 2017

Física I F-123 PF1.7 Año 2017 Práctica 6: Sólido Rígido 1. Determinar en cada caso el momento de inercia del sistema respecto de los ejes indicados. Utilizar cuando sea conveniente el teorema de Steiner. 2. Un disco de masa m = 50

Más detalles

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez 1 2 3 4 5 6 7 8 9 10 Preguntas de repaso 1) 10.1. Explique por medio de diagramas por qué se dirige hacia el centro la aceleración de un cuerpo que se mueve en círculos a rapidez constante. 2) 10.2. Un

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 g y realiza un trabajo equivalente a 6.00 J, Cuál es la profundidad del pozo?

Más detalles

DINÁMICA ROTACIONAL DEL CUERPO RÍGIDO

DINÁMICA ROTACIONAL DEL CUERPO RÍGIDO DINÁMICA ROTACIONAL DEL CUERPO RÍGIDO 1. Un aro de radio R = 0,2m y masa M = 0,4kg, partiendo del reposo, desde un plano inclinado, adquiere una velocidad angular de 20rad/s al cabo de 10s. Si el aro (I

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Dinámica. Antecedentes. Antecedentes. Primera Ley de Kepler. Segunda Ley de Kepler. Los griegos hicieron modelos del sistema solar. Aristarco.

Dinámica. Antecedentes. Antecedentes. Primera Ley de Kepler. Segunda Ley de Kepler. Los griegos hicieron modelos del sistema solar. Aristarco. Antecedentes Dinámica Los griegos hicieron modelos del sistema solar. Aristarco Tolomeo Antecedentes La Europa medieval hizo sus contribuciones. Copérnico Primera Ley de Kepler Los planetas se mueven en

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un bloque de 9kg es empujado mediante una fuerza de 150N paralela a la superficie, durante un trayecto de 26m. Si el coeficiente de fricción entre la

Más detalles

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son:

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: R 2 = (20 + 10t)i + (100 4t )j y V = 10i 8t j Calcula: a) osición y velocidad en el instante inicial y a los 4

Más detalles

INSTITUTO TECNOLOGICO DE SALTILLO

INSTITUTO TECNOLOGICO DE SALTILLO INSTITUTO TECNOLOGICO DE SALTILLO SEGUNDA LEY DE NEWTON PROBLEMAS COMPLEMENTARIOS 1.- Se muestran 3 bloques de masas m1 = 2 kg. m2 = 3 kg. m3 = 8 kg. Si se supone nulo el roce, calcular la aceleración

Más detalles

Calculo las velocidades iniciales en equis y en Y multiplicando por seno o por coseno.

Calculo las velocidades iniciales en equis y en Y multiplicando por seno o por coseno. TIRO OBLICUO Cuando uno tira una cosa en forma inclinada tiene un tiro oblicuo. Ahora el vector velocidad forma un ángulo alfa con el eje x. ( Angulo de lanzamiento ). Para resolver los problemas uso el

Más detalles

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física P1. Un disco de radio R y masa M rueda sin resbalar sobre una superficie horizontal rugosa, tirado hacia la derecha por una cuerda ideal que se mantiene paralela al plano. La tensión de la cuerda es T

Más detalles