Tema 4: Introducción al Aprendizaje Automático
|
|
|
- Carlos Farías Olivares
- hace 9 años
- Vistas:
Transcripción
1 Introducción a la Ingeniería del Conocimiento Curso Tema 4: Introducción al Aprendizaje Automático Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla IIC CcIa Introducción al Aprendizaje Automático 4.1
2 Qué es el Aprendizaje Automático? Any change in a system that allows it to perform better the second time on repetition of the same task or on another task drawn from the same population (Simon, 1983). El Aprendizaje Automático estudia cómo construir programas que mejoren automáticamente con la experiencia. Por qué estudiar Aprendizaje Automático? Recientes avances en la teoría y los algoritmos. Crecimiento desbordante de datos en línea (on line). Se dispone de máquinas suficientemente potentes. Interés por parte de la industria. IIC CcIa Introducción al Aprendizaje Automático 4.2
3 Algunos ejemplos (I) Minería de datos (Data mining): Uso de datos históricos para mejora de decisiones: Datos médicos Decisiones médicas Conducción autónoma de vehículos: Aprenden a conducirse en autopistas en función de la información visual que reciben. Reconocimiento del habla. Juegos IIC CcIa Introducción al Aprendizaje Automático 4.3
4 Algunos ejemplos (II) Programas que se modifican a sí mismos según las costumbres del usuario: Lector de periódicos que aprende los temas de interés del usuario. Gestor de correo electrónico. Casas que aprenden a optimizar el gasto de energía en función de las costumbres y hábitos de sus ocupantes. IIC CcIa Introducción al Aprendizaje Automático 4.4
5 Un problema de minería de datos Dados: Datos de 9714 pacientes, describiendo datos sobre embarazo y alumbramiento. Con 215 características de cada paciente. Objetivo: Aprender a predecir clases de pacientes con alto riesgo de cesárea. Una de las 18 reglas aprendidas: Si la madre es primeriza, los ultrasonidos en el segundo trimestre dan resultados anormales, etc... Entonces será necesaria cesárea IIC CcIa Introducción al Aprendizaje Automático 4.5
6 Análisis del riesgo en un crédito Reglas aprendidas a partir de la síntesis de datos: Primera regla: Si bancos con deudas > 2 y Reincidencias > 1, entonces Aceptar= No Segunda regla: Si Bancos con deudas = 0 y Ingresos > , entonces Aceptar= Sí... IIC CcIa Introducción al Aprendizaje Automático 4.6
7 Conducción automática ALVINN [Pomerleau] conduce a 70 mph por autopistas Sharp Left Straight Ahead Sharp Right 30 Output Units 4 Hidden Units 30x32 Sensor Input Retina IIC CcIa Introducción al Aprendizaje Automático 4.7
8 Hacia dónde vamos (I) Hoy: La punta del iceberg Redes neuronales Arboles de decisión Programación lógica inductiva Regresión... Aplicados a bases de datos bien estructuradas Interés por parte de la industria IIC CcIa Introducción al Aprendizaje Automático 4.8
9 Hacia dónde vamos (II) Oportunidades para el futuro: Aprendizaje a partir de datos de varias fuentes simultáneas: Bases de datos internas, web,... Aprendizaje por experimentación activa Aprendizaje de decisiones en lugar de predicciones Aprendizaje acumulativo de larga duración Lenguajes de programación con aprendizaje incorporado? IIC CcIa Introducción al Aprendizaje Automático 4.9
10 Disciplinas relacionadas Inteligencia Artificial Métodos bayesianos Teoría de la complejidad Teoría de control Teoría de la información Filosofía Psicología y neurobiología... Estadística IIC CcIa Introducción al Aprendizaje Automático 4.10
11 Problema de aprendizaje Aprendizaje: Mejora de alguna tarea mediante la experiencia Tarea (T ): Lo que se debe aprender Experiencia (E): La que se tiene en relación a lo que se debe aprender Rendimiento (R): Medida de la calidad de lo aprendido Se dice que un sistema aprende de la experiencia, si el rendimiento R de la tarea T aprendida crece al crecer E. IIC CcIa Introducción al Aprendizaje Automático 4.11
12 Problema de aprendizaje Qué experiencia? Qué debe aprender? Cómo representamos el conocimiento? Qué algoritmo usaremos para aprenderlo? Cómo se mide la mejora? IIC CcIa Introducción al Aprendizaje Automático 4.12
13 Ejemplos Una forma de aprender a jugar al ajedrez (de mejorar nuestro juego), es jugar contra nosotros mismos. Normalmente la forma de saber si hemos aprendido es jugar contra otros. Caracterización de este problema de aprendizaje T : Jugar al ajedrez E: Conjunto de partidas jugadas contra uno mismo R: Porcentaje de partidas ganadas contra otro jugador IIC CcIa Introducción al Aprendizaje Automático 4.13
14 Ejemplos Una forma de que un sistema aprenda a reconocer palabras en un texto manuscrito, puede ser a partir de una base de datos con imágenes de palabras manuscritas y sus correspondientes transcripciones. La forma de saber si el sistema ha aprendido a reconocer palabras, será darle un texto manuscrito y ver cuantas transcripciones correctas hace. Caracterización de este problema de aprendizaje T : Reconocer palabras manuscritas E: Base de datos de palabras con sus transcripciones R: Porcentaje de palabras reconocidas IIC CcIa Introducción al Aprendizaje Automático 4.14
15 Ejemplos Se puede enseñar a un vehículo a conducir automáticamente, guiándose por lo que ve (usando sensores de visión), y suministrándole una base de datos en la que se hayan registrado las imágenes tomadas mientras un conductor humano conducía el vehículo, junto con las correspondientes acciones que hizo. Caracterización de este problema de aprendizaje T : Conducir un vehículo E: Base de datos de imágenes, y las acciones correspondientes, registradas durante conducción por parte de un conductor humano R: Distancia recorrida sin comenter ningún error IIC CcIa Introducción al Aprendizaje Automático 4.15
16 Qué estudiar en A. A.? Qué algoritmos pueden aproximar funciones correctamente? Cómo influye el número de ejemplos en la exactitud? Cómo influye la complejidad de la representación de las hipótesis? Cómo influye el ruido? Cuáles son los límites teóricos del aprendizaje? Cómo puede ayudar el conocimiento a priori? Qué esquemas del aprendizaje biológico podemos adoptar? Cómo pueden los sistemas alterar su propia representación? IIC CcIa Introducción al Aprendizaje Automático 4.16
17 Bibliografía Mitchell, T. M. Machine Learning McGraw Hill, Capítulo II. Lecturas recomendadas Markov, Z Machine Learning Course Bratko, I. PROLOG Programming for Artificial Intelligence Tercera Edición. Addison Wesley, Capítulo XVIII Langley, P Elements of Machine Learning Morgan Kaufmann Publishers, Capítulo I IIC CcIa Introducción al Aprendizaje Automático 4.17
Tema AA 1: Introducción a al Aprendizaje Automático
Razonamiento Automático Curso 200 2002 Tema AA : Introducción a al Aprendizaje Automático José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial
Reconocimiento de Patrones DRA. LETICIA FLORES PULIDO
Reconocimiento de Patrones DRA. LETICIA FLORES PULIDO 2 CONTENIDO TEMA1: INTRODUCCIÓN TEMA2: APRENDIZAJE MÁQUINA TEMA3: REDES NEURONALES MULTICAPA TEMA4: PROGRAMACIÓN EVOLUTIVA 3 TEMA 2 : APRENDIZAJE MÁQUINA
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Objetivos Estudiar algunas de las metodologías de Inteligencia Artificial,
Tema 8: Árboles de decisión
Introducción a la Ingeniería del Conocimiento Curso 2004 2005 Tema 8: Árboles de decisión Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
Tema 7: Aprendizaje de árboles de decisión
Inteligencia Artificial 2 Curso 2002 03 Tema 7: Aprendizaje de árboles de decisión José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Francisco J. Martín Mateos José L. Ruiz Reina Dpto. de Ciencias de
Tema 7: Sesgo inductivo
Introducción a la Ingeniería del Conocimiento Curso 2004 2005 Tema 7: Sesgo inductivo Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla IIC
Inteligencia Artificial e Ingeniería del Conocimiento
Inteligencia Artificial e Ingeniería del Conocimiento Departamento de Ciencias de la Computación e Inteligencia Artificial Curso 2008/2009 Curso: 4 Cuatrimestre: 1 Tipo: Troncal Nº créditos: 4,5T + 4,5
Aprendizaje Automatizado
Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto
Tema AA-4: Sesgo inductivo
Razonamiento Automático Curso 2002 2003 Tema AA-4: Sesgo inductivo Miguel A. Gutiérrez Naranjo José A. Alonso Jiménez Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR INGENIERÍA EN TECNOLOGÍA COMPUTACIONAL. ASIGNATURA Inteligencia Artificial II. Ingeniería Aplicada
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR DEPARTAMENTO ACADÉMICO DE SIS COMPUTACIONALES INGENIERÍA EN TECNOLOGÍA COMPUTACIONAL ASIGNATURA Inteligencia Artificial II ÁREA DE Ingeniería Aplicada CONOCIMIENTO
Aprendizaje Computacional. Eduardo Morales y Jesús González
Aprendizaje Computacional Eduardo Morales y Jesús González Objetivo General La capacidad de aprender se considera como una de los atributos distintivos del ser humano y ha sido una de las principales áreas
Tema 1: Introducción a la Inteligencia Artificial
Introducción a la Inteligencia Artificial Curso 2002 2003 Tema : Introducción a la Inteligencia Artificial José A. Alonso Jiménez Francisco J. Martín Mateos Dpto. de Ciencias de la Computación e Inteligencia
Teoría 1 Introducción a la Inteligencia Artificial
Teoría 1 Introducción a la Inteligencia Artificial Sistemas Inteligentes 1 1 Universidad Nacional de San Luis, Argentina Carrera: Ingeniería en Informática Carrera: Ingeniería en Computación (Optativa)
Programación Declarativa: Lógica y restricciones
Programación Declarativa: Lógica y restricciones Guía de Aprendizaje Información al estudiante 1. Datos Descriptivos Titulación Módulo Materia Asignatura Carácter Créditos ECTS Departamento responsable
Inteligencia Artificial
Inteligencia Artificial Conjunto de técnicas que se aplican en el diseño de programas de computador para la resolución de problemas que por su dificultad requieren el uso de un cierto grado de inteligencia.
(V2.0) SILABO CS261T.
Sociedad Peruana de Computación Facultad de Computación Programa Profesional de (Ciencia de la Computación) (V2.0) SILABO CS261T. Inteligencia Artificial (Obligatorio) 2010-1 0. DATOS GENERALES 0.1 CARRERA
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE SISTEMAS
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA 1. DATOS INFORMATIVOS MATERIA O MODULO: CODIGO: CARRERA: NIVEL: No. CREDITOS 4 CREDITOS TEORIA: 3 CREDITOS PRACTICA: 1 ESCUELA DE SISTEMAS
Fundamentos de Inteligencia Artificial
Área de Ingeniería Telemática Universidade de Vigo Fundamentos de Inteligencia Artificial Manuel Ramos Cabrer (Curso 2010/11) Objetivos Introducción a la disciplina de la Inteligencia Artificial desde
Reconocimiento Automático de Voz
Reconocimiento Automático de Voz Presentación basada en las siguientes Referencias: [1] Rabiner, L. & Juang, B-H.. Fundamentals of Speech Recognition, Prentice Hall, N.J., 1993. [2] Rabiner, L. & Juang,
R for Data Mining Análisis de datos, segmentación y técnicas de predicción con R. web
R for Data Mining Análisis de datos, segmentación y técnicas de predicción con R web Presentación R es el lenguaje de programación estadístico por excelencia. Se destaca por que es una las herramientas
Universidad de Costa Rica Sistema de Aplicaciones Estudiantiles SAE
Página 1 de 8 Plan de Estudio Enfasis 0 Bloque Común(no hay énfasis) Nivel Curso Nombre del curso T P L TP Cred. Requisitos y Req. Equivalentes Correquisitos y Correq. Equivalentes 1 CI1010 INTRODUCCIÓN
Modelos predictivos y de optimización de estructuras de hormigón
http://optimizacionheuristica.blogs.upv.es 1 Modelos predictivos y de optimización de estructuras de hormigón Dr. Ing. Víctor Yepes Piqueras Departamento de Ingeniería de la Construcción y Proyectos de
DIPLOMADO EN DATA MINING
DIPLOMADO EN DATA MINING DIPLOMADO EN DATA MINING Los datos que tienen relevancia para las decisiones de gestión, se están acumulando a un ritmo increíble, debido a una serie de avances tecnológicos. La
Reconocimiento automático de palabras en documentos históricos usando redes neuronales convolucionales
Reconocimiento automático de palabras en documentos históricos usando redes neuronales convolucionales Dra. Ma. de Guadalupe García Hernández Departamento de Ingeniería Electrónica Objetivo general Aplicar
Redes Neuronales. Introducción a las redes neuronales Carlos Andrés Delgado S.
Redes Neuronales Introducción a las redes neuronales [email protected] Carlos Andrés Delgado S. Facultad de Ingeniería. Universidad del Valle Agosto de 2017 Contenido 1 Neurofisiología
OPTATIVA I: MINERIA DE DATOS
UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: OPTATIVA I: MINERIA DE DATOS DES: Programa(s) Educativo(s): Tipo de materia: Clave de la
Inteligencia artificial
Inteligencia artificial APRENDIZAJE DE MÁQUINAS (MACHINE LEARNING) Aprendizaje Construcción o modificación de representaciones de lo que se experimenta R. Michalski Lograr cambios útiles en nuestras mentes.
APLICACIONES DE NEGOCIO PARA INTELIGENCIA ARTIFICIAL. Copyright 2017 Accenture All rights reserved.
APLICACIONES DE NEGOCIO PARA INTELIGENCIA ARTIFICIAL AGENDA 01 QUÉ ES? 05 LECCIONES DE NEGOCIO 02 ÁREAS DE INVESTIGACIÓN 03 APLICACIONES 04 EJEMPLOS DE NEGOCIO 01. QUÉ ES?. TIPOS DE INTELIGENCIA Lingüística
Tema 8: Aprendizaje de reglas
Inteligencia Artificial 2 Curso 2002 03 Tema 8: Aprendizaje de reglas José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Francisco J. Martín Mateos José L. Ruiz Reina Dpto. de Ciencias de la Computación
Tema 2: Inteligencia computacional y conocimiento
Razonamiento Automático Curso 999 2000 Tema 2: Inteligencia computacional y conocimiento José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial
PROYECTO DOCENTE ASIGNATURA: "Inteligencia Artificial"
PROYECTO DOCENTE ASIGNATURA: "Inteligencia Artificial" Grupo: Clases Teór. Inteligencia Artificial Grupo 1 ING. COMPUTADORES(961083) Titulacion: Grado en Ingeniería Informática-Ingeniería de Computadores
PROFESIONALES [PRESENCIAL]
SILABO POR ASIGNATURA 1. INFORMACION GENERAL Coordinador: SAQUICELA GALARZA VICTOR HUGO([email protected]) Facultad(es): [FACULTAD DE INGENIERÍA] Escuela: [ESCUELA DE INFORMÁTICA] Carrera(s):
Tema 3: Demostraciones proposicionales
Razonamiento Automático Curso 2000 200 Tema 3: Demostraciones proposicionales José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad
Análisis Inteligente de Datos: Introducción
Análisis Inteligente de Datos: [email protected] Departamento de Informática - Universidad Técnica Federico Santa María Santiago, Marzo 2009 Temario 1 Temario 1 Preguntas Relevantes Por qué análisis
Proyecto 6. Árboles de decisión: Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial.
Árboles de decisión: Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial. Funcionamiento: Se realiza un test en cada nodo interno del árbol, a medida que
I.4 INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
I.4 INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL Roberto Mendoza Padilla* En este trabajo se da una descripción introductoria de un área que ha provocado un gran numero de controversias, debido a que combina
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Agentes que Aprenden Introducción Tipos de aprendizaje Aprendizaje cómo
Proyecto: Programación Declarativa: Lenguaje Prolog
Facultad de Ciencias de la Administración Licenciatura en Sistemas Proyecto: Programación Declarativa: Lenguaje Prolog Materia Optativa para Régimen de Créditos Profesores: Lic. Lidia Graciela Denegri
Departamento Ingeniería en Sistemas de Información
ASIGNATURA: INTELIGENCIA ARTIFICIAL MODALIDAD: Cuatrimestral DEPARTAMENTO: ING. EN SIST. DE INFORMACION HORAS SEM.: 6 horas AREA: MODELOS HORAS/AÑO: 96 horas BLOQUE TECNOLOGÍA APLICADA HORAS RELOJ 72 NIVEL:
Introducción a la minería de datos
Introducción a la minería de datos 1 Temario Qué es minería de datos? Quién usa minería de datos? Por qué de la minería de datos? Ciclo virtuoso de la minería de datos 2 Definición de minería de datos
Grado en Ingeniería Informática
Grado en Ingeniería Informática CENTRO RESPONSABLE: FACULTAD DE CIENCIAS RAMA: Ingeniería y Arquitectura CRÉDITOS: 240,00 DISTRIBUCIÓN DE CRÉDITOS DE LA TITULACIÓN FORMACIÓN BÁSICA: 72,00 OBLIGATORIOS:
Introducción a las Ciencias de la Computación
Introducción a las Ciencias de la Computación Colaboratorio de Computación Avanzada (CNCA) 2015 1 / 22 Contenidos 1 Computación e Informática Caracterización Áreas relacionadas 2 Antecedentes Orígenes
UN SISTEMA DE VIDEO VIGILANCIA PARA DETECCIÓN DE CAÍDAS
UNIVERSIDAD DE MÁLAGA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA INGENIERÍA SUPERIOR EN INFORMÁTICA ANTEPROYECTO UN SISTEMA DE VIDEO VIGILANCIA PARA DETECCIÓN DE CAÍDAS DIRECTOR DEL PROYECTO: FIRMA:
Que es la Inteligencia Artificial? Definición de la IA. Sistemas que actúan como humanos. Notas
Que es la Inteligencia Artificial? Es una área de la ciencia bastante nueva (1956) Su objetivo son las capacidades que consideramos Inteligentes Las aproximaciones siguen diferentes puntos de vista Sus
Curso: Python for Analytics
1 Curso: Python for Analytics 2 Presentación Python es un lenguaje de programación potente y fácil de aprender. Cuenta con estructuras de datos eficientes, de alto nivel y un enfoque simple pero efectivo
Introducción a la. Inteligencia Artificial. Inteligencia Artificial. Ingeniería Informática, 4º
Introducción a la Ingeniería Informática, 4º Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani 1 Tema 1: Introducción a la IA Resumen: 1. Introducción a la 1.1 Qué es la IA? 1.2 Agentes
Inteligencia Artificial
Inteligencia Artificial I Introducción a la IA Fundamentos Dr. Edgard Iván Benítez Guerrero [email protected] 1 1. Fundamentos Definiciones de IA Contribuciones de otras áreas a la IA BrevehistoriadelaIA
Programa de estudios por competencias Inteligencia Artificial I
Programa de estudios por competencias Inteligencia Artificial I 1. Identificación del curso Programa educativo: Licenciatura en Ingeniería en Computación Unidad de aprendizaje: Inteligencia Artificial
PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE. Matemáticas en la Ingeniería: álgebra y Cálculo (I)
CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE Matemáticas en la Ingeniería: álgebra y Cálculo (I) 1. DATOS DE IDENTIFICACIÓN DE LA ASIGNATURA.
Tema 4: Resolución de problemas de espacios de estados
Programación lógica Curso 2004 05 Tema 4: Resolución de problemas de espacios de estados José A. Alonso Jiménez [email protected] http://www.cs.us.es/ jalonso Dpto. de Ciencias de la Computación
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO COMPILADORES 1764 7 o 09 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería en Computación Ingeniería
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL
C ASIGNATURA: INTRODUCCION A LA INTELIGENCIA ARTIFICIAL Curso 2009/2010 (Código:532097) 1.OBJETIVOS Esta asignatura comprende los fundamentos necesarios para la formación de aquellos alumnos que hayan
Tipos de Aprendizaje
Karina Figueroa Contenido Objetivo: Comprender las nociones básicas de los enfoques representativos de aprendizaje automático Nota del día Aprendizaje y el modelo científico Clasificación de los algoritmos
Introducción a la minería de datos. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR
Introducción a la minería de datos CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Minería de datos Detección, interpretación y predicción de patrones cuantitativos y cualitativos
El Software. Francisco Ruiz González. Escuela Superior de Informática Ciudad Real Universidad de Castilla-La Mancha.
Investigación n en Informática: El Software Francisco Ruiz González Escuela Superior de Informática Ciudad Real Universidad de Castilla-La Mancha noviembre-2004 Investigación n en Informática: El Software
Inteligencia Artificial. Dr. Alberto Reyes Ballesteros Investigador Prometeo
Inteligencia Artificial Dr. Alberto Reyes Ballesteros Investigador Prometeo [email protected] http://www.isr.ist.utl.pt/~areyes/ Introducción Definiciones Enfoques de la IA Historia Raíces y ramas
Tema 1: Agentes inteligentes: Representación y razonamiento
Inteligencia Artificial 2 Curso 2000 0 Tema : Agentes inteligentes: Representación y razonamiento José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Francisco J. Martín Mateos Dpto. de Ciencias de la Computación
PR1: Programación I 6 Fb Sistemas Lógicos 6 Obligatoria IC: Introducción a los computadores 6 Fb Administración de
CUADRO DE ADAPTACIÓN INGENIERÍA INFORMÁTICA - Campus Río Ebro Código Asignaturas aprobadas Créditos Carácter Asignaturas/Materias reconocida Créditos Carácter 12007 Cálculo 7,5 MAT1; Matemáticas I 12009
4 horas. 96 horas. Competencias Especificas: Construye algoritmos analizando su complejidad mediante técnicas y métodos documentados.
IS0303 - MATEMÁTICAS DISCRETAS UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: Matemáticas Discretas DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de
Nombre de la asignatura : Lenguajes y Autómatas. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB- 9324
. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Lenguajes y Autómatas Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCB- 9 Horas teoría-horas práctica-créditos
Programa de Asignatura
Departamento de Ingeniería Industrial Programa: Ingeniería Mecatrónica Plan 007- Asignatura: Tópicos de Matemáticas Discretas Clave: 9938 Semestre: II Tipo: Obligatoria H. Teoría: H Práctica: HSM: 4 Créditos:
Una Aplicación Exitosa de Deep Reinforcement Learning
Una Aplicación Exitosa de Deep Reinforcement Learning Conceptos relevantes - Proceso de Decisión de Markov (MDP): - Función de valor: - Función Q: - Método iterativo ("model-free" y "online") para aprender
Especialidades en GII-TI
Especialidades en GII-TI José Luis Ruiz Reina (coordinador) Escuela Técnica Superior de Ingeniería Informática Mayo 2014 Qué especialidades tiene la Ingeniería Informática? Según las asociaciones científicas
PROGRAMA INSTRUCCIONAL INTELIGENCIA ARTIFICIAL
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA
