Seminario de Física. 2º Bachillerato LOGSE. Unidad 0: Repaso de Física 1º Bachillerato

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Seminario de Física. 2º Bachillerato LOGSE. Unidad 0: Repaso de Física 1º Bachillerato"

Transcripción

1 A) Composición de Movimientos : Movimiento parabólico 1.- Un cañón se ajusta con un ángulo de tiro de 60º y dispara una bala con una velocidad de 300 m/s: a) A qué altura llegará la bala? S: 3443,9 m b) Cuánto tiempo estará en el aire? S: 26,51 s c) Cuál es el alcance horizontal? S: 7950 m 2.- Un motorista equipado con su traje de buzo, salta con su moto desde el borde de un acantilado de 183 m de altura, valiéndose de una rampa de inclinación 30º situada en el borde de éste. Si su velocidad era de 180 Km/h. Cuánto avanza horizontalmente el motorista antes de alcanzar el agua? S: 397,07 m 3.-Un atleta quiere batir el récord del mundo de lanzamiento de peso, establecido en 23 m. Sabe que el alcance máximo se consigue con un ángulo de 45º. Si impulsa el peso desde una altura de 1,75 m, Con qué velocidad mínima debe lanzar? S: 14,5 m/s 4.-Una bola que rueda sobre una mesa horizontal de 0,90 m de altura cae al suelo en un punto situado a una distancia horizontal de 1,5 m del borde de la mesa. Qué velocidad tenía la bola en el momento de abandonar la mesa? S: 3,5 m/s 5.-Desde la cima de un acantilado se lanza horizontalmente un proyectil y se observa que tarda 3 s en tocar el agua en un punto que dista 60 m de la base del acantilado. Calcula: a) la altura que tiene el acantilado. S: 44 m b) Con qué velocidad se lanzó el proyectil? S: 20 m/s c) Con qué velocidad llega al agua? S: 29,4 m/s 6.- Un motorista asciende por una rampa de 20º y cuando está a 20 m sobre el nivel del suelo vuela a fin de salvar un río de 10 m de ancho. Con qué velocidad debe despegar si quiere alcanzar la orilla sin mojarse? S: 4.85 m/s 7.- Se lanza una flecha cuya velocidad de salida es 400 m/s y forma, con la horizontal, un ángulo de 30º. Calcula: a) las ecuaciones de la velocidad y la posición de los movimientos simples que componen el movimiento del proyectil. b) El tiempo que tarda en caer. S: t = 40,8 s c) El alcance máximo. S: 14133,5 m d) La altura máxima alcanzada por la flecha. S: 2040,8 m 8.- Rafael Nadal utiliza para entrenarse una máquina que lanza pelotas desde el suelo, con una velocidad inicial de 20 m/s, que forma un ángulo de 60º con la horizontal. Calcula: a) las componentes de la velocidad y posición en cualquier instante. b) La ecuación de la trayectoria. S: y = 1,73 x 4, x2 c) El vector posición de la pelota cuando alcanza la altura máxima. S: r = (17,6 i + 15,2 j) m d) El tiempo que está la pelota en el aire. S: t = 3,52 s e) La posición de la pelota si llega al suelo sin que la tenista la toque. S: x = 35,2 m ( r= 35,2 i m)

2 9.- Una jugadora de balonmano realiza un lanzamiento horizontal a una velocidad de 20 m/s. En el momento del lanzamiento la mano está a 1,5 m del suelo. Calcula: a) La ecuación de trayectoria. S: y = 1,5 1, x2 b) Qué velocidad lleva la pelota a los 0,3 s del lanzamiento? S: v = 20,2 m/s c) Dónde botaría la pelota? S: x = 11,2 m d) El tiempo que tarda la pelota en tocar el suelo. S: 0,55 s e) La velocidad de la pelota al llegar al suelo. S: v = 20,7 m/s 10.- Un futbolista chuta hacia la portería con una velocidad de 15 m/s y un ángulo de inclinación de 30 en el momento en que se encuentra a 15,6 m de la portería. Calcula la altura que alcanza el balón cuando pasa por la línea de meta y su velocidad en ese instante. S: 1,9 m ; 13,7 m/s 11.- Desde un acantilado de 60 m de altura se lanza un cuerpo horizontalmente con una velocidad de 20 m/s. Calcula, tomando g = 10 m/s2: a) Posición del cuerpo 2 s después. b) Velocidad que tiene en ese instante. c) Tiempo que tarda en llegar a la superficie del agua. S: 3,46 s d) Alcance máximo En unos Juegos Olímpicos un lanzador de jabalina consigue alcanzar una distancia de 90 m con un ángulo de inclinación de 45. Calcula: a) la velocidad de lanzamiento; b) el tiempo que la jabalina estuvo en el aire. S: a) 29,7 m/s ; b) 4,3 s B) Cinemática del Movimiento Circular Uniforme 1.- Durante el ciclo de centrifugado de una lavadora, la ropa se pega a la pared exterior del barril a medida que gira a una velocidad tan alta como revoluciones por minuto. El radio del cilindro es de 26 cm. a) Determinar la velocidad de la ropa (en m / s) que se encuentran en la pared del cilindro de giro. Sol: 49 m / s. b) Determinar la aceleración de la ropa. Sol: 9,2 103 m / s2 2.- Un fabricante de unidades de CD-ROM afirma que sus discos pueden girar con la frecuencia que revoluciones por minuto. a) Si giran a este ritmo, cuál es la velocidad de la fila externa de los datos del disco; esta fila se encuentra 5,6 cm desde el centro del disco? Sol: 7 m/s b) Cuál es la aceleración de la fila externa de los datos? Sol: 8,8 102 m/s2 3.- Dos amigos suben en un tiovivo. Carlos se sienta en un elefante situado a 5 m del centro y Antonio escoge un coche de bomberos situado a sólo 3,5 m del centro. Ambos tardan 4 min en dar 10 vueltas. a) Se mueven con la misma velocidad lineal? Y con la misma velocidad angular? Razónalo. b) Calcula las velocidades lineal y angular de ambos.

3 4.- La rueda de una bicicleta tiene 30 cm de radio y gira uniformemente a razón de 25 vueltas por minuto. Calcula: a) La velocidad angular, en rad/s. b) La velocidad lineal de un punto de la periferia de la rueda. 5.- Un ciclista recorre 5,4 km en 15 min a velocidad constante. Si el radio de las ruedas de su bicicleta es de 40 cm, calcula: a) la velocidad angular de las ruedas. b) el número de vueltas que dan las ruedas en ese tiempo. Sol.: 15 rad/s b) 2148,6 vueltas 6.- Una noria de 40 m de diámetro gira con una velocidad angular constante de 0,125 rad/s. Averigua: a) La distancia recorrida por un punto de la periferia en 1 min Sol: 150 m b) El número de vueltas que da la noria en ese tiempo. S: 1,2 vueltas 7.- Las aspas de un ventilador giran uniformemente a razón de 90 vueltas por minuto. Determina: a) su velocidad angular, en rad/s; b) la velocidad lineal de un punto situado a 30 cm del centro; c) el número de vueltas que darán las aspas en 5 min. Sol.: a) 9,4 rad/s b) 2,8 m/s c) 450 vueltas. C) Dinámica del Movimiento Circular Uniforme 1.- Un automóvil de 1200 kg de masa toma una curva de 10 m de radio a una velocidad de 90 km/h. Calcula el valor de la fuerza centrípeta. Sol.: N 2.- Un cuerpo de 250 g gira en un plano horizontal a la velocidad de 4 m/s. Si el radio de giro mide 80 cm, calcula: a) el periodo, b) la aceleración centrípeta y c) la fuerza centrípeta. Sol.: 1,25 s; 20 m/s2; 5 N 3.- Un cuerpo de 700 g gira en un plano horizontal con un radio de 90 cm. El cuerpo da 45 vueltas en un minuto, calcula la velocidad lineal y la fuerza centrípeta. Sol.: 4,24 m/s; 14 N 4.- Un objeto de 5 kg tiene un movimiento circular uniforme de 9 m de radio y da 40 vueltas en 10 minutos. Calcula la longitud recorrida en 2 horas y la fuerza centrípeta. Sol.: 27,14 km; 7,89 N 5.- Un coche pesa en conjunto 2300 kg Qué fuerza centrípeta actúa sobre el coche al describir un circuito circular de 110 m de radio a 45 km/h? Sol.: 3267 N 6.- Un autobús que circula a una velocidad de 50 km/h toma una curva de 45 m de diámetro. Un niño de 45 kg viaja apoyado en una de las ventanillas del autobús. Calcula: a) la aceleración que experimenta el niño, b) la fuerza que el autobús ejerce sobre el niño. Sol.: 4,29 m/s2; 193 N

4 7.- Un ciclista de 75 Kg de masa que corre en una pista circular a una velocidad de 45 Km/h experimenta una fuerza centrípeta de 85 N. Calcula el radio de la pista. Cuál es el valor de la fuerza que experimenta el ciclista, que tiende a impulsarlo al exterior? Sol.: 137,9 m; 85 N D) Cálculo vectorial 1.- Dados los vectores (i + 2 j + 3 k), (2 i + k) y w (- i + 3 j). Calcular: a). b). c). w d). w e) x Comprueba que el vector hallado es perpendicular a y. f) x g) x w h) x w Comprueba que el vector hallado es perpendicular a y w 2.- Dados los vectores (3 i + j - k) y (2 i +3 j +4 k), Calcular: a) los módulos de y b) x Comprueba que el vector hallado es perpendicular a y. 3.- Dados los vectores (i + 2 j - k), (3 j - k) y w (4 i - 8 j + 4 k). Calcular: a) x Comprueba que el vector hallado es perpendicular a. b) x c) x w Comprueba que el vector hallado es perpendicular a w. d) ( x ). w 4.- Determina el área del paralelogramo que determinan los vectores: (- 4 i + 5 k) y (- 4 i + 3 j) 5.- Dados los vectores ( j + k), (3 j ) y w (5 i + 2 k). Calcular los siguientes productos mixtos: a). ( x w) b). ( x w) 6.- Determina el volumen del paralelepípedo que determinan los siguientes vectores: (i + 2 j +3 k), (- 3 i + j + 4 k) y w (i +2 j + k) 7.- Dado el vector posición de una partícula: R = (1/t i + t 2 j + e -t k). Calcula: a) la velocidad de la partícula. b) la aceleración de la partícula. 8.- Dado el vector posición de una partícula: R = (sen t i + cos t j + t k). Calcula: a) la velocidad de la partícula. b) la aceleración de la partícula.

5 9.- Dados los vectores (t 2 i + t j + 1k) y (i + t j + ( t +1) k, calcula las derivadas siguientes: a) d( + )/d t ; b) d( x )/d t 10.- a) La aceleración de un electrón viene dada por el vector a = (3t + 1) i + (t 3) j. Calcula mediante integración, los vectores velocidad v (t) y posición r (t). b) Dado el siguiente vector (2t 2 + t) i + (4t+7) j. Calcula: la integral de dt entre t = 1 y t = 3 c) Dado el siguiente vector (3t 2 ) i + (t+1) j. Calcula: la integral de dt entre t = 2 y t = Un objeto se mueve con MR de modo que su velocidad en el instante t es: (t) = (t 2 2 t) m/s. Calcula: a) el vector posición r (t) b) el vector desplazamiento r a los tres primeros segundos Dados los vectores (t 2 i + t j + 1k) y (i + t j + t +1 k), calcula las siguientes integrales: a) ( + ) dt ; b) ( x ) dt 13.- Dado el vector posición de una partícula: (1/t i + t 2 j + e -t k). Calcula: a) la velocidad de la partícula. b) la aceleración de la partícula. E) Dinámica, trabajo y energía 1.- Calcula la aceleración con la que el niño ( que se queja mucho!) mueve la caja sabiendo los siguientes datos: m= 5 kg, µ = 0 12, y la fuerza con la que tira el niño es de 50 N y forma un ángulo de 45º con la horizontal. 2.- Calcula la aceleración y la tensión de la cuerda sabiendo que µ = Una fuerza de 490N tira de un bloque, inicialmente en reposo que pesa 20 kg, situado en un plano inclinado 30º sobre la horizontal. La fuerza actúa hacia arriba y paralelamente al plano, y de esta forma el cuerpo recorre 10m. Se sabe que el coeficiente de rozamiento es 0,2. Calcular: a) el trabajo realizado por la fuerza y su distribución, b) la velocidad adquirida por el cuerpo al final del recorrido, c) la cantidad de hielo a 0ºC que se podía fundir con el calor desprendido en el rozamiento. (Calor fusión hielo 80 cal/g). Sol: a) 4900 J; b) 18,9 m/s; c) 1,02 g

6 4.- Un cuerpo de 2kg se mueve a lo largo de una trayectoria cuyos puntos vienen determinados por las ecuaciones paramétricas expresadas en metros x=3t 2 ; y= 3t 3 ; z= - 2t. Deducir: a) la ecuación de la velocidad y su módulo, b) el momento lineal del cuerpo, c) el trabajo realizado por la fuerza que actúa sobre ese cuerpo entre los instantes t=1 y t=2 segundos. Sol: a) v = (6t i + 9t 2 j 2 k) ; b) p=( 12t i +18t 2 j 4 k) c)1323 J 5.- Desde una altura de 30 m se lanza verticalmente hacia abajo un proyectil con una velocidad de 100 m/s. Qué velocidad poseerá cuando se encuentre a 10 m del suelo? Sol: 102 m/s 6.- Un automóvil de 1425 kg arranca sobre una pista horizontal en la que se supone una fuerza de rozamiento constante de valor 150N. Calcular: a) la aceleración que precisa el coche para alcanzar la velocidad de 120 km/h en un recorrido de 800 m. b) el trabajo realizado por el motor del coche desde el momento de la salida hasta el instante de alcanzar los 120 km/h. c) La potencia media del motor del coche en ese tiempo. Sol: a) 0,694 m/s 2 ; b) J; c) 18983,33 W 7.- Un cuerpo de 10 kg se sitúa en lo alto de un plano inclinado 30º sobre la horizontal. La longitud del plano es de 10 m. y el coeficiente de rozamiento es de 0,2. a) Con qué velocidad llega el cuerpo al final del plano?, b) Cuánto valdrá la energía potencial del cuerpo al estar situado en lo alto del plano? C) Cuánto vale el trabajo realizado por la fuerza de rozamiento? Sol: a) 8,1 m/s; b) 500 J; c) 173,2 J 8.- Un fusil dispara proyectiles de masa 1gr con una velocidad de salida de 400 m/s. La fuerza variable con la que los gases procedentes de la explosión de la carga de proyección actúan sobre la base del proyectil viene dada por: F (x) x, donde F viene dada en N y x en metros. Deducir la longitud del cañón del fusil. Sol: 50 cm 9.- Un bloque de 2 kg está situado en el extremo de un muelle, de constante elástica 500 N m-1, comprimido 20 cm. Al liberar el muelle el bloque se desplaza por un plano horizontal y, tras recorrer una distancia de 1 m, asciende por un plano inclinado 30 con la horizontal. Calcule la distancia recorrida por el bloque sobre el plano inclinado. a) Supuesto nulo el rozamiento b) Si el coeficiente de rozamiento entre el cuerpo y los planos es 0,1. g = 10 m s -2 Sol: 1 m; 0,68 m 10.- a) Conservación de la energía mecánica. b) Un cuerpo desliza hacia arriba por un plano inclinado que forma un ángulo con la horizontal. Razone qué trabajo realiza la fuerza peso del cuerpo al desplazarse éste una distancia d sobre el plano Por un plano inclinado que forma un ángulo de 30º con la horizontal se lanza hacia arriba un bloque de 10 Kg con una velocidad inicial de 5 m/s -1. Tras su ascenso por el plano inclinado, el bloque desciende y regresa al punto de partida con cierta velocidad. El coeficiente de rozamiento entre el bloque y el plano es 0,1. a) Dibuje en dos esquemas distintos las fuerzas que actúan sobre el bloque durante el ascenso y durante el descenso e indique sus respectivos valores. Razone si se verifica el principio de conservación de la energía en este proceso. b) Calcule el trabajo de la fuerza de rozamiento en el ascenso y en el descenso del bloque. Comente el signo del resultado obtenido. Sol: - 18,45 J 12.- Un bloque de 5 kg se desliza con velocidad constante por una superficie horizontal rugosa al aplicarle una fuerza de 20 N en una dirección que forma un ángulo de 60º con la horizontal. a) Dibuje en un esquema todas las fuerzas que actúan sobre el bloque, indique el valor de cada una de ellas y calcule el coeficiente de rozamiento del bloque con la superficie. b) Determine el trabajo total de las fuerzas que actúan sobre el bloque cuando se desplaza 2 m y comente el resultado obtenido. Datos: g = 9,8 m s -2 Sol: µ = 0,316 ; W T = 0 J

7 13.- Un cuerpo de 5 kg, inicialmente en reposo, se desliza por un plano inclinado de superficie rugosa que forma un ángulo de 30 con la horizontal, desde una altura de 0,4 m. Al llegar a la base del plano inclinado, el cuerpo continúa deslizándose por una superficie horizontal rugosa del mismo material que el plano inclinado. El coeficiente de rozamiento dinámico entre el cuerpo y las superficies es de 0.3. a) Dibuje en un esquema las fuerzas que actúan sobre el cuerpo en su descenso por el plano inclinado y durante su movimiento a lo largo de la superficie horizontal. A qué distancia de la base del plano se detiene el cuerpo? b) Calcule el trabajo que realizan todas las fuerzas que actúan sobre el cuerpo durante su descenso por el piano inclinado. g = 10 m s -2 Sol: 0,64 m; 9,61 J 14.- Un bloque de 2 kg asciende por un plano inclinado que forma un ángulo de 30º con la horizontal. La velocidad inicial del bloque es de 10 m s -1 y se detiene después de recorrer 8 m a lo largo del plano. a) Calcule el coeficiente de rozamiento entre el bloque y la superficie del plano. b) Razone los cambios de la energía cinética, potencial y mecánica. Datos: g = 9,8 m s -2 Sol: µ = 0, Un tobogán para bañistas ha sido diseñado para que una persona que inicialmente se encuentra en reposo colocada en la parte más alta, al dejarse caer abandone el extremo inferior del tobogán volando horizontalmente. Observamos que una persona golpea el agua 5 m por delante del extremo del tobogán, cuando han transcurrido 0,5 segundos desde que lo abandonó. A) Analice las variaciones de energía durante el descenso del bañista. Qué altura tiene el tobogán? B) Con qué velocidad llega al agua? Sol: 5,1 m; 11,14 m/s 16.- Un bloque de 5 kg se desliza por una superficie horizontal lisa con una velocidad de 4 m/s y choca con un resorte de masa despreciable y K = 800 N/m, en equilibrio y con el otro extremo fijo. Calcular: a) Cuánto se comprime el resorte? Sol: 0,31 m b) Desde qué altura debería caer el bloque sobre el resorte, colocado verticalmente, para producir la misma compresión? Sol: 0,78 m 17.- Un bloque de 5 kg desliza sobre una superficie horizontal. Cuando su velocidad es de 5 m/s choca contra un resorte de masa despreciable y de constante elástica K = 2500 N/m. El coeficiente de rozamiento bloque-superficie es 0,2. a) Haga un análisis energético del problema. b) Calcule la longitud que se comprime el resorte. Sol: 0,22 m c) Tras la compresión máxima, el muelle vuelve a descomprimirse y el bloque sale despedido hacia atrás. Calcule la distancia que recorre el bloque hasta que se para. Sol: 6 m aprox Qué velocidad tendrá un vagón de una montaña rusa sin rozamiento en los puntos A, B y C de la figura, si el carrito parte de O con v = 0 m/s? Sol: 14,14 m/s; 12,65 m/s y 7,74 m/s respectivamente a) Explicar qué se entiende en física por trabajo y cómo se calcula. Enunciar el teorema trabajo-energía cinética y comentar su significado. b) Sobre un cuerpo actúan dos fuerzas, una conservativa, y otra no conservativa. La primera realiza un trabajo de 30 J, y la segunda un trabajo de 20 J. Razonar qué conclusiones podemos extraer sobre los distintos tipos de energía que posee el cuerpo.

8 20.- Un cuerpo de 5 kg desliza por una superficie rugosa. Inicialmente tiene una velocidad de 10 m/s. Tras recorrer 10 m, choca con el extremo libre de un resorte dispuesto horizontalmente, comprimiéndolo 50 cm. La constante de elasticidad del resorte es 1000 N/m. a) Realizar un análisis energético del problema. b) Calcular el coeficiente de rozamiento del cuerpo con la superficie. Sol: 0, a) Explicar qué se entiende por fuerza conservativa y por energía potencial. Qué relación existe entre ambos conceptos? b) Sobre un cuerpo actúan sólo dos fuerzas. La primera realiza un trabajo de -10 J, y la segunda un trabajo de15 J. Medimos que la energía mecánica del sistema aumenta en 15 J. Es conservativa alguna de las fuerzas aplicadas? Qué ocurrirá con la energía cinética del cuerpo? Razonar Un bloque de 0,5 kg está colocado sobre el extremo superior de un resorte vertical que está comprimido 10 cm y, al liberar el resorte, el bloque sale despedido hacia arriba verticalmente. La constante elástica del resorte es 200 N/m. a) Haga un balance trabajo-energía del proceso y calcule la máxima altura que alcanza el bloque. Despreciar el rozamiento con el aire. b) Explique, cualitativamente, en qué se modificaría la cuestión anterior si consideramos el rozamiento del bloque con el aire Un cuerpo de 5 kg se deja caer por un carril inclinado 30º con la horizontal, desde una altura de 5 m, llegando al suelo con una velocidad de 8 ms-1. Allí choca con un resorte horizontal, comprimiéndolo 20 cm. Calcular: a) Coeficiente de rozamiento. Sol: 0,21 b) Constante elástica del resorte. Sol: 7907 N/m 24.- Un péndulo de 1 m de longitud se separa de su posición de equilibrio hasta que forma un ángulo de 20º con la vertical y se deja libre. Calcula la velocidad del péndulo cuando pase de nuevo por la posición de equilibrio. Desprecia el rozamiento con el aire. Sol: 1,10 m/s 25.- Un péndulo inextensible de longitud l=0,5 m lleva en su extremo una masa puntual m que es separada de su posición de equilibrio hasta formar un ángulo de 60 con la vertical, se abandona libremente. Cuando pasa por la vertical la masa se desprende quedando solo bajo la acción de la gravedad. Si desde el suelo al punto donde está enganchado el péndulo hay una altura de 2 metros, calcular: a) La velocidad al pasar por la vertical, b) La ecuación de la trayectoria de la masa después de roto el hilo y el tiempo que tarda en llegar al suelo. Sol: 5 1/2 m/s; 0,547 s 26.- Un niño de 30 kg se desliza con rozamiento por un tobogán que tiene 4 m de altura y una inclinación de 30 con la horizontal. El coeficiente de rozamiento entre el niño y la superficie del tobogán es µ = 0,2. Cuál será la velocidad del niño al llegar al suelo si se dejó caer desde el punto más alto del tobogán? Sol: 7,2 m/s 27.- Un cuerpo de de 2 Kg de masa se acerca con una velocidad de 20 m/s desde una distancia de 1 m a un plano inclinado 30º con la horizontal provisto con un muelle de constante elástica K = 100 N/m que se encuentra unido a la pared en el extremo más alto de dicho plano y que se extiende a lo largo de él. Calcula cuanto se comprime ( x) el muelle: a) Cuando no hay rozamiento Sol: 2,73 m b) Cuando la constante de rozamiento dinámico es 0,2. Sol: 2,697 m

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre

Más detalles

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS 1.- a.- Un hombre rema en un bote contra corriente, de manera que se encuentra en reposo respecto a la orilla. Realiza trabajo? b.- Se realiza trabajo cuando se

Más detalles

A) Composición de Fuerzas

A) Composición de Fuerzas A) Composición de Fuerzas 2. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos fuerzas de la misma dirección y sentido contrario de 5 N y 12 N. b) Dos

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com DINÁMICA Y ENERGÍA 1- Un bloque de 5 kg se encuentra inicialmente en reposo en la parte superior de un plano inclinado de 10 m de longitud, que presenta un coeficiente de rozamiento µ=0,2 (ignore la diferencia

Más detalles

Física 4º E.S.O. 2014/15

Física 4º E.S.O. 2014/15 Física 4º E.S.O. 2014/15 TEMA 5: Dinámica Ficha número 9 1.- Un automóvil de 800 kg que se desplaza con una velocidad de 72 km/h frena y se detiene en 8 s. Despreciando la fuerza de rozamiento, calcula:

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO. Problemas sobre Cinemática (I)

FÍSICA Y QUÍMICA 1º BACHILLERATO. Problemas sobre Cinemática (I) FÍSICA Y QUÍMICA 1º BACHILLERATO Problemas sobre Cinemática (I) 1) Un móvil describe un movimiento rectilíneo en el cual la posición en cada instante está dada por la ecuación: x( t) = t 2 4t. a) Construir

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo 1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio

Más detalles

Energía: Cuestiones Curso 2010/11

Energía: Cuestiones Curso 2010/11 Física 1º Bachillerato Energía: Cuestiones Curso 2010/11 01SA 1. a) Qué trabajo se realiza al sostener un cuerpo durante un tiempo t? b) Qué trabajo realiza la fuerza peso de un cuerpo si éste se desplaza

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática 1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un

Más detalles

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 Para recuperar la asignatura Física y Química 1º de bachillerato debes: Realizar en un cuaderno las actividades de refuerzo

Más detalles

PROBLEMAS DE TRABAJO Y ENERGÍA

PROBLEMAS DE TRABAJO Y ENERGÍA 1 PROBLEMAS DE TRABAJO Y ENERGÍA 1- Una caja de 10 kg descansa sobre una superficie horizontal. El coeficiente de rozamiento entre la caja y la superficie es 0,4. Una fuerza horizontal impulsa la caja

Más detalles

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica.

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica. 1. Un objeto experimenta una aceleración de 3 m/s cuando sobre él actúa una fuerza uniforme F 0. a) Cuál es su aceleración si la fuerza se duplica? b) Un segundo objeto experimenta una aceleración de 9

Más detalles

Cuadernillo de Física (Actividades orientativas para el examen)

Cuadernillo de Física (Actividades orientativas para el examen) Cuadernillo de Física (Actividades orientativas para el examen) A.1 El vector de posición de un punto móvil viene dado por: r = 2ti + t 2 /2 j. a) Representa la trayectoria entre los instantes t=0 y t=4s

Más detalles

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 NOMBRE APELLIDOS FÍSICA y QUÍMICA 1º DE BACHILLERATO NA 1DA GLOBAL 1ª EVALUACIÓN 015-16 CONTESTAR: 1 ó ; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 1- Sobre un cuerpo cuya masa es m = 5,0 kg, actúan una fuerza hacia

Más detalles

Cinemática. 1 Movimiento Rectilíneo Uniforme. 2 Movimiento Rectilíneo Uniformemente Acelerado. 3 Tiro Vertical. 4 Tiro Horizontal.

Cinemática. 1 Movimiento Rectilíneo Uniforme. 2 Movimiento Rectilíneo Uniformemente Acelerado. 3 Tiro Vertical. 4 Tiro Horizontal. Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera 2015 2016 Cinemática Rev 01 Cinemática 1 Movimiento Rectilíneo Uniforme 2 Movimiento Rectilíneo Uniformemente Acelerado 3 Tiro Vertical 4 Tiro

Más detalles

2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta?

2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta? 1. Una persona de masa 70 kg se encuentra sobre una báscula en el interior de un ascensor soportado por un cable. Cuál de las siguientes indicaciones de la báscula es correcta?. a) La indicación es independiente

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

PROBLEMAS MOVIMIENTOS EN EL PLANO

PROBLEMAS MOVIMIENTOS EN EL PLANO 1 PROBLEMAS MOVIMIENTOS EN EL PLANO 1- Dados los puntos del plano XY: P 1 (2,3), P 2 (-4,1), P 3 (1,-3). Determina: a) el vector de posición y su módulo para cada uno; b) el vector desplazamiento para

Más detalles

Movimiento armónico simple

Movimiento armónico simple Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h? UNIDAD 5. DINÁMICA 4º ESO - CUADERNO DE TRABAJO - FÍSICA QUÍMICA Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas 1(8) Ejercicio nº 1 Una fuerza de 45 N actúa sobre un cuerpo de 15 kg, inicialmente en reposo, durante 10 s. Calcular la velocidad final del cuerpo. Ejercicio nº 2 Sobre un cuerpo de 75 kg actúa una fuerza

Más detalles

TALLER DE REFUERZO FISICA ONCE

TALLER DE REFUERZO FISICA ONCE TALLER DE REFUERZO ESTUDIANTE: GRADO FECHA: ACTIVIDAD NUMERO 2 1. En el instante que un automóvil parte del reposo con aceleración constante de 2 m/s 2, otro automóvil pasa a su lado con velocidad constante

Más detalles

RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO

RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO 1. Una persona arrastra una maleta ejerciendo una fuerza de 400 N que forma un ángulo de 30 o con la horizontal. Determina el valor numérico de las componentes

Más detalles

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO 5. DINÁMICA FORMULARIO 5.1) Una grúa de puente, cuyo peso es P = 2x10 4 N, tiene un tramo de L = 26 m. El cable, al que se cuelga la carga se encuentra a una distancia l = 10 m de uno de los rieles. Determinar

Más detalles

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto 1 1. EJERCICIOS 1.1 Una caja se desliza hacia abajo por un plano inclinado. Dibujar un diagrama que muestre las fuerzas que actúan sobre ella.

Más detalles

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA 1. Halla la energía potencial gravitatoria de un libro de 500 gramos que se sitúa a 80 cm de altura sobre una mesa. Calcula la energía cinética

Más detalles

BOLETÍN EJERCICIOS TEMA 2 FUERZAS

BOLETÍN EJERCICIOS TEMA 2 FUERZAS BOLETÍN EJERCICIOS TEMA 2 FUERZAS 1. Al aplicar una fuerza de 20 N sobre un cuerpo adquiere una aceleración de 4 m/s 2. Halla la masa del cuerpo. Qué aceleración adquirirá si se aplica una fuerza de 100

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un bloque de 9kg es empujado mediante una fuerza de 150N paralela a la superficie, durante un trayecto de 26m. Si el coeficiente de fricción entre la

Más detalles

1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg.

1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. Ejercicios de física: cinemática y dinámica 1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. 2º Calcular la masa de un cuerpo que aumenta

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

6 Energía, trabajo y potencia

6 Energía, trabajo y potencia 6 Energía, trabajo y potencia ACTIVIDADES Actividades DELdel INTERIOR interior DE LAde UNIDAD la unidad. Se arrastra una mesa de 0 kg por el suelo a lo largo de 5 m. Qué trabajo realiza el peso? El trabajo

Más detalles

1- Una masa de 2 kg y otra de 200 kg tienen el mismo momento lineal, 40 kg m/s. Determina la energía cinética de cada una.

1- Una masa de 2 kg y otra de 200 kg tienen el mismo momento lineal, 40 kg m/s. Determina la energía cinética de cada una. PROBLEMAS MOMENTO LINEAL Y ENERGÍA 1- Una masa de 2 kg y otra de 200 kg tienen el mismo momento lineal, 40 kg m/s. Determina la energía cinética de cada una. Resp: 400 J / 4 J 2- Una fuerza de 1 N actúa

Más detalles

I.E.S. Juan Gris Departamento de Física y Química Física y Química 1º Bachillerato

I.E.S. Juan Gris Departamento de Física y Química Física y Química 1º Bachillerato Unidad 2: Cinemática Mecánica: Cinemática, Dinámica y Estática 2.1. Movimiento. Relatividad del movimiento. Sistema de referencia Tipos de movimiento: Traslación, rotación y su combinación. Cuerpo en traslación:

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

TRAAJO Y ENERGÍA TRAAJO Y ENERGÍA 1.- En el gráfico de la figura se representa en ordenadas la fuerza que se ejerce sobre una partícula de masa 1 kg y en abcisas la posición que ocupa ésta en el eje x.

Más detalles

Movimiento armónico simple. Movimiento armónico simple Cuestiones

Movimiento armónico simple. Movimiento armónico simple Cuestiones Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Ejercicios. Movimiento horizontal

Ejercicios. Movimiento horizontal U.E.C. Agustiniano Cristo Rey Cátedra de Física. Cuarto año C de Bachillerato Prof.: Rosa Fernández Guía orientada a los temas más importantes para la prueba de revisión Ejercicios Movimiento horizontal

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

Taller movimiento semiparabolico

Taller movimiento semiparabolico Taller movimiento semiparabolico Resolver los siguientes problemas: 1- Un piloto, volando horizontalmente a 500 m de altura y 1080 km/h, lanza una bomba. Calcular: a) Cuánto tarda en oír la explosión?.

Más detalles

Guía 5. Leyes de Conservación

Guía 5. Leyes de Conservación I. Energía mecánica Guía 5. Leyes de Conservación 1) Un bloque de 44.5 Kg resbala desde el punto más alto de un plano inclinado de 1,5 m de largo y 0,9 m de altura. Un hombre lo sostiene con un hilo paralelamente

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

PROBLEMAS Y EJERCICIOS VARIADOS DE FCA DE 4º DE ESO-

PROBLEMAS Y EJERCICIOS VARIADOS DE FCA DE 4º DE ESO- PROBLEMAS Y EJERCICIOS VARIADOS DE FCA DE 4º DE ESO- ) Di si las siguientes frases o igualdades son V o F y razona tu respuesta: a) La velocidad angular depende del radio en un m. c. u. b) La velocidad

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

Unidad VII: Trabajo y Energía

Unidad VII: Trabajo y Energía 1. Se muestra un bloque de masa igual a 30 Kg ubicado en un plano de 30º, se desea levantarlo hasta la altura de 2,5 m, ejerciéndole una fuerza de 600 N, si el coeficiente de fricción cinética es de 0,1.

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas Los objetos reales de la naturaleza están formados por un número bastante grande de masas puntuales que interactúan entre sí y con los demás objetos. Cómo podemos describir el movimiento

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

4-. Sean u = (2, 0, -1, 3), v = (5, 4, 7, -2), w = (6, 2, 0, 9). Determine el vector x que satisface a: 2u v + x = 7x + w.

4-. Sean u = (2, 0, -1, 3), v = (5, 4, 7, -2), w = (6, 2, 0, 9). Determine el vector x que satisface a: 2u v + x = 7x + w. EJERCICIOS VECTORES. 1-. Calcule la dirección de los siguientes vectores: a) v = (2, 2) d) v = (-3, -3) b) v = (-2 3, 2) e) v = (6, -6) c) v = (2, 2 3 ) f) v = (0,3) 3-. Para los siguientes vectores encuentre

Más detalles

PROBLEMAS CINEMÁTICA

PROBLEMAS CINEMÁTICA 1 PROBLEMAS CINEMÁTICA 1- La ecuación de movimiento de un cuerpo es, en unidades S.I., s=t 2-2t-3. Determina su posición en los instantes t=0, t=3 y t=5 s y calcula en qué instante pasa por origen de coordenadas.

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria 1(9) Ejercicio 1 Un bloque de 50 Kg de masa asciende una distancia de 6 m por un plano inclinado 37 º y que presenta un coeficiente de rozamiento de 0 2, aplicándole una fuerza constante de 490 N paralela

Más detalles

UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico

UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico a) Indica en los siguientes casos si se realiza o no trabajo mecánico: Un cuerpo en caída libre (fuerza de gravedad Un cuerpo apoyado en una meda

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Descripción de los movimientos I

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Descripción de los movimientos I 1(6) Ejercicio 1 Un atleta recorre 100 metros en 12 segundos. Determina la velocidad media en m/s y en km/h Ejercicio 2 El movimiento de un cuerpo está representado por los datos recogidos en la siguiente

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas

C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas C. E. U. MATHEMATICA Centro de estudios universitario especializado en ciencias Físicas y Matemáticas Repaso general Física Mecánica ( I. Caminos Canales y Puertos) 1. El esquema de la figura representa

Más detalles

SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO

SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO 1º. Un cuerpo de 3 kg se desliza por un plano inclinado 45º con respecto a la horizontal desde una altura de 5m. El coeficiente de rozamiento entre el cuerpo

Más detalles

Ejercicios de Cinemática en una Dimensión y dos Dimensiones

Ejercicios de Cinemática en una Dimensión y dos Dimensiones M.R.U Ejercicios de Cinemática en una Dimensión y dos Dimensiones 1. Dos automóviles que marchan en el mismo sentido, se encuentran a una distancia de 126km. Si el más lento va a 42 km/h, calcular la velocidad

Más detalles

EJERCICIOS DE MOMENTO LINEAL, IMPULSO Y COLISIONES

EJERCICIOS DE MOMENTO LINEAL, IMPULSO Y COLISIONES SEXTO TALLER DE REPASO 2015-01 EJERCICIOS DE MOMENTO LINEAL, IMPULSO Y COLISIONES 1. Dos carros, A y B, se empujan, uno hacia el otro. Inicialmente B está en reposo, mientras que A se mueve hacia la derecha

Más detalles

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (TEMA 9)

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (TEMA 9) I..S. Padre Manjón. Dpto de ísica y Química. ísica y Química º Bachillerato LGUS JCICIS SULTS D TBJ Y GÍ (TM 9) Un bloque de 5 kg se desliza por una superficie horizontal lisa con una velocidad de 4 m/s

Más detalles

PROBLEMAS DE FÍSCA BÁSICA

PROBLEMAS DE FÍSCA BÁSICA PROBLEMAS DE FÍSCA BÁSICA MOVIMIENTO DE PROYECTILES 1. Se dispara un proyectil desde el suelo haciendo un ángulo θ con el suelo. Si la componente horizontal de su velocidad en el punto P es de 5i m/s y

Más detalles

FISICA I HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. CINEMÁTICA FORMULARIO

FISICA I HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. CINEMÁTICA FORMULARIO 3. CINEMÁTICA FORMULARIO 3.1) El golpe de una piedra al caer a un pozo se oye al cabo de 4,33 s. Calcular la profundidad del pozo sabiendo que la velocidad del sonido es 330 m.s -1. 3.2) Un ascensor sube

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =

Más detalles

Pág. 1 de 7 TRABAJO Y ENERGÍA

Pág. 1 de 7 TRABAJO Y ENERGÍA Pág. 1 de 7 FQ1BE1223 Nauzet lanza un disco de hockey a 8 m/s por una pista de hielo en la que no existe rozamiento. El disco recorre 20 m antes de llegar a Alejandro. Cuál es el trabajo que realiza el

Más detalles

4. Problemas de Cinemática

4. Problemas de Cinemática Capítulo 4 Cinemática 4º ESO Bruño pag 13 4. Problemas de Cinemática Movimiento rectilíneo y uniforme (MRU) 1. Un coche inicia un viaje de 495 Km. a las ocho y media de la mañana con una velocidad media

Más detalles

Física y Química. 1º Bachillerato repaso de Cinemática (1)

Física y Química. 1º Bachillerato repaso de Cinemática (1) Cálculo vectorial 1. Representa los siguientes vectores y calcula su módulo: r =(3,-1,0) s =4i t =-1i -2 j u =(-3,6,0) v =(-5,0,0) w =(0,-1,0) 2. Indica la dirección y el sentido de los vectores s, v y

Más detalles

CINEMÁTICA I (4º E.S.O.) Estudio de gráficas de movimientos

CINEMÁTICA I (4º E.S.O.) Estudio de gráficas de movimientos CINEMÁTICA I (4º E.S.O.) Estudio de gráficas de movimientos 1. En las gráficas que se dan a continuación, identifica el tipo de movimiento en cada tramo, calcula sus características y escribe las ecuaciones

Más detalles

Slide 1 / 144. Slide 2 / 144. Slide 3 / 144

Slide 1 / 144. Slide 2 / 144. Slide 3 / 144 1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m? Slide 1 / 144 2 Una fuerza realiza 30000 J de trabajo

Más detalles

5. Problemas de hidrostática

5. Problemas de hidrostática Capítulo 5 Hidrostática 4º ESO Bruño pag 20 5. Problemas de hidrostática Composición de fuerzas 1. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

ACTIVIDADES DEL CURSO DE FÍSICA I

ACTIVIDADES DEL CURSO DE FÍSICA I SESIÓN 16 13 SEPTIEMBRE 1. Primer Examen 2. Investigación 6. Tema: Leyes de Newton. Contenido: Biografía de Isaac Newton Primera Ley de Newton Segunda Ley de Newton Tercera Ley de Newton Entrega: Sesión

Más detalles

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.

Más detalles

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS UNIVERSIDAD NACIONAL DE SAN LUIS ACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS ÍSICA I Ing. Electromecánica - Ing. Electrónica - Ing. Industrial - Ing. Química - Ing. Alimentos - Ing. Mecatrónica TRABAJO

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

Un vehículo varía su posición tal como se indica en la tabla

Un vehículo varía su posición tal como se indica en la tabla I.E.S. AGUILAR Y CANO DEPARTAMENTO DE FÍSICA Y QUÍMICA Bloque cinemática Defina trayectoria Por qué decimos que el movimiento es relativo? Diferencie entre magnitudes escalares y vectoriales. Ejemplos

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

Cinemática: MRU, MCU y MRUA

Cinemática: MRU, MCU y MRUA IES EL CHAPARIL Departamento de Física y Química EJERCICIOS DE 1º DE BACHILLERATO Cinemática: MRU, MCU y MRUA Hoja 6 1. La siguiente tabla se ha construido realizando el estudio de un movimiento. Suponiendo

Más detalles

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO 1. Una bola de boliche de 7 kg se mueve en línea recta a 3 m/s. Qué tan rápido debe moverse una bola de ping-pong de 2.45 gr. en

Más detalles

PROBLEMAS PROPUESTOS DE ROTACIÓN

PROBLEMAS PROPUESTOS DE ROTACIÓN PROBLEMAS PROPUESTOS DE ROTACIÓN 1. Una bicicleta de masa 14 kg lleva ruedas de 1,2 m de diámetro, cada una de masa 3 kg. La masa del ciclista es 38 kg. Estimar la fracción de la energía cinética total

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

Física y Química. Pendientes de 1º de Bachillerato

Física y Química. Pendientes de 1º de Bachillerato Física y Química. Pendientes de 1º de Bachillerato SELECCIÓN DE PROBLEMAS DE FÍSICA 1.17 Si se escogen el norte y el este como direcciones perpendiculares de referencia, cuáles son las componentes de un

Más detalles

TALLER 5 FISICA LEYES DE NEWTON

TALLER 5 FISICA LEYES DE NEWTON TALLER 5 FISICA LEYES DE NEWTON 1. Un automóvil de 2000 kg moviéndose a 80 km/h puede llevarse al reposo en 75 m mediante una fuerza de frenado constante: a) Cuanto tiempo tardara en detenerse? b) Cual

Más detalles

TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012

TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012 TERCERA EVALUACIÓN DE Física del Nivel Cero A Abril 20 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 25 preguntas de opción múltiple

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una pared. Si en el instante inicial

Más detalles

Guía 4: Leyes de Conservación: Energía

Guía 4: Leyes de Conservación: Energía Guía 4: Leyes de Conservación: Energía NOTA : Considere en todos los casos g = 10 m/s² 1) Imagine que se levanta un libro de 1,5 kg desde el suelo para dejarlo sobre un estante situado a 2 m de altura.

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

2. CINÉTICA DE LA PARTÍCULA

2. CINÉTICA DE LA PARTÍCULA ACADEMIA DE DINÁMICA DIVISIÓN DE CIENCIAS ÁSICAS FACULTAD DE INGENIERÍA Serie de ejercicios de Cinemática y Dinámica 2. CINÉTICA DE LA PARTÍCULA Contenido del tema: 2.1 Segunda ley de Newton. 2.2 Sistemas

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30)

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30) SEGUNDA EVALUACIÓN DE FÍSICA Marzo 18 del 2015 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSION

Más detalles

PROBLEMAS DE FÍSICA - REPASO (60)

PROBLEMAS DE FÍSICA - REPASO (60) PROBLEMAS DE FÍSICA - REPASO (60) MOVIMIENTO CIRCULAR UNIFORME (3) 1. Un ciclista desciende por la carretera a la velocidad de 50 km/h, si el diámetro de la rueda es 65 cm, cuántas vueltas da ésta en un

Más detalles

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez 1 2 3 4 5 6 7 8 9 10 Preguntas de repaso 1) 10.1. Explique por medio de diagramas por qué se dirige hacia el centro la aceleración de un cuerpo que se mueve en círculos a rapidez constante. 2) 10.2. Un

Más detalles

Unidad Didáctica 4 Trabajo y Energía

Unidad Didáctica 4 Trabajo y Energía Unidad Didáctica 4 Trabajo y Energía 1.- Trabajo. El trabajo, W, que produce una fuerza constante que actúa sobre un cuerpo que se desplaza en línea recta (con la misma dirección y sentido y que la fuerza),

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA PRIMERA EVALUACIÓN DE FÍSICA A DICIEMBRE 10 DE 2014 SOLUCIÓN TEMA 1 (8 puntos) Una persona corre

Más detalles

Colegio Diocesano San José de Carolinas Privado Concertado

Colegio Diocesano San José de Carolinas Privado Concertado Problemas MRU 1) A cuántos m/s equivale la velocidad de un móvil que se desplaza a 72 km/h? Solución: 20 m/s 2) En el gráfico, se representa un movimiento rectilíneo uniforme, averigüe gráfica y analíticamente

Más detalles

b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero.

b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero. 1. Sean los vectores que se encuentran en el paralelepípedo tal como se muestran en la figura, escoja la alternativa correcta: a) b) c) d) e) 2. Sean tres vectores A, B y C diferentes del vector nulo,

Más detalles

IES LEOPOLDO QUEIPO. DEPARTAMENTO DE FÍSICA Y QUÍMICA. 4º ESO. Tema 5 : Dinámica

IES LEOPOLDO QUEIPO. DEPARTAMENTO DE FÍSICA Y QUÍMICA. 4º ESO. Tema 5 : Dinámica Tema 5 : Dinámica Esquema de trabajo: 1. Concepto de Fuerza Tipos de fuerzas Efectos producidos por las fuerzas Carácter vectorial de las fuerzas Unidad de medida Fuerza resultante Fuerza de rozamiento

Más detalles