NEUMÁTICA E HIDRÁULICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "NEUMÁTICA E HIDRÁULICA"

Transcripción

1 INTRODUCCIÓN NEUMÁTICA E HIDRÁULICA La fuerza que ejerce un fluido sobre las paredes del recipiente que lo contiene se define como F=P S, siendo P la presión y S la superficie sobre la que se ejerce la misma. Si ésta última es móvil, la fuerza provocará su desplazamiento, por lo que habremos obtenido un trabajo W=F d. Por lo tanto, podemos obtener trabajo a partir de un fluido jugando con alguna de las dos magnitudes que definen la fuerza: presión (en neumática) o superficie (en hidráulica). Neumática. Se utilizan fluidos gaseosos (principalmente aire), en los que se puede aumentar la presión, debido a que son fluidos compresibles. Hidráulica. Se usan fluidos líquidos (normalmente aceites), en los que se juega con la diferencia de superficies, al no poder aumentar su presión, ya que se tratan de fluidos incompresibles. NEUMÁTICA Como se ha mencionado antes, en los sistemas neumáticos se utiliza aire comprimido. A efectos prácticos, el aire se considera como un gas ideal a temperatura constante, con lo que cumplirá la ley de Boyle-Mariotte: P V=cte que nos dice que si obligamos a un gas a disminuir su volumen a la mitad, su presión se duplicará. De aquí se deduce que la compresión de un gas conlleva un inmediato aumento de su presión, por lo que eventualmente aumentaremos la fuerza que pueda ejercer sobre una pared móvil, que es lo que estamos buscando para obtener trabajo. Unidades En el Sistema Internacional (S.I.) la presión se mide en Pascales (Pa), definido como la que ejerce una fuerza de 1 Newton sobre una superficie de 1 m 2 : 1 Pa = 1 N/1 m 2 Sin embargo, es una unidad pequeña, que no se suele usar en sistemas neumáticos. En su lugar se usan los bares (bar) y las atmósferas (atm), siendo su equivalencia: Presión absoluta y presión relativa 1 atm 1 bar 1 = 10 5 Pa El movimiento en los actuadores de los sistemas neumáticos se produce porque el aire a presión que entra en una parte del sistema provoca una fuerza de empuje sobre una pared móvil (émbolo). El volumen al otro lado de dicho émbolo no está vacío, sino lleno de aire a presión atmosférica. Este aire ejerce una fuerza sobre el émbolo que se opone al desplazamiento. Por lo tanto, en el balance de fuerzas total tenemos que tener en cuenta tanto las fuerzas que favorecen el movimiento (de avance) como las que se oponen a él (de retroceso). F = F av F r = P S P atm S = (P - P atm ) S Donde se ve que, a efectos prácticos, no interesa tanto la presión del aire comprimido que introducimos en el actuador como la diferencia de presiones entre dicho aire y el aire que está al otro lado del émbolo y que se opone a su desplazamiento. 1 La equivalencia exacta es 1 atm = 1,01325 bar 1/8

2 De esta forma, podemos definir dos tipos de presiones para un gas: Presión absoluta. La que tiene el gas respecto al vacío. Es la que debe usarse en la ley de Boyle-Mariotte. Presión relativa. O de trabajo. Es la presión de nuestro gas respecto a la atmosférica: P r =P abs +P atm. Es la que se usa para hacer los cálculos en los circuitos neumáticos. Usando la presión relativa, se simplifican los cálculos, ya que podemos ignorar el efecto del aire que llena el otro lado del actuador y se opone al movimiento, y expresarlo todo en función de la presión relativa: F = F av F r = P S P atm S = (P P atm ) S = (P r + P atm P atm ) S = P r S COMPONENTES DE UN CIRCUITO NEUMÁTICO En una instalación neumática, los componentes que la forman se agrupan en tres grandes bloques: Producción y tratamiento del aire comprimido Actuadores Regulación y control Producción y tratamiento del aire comprimido Hemos visto que la ley de Boyle-Mariotte dice que para aumentar la presión de un gas necesitamos disminuir su volumen. A su vez, esto se puede lograr si obligamos al gas a pasar por un conducto de sección menor manteniendo constante el flujo. Para ello, usaremos compresores neumáticos, que a su vez se dividen en alternativos y rotatorios. Compresores alternativos En ellos se usa un sistema de pistón-biela-cigüeñal. Al ir girando el cigüeñal, el pistón realizará un movimiento alternativo de subida y bajada. Durante la bajada se abre la válvula de admisión en contacto con la atmósfera e introducimos aire a presión atmosférica. En la subida se cierra la válvula de admisión y se abre la de escape, forzando al aire a abandonar el cilindro por un orificio de diámetro menor al de entrada. Si la presión alcanzada en esta etapa no es suficiente, se puede realizar la compresión en dos etapas, haciendo pasar al aire comprimido por otro compresor similar. El principal inconveniente de estos compresores es que el suministro de aire puede no ser suficientemente continuo. Compresores rotatorios Los compresores rotatorios permiten obtener un flujo continuo de aire comprimido. Existe una gran variedad de ellos. El más común es el compresor de palas. En él las palas giran dentro de la cavidad, con su extremo siempre pegado a las paredes. De esta forma, el compresor se compartimenta en cavidades cuyo volumen se va reduciendo a medida que nos aproximamos al orificio de salida del aire comprimido. Cada compresor tiene su propio símbolo, pero aquí usaremos el genérico 2/8

3 El aire comprimido de esta manera no puede usarse directamente en un sistema neumático, sino que hay que someterlo previamente a una serie de tratamientos. Refrigerador Normalmente, la compresión de un gas no se realiza en realidad a temperatura constante, sino que sufre un calentamiento. Necesitamos un dispositivo para rebajar la temperatura a unos 25ºC. Además, esta refrigeración provocará una condensación de la mayoría del vapor de agua presente en el aire, que puede corroer los componentes metálicos de la instalación. Depósito En los momentos de mayor consumo, éste suele ser mayor que la capacidad de producción del compresor, por lo que necesitamos un elemento capaz de acumular aire comprimido. Secador Filtro Elimina el resto del vapor de agua presente en el aire comprimido, mediante el empleo de un filtro poroso que debe ser reemplazado periódicamente. Elimina las partículas sólidas suspendidas en el aire, que pueden provocar un desgaste excesivo de los componentes de la instalación neumática, así como la obturación de las tuberías. Se somete al aire a un proceso de centrifugado. Las partículas sólidas se proyectan contra las paredes y precipitan. Además, pueden tener un separador de agua. Lubricador Es el último elemento de tratamiento del aire. Dado que los sistemas neumáticos están formados por partes móviles, es necesario lubricarlos. Esto se realiza pulverizando aceite en el aire comprimido, en el lubricador. Regulador de presión Ajusta la presión relativa (o de trabajo) del circuito neumático. Se hace manualmente mediante un tornillo que permite mayor o menor paso de aire. Manómetro Es un indicador de la presión de trabajo que hay en cada momento en el sistema. Normalmente se trata de indicadores en los que una aguja se mueve sobre una escala calibrada en bares. Unidad de mantenimiento Dado que dibujar todos los componentes descritos hasta ahora ocuparía demasiado espacio en un esquema neumático, y que además suelen venir en un único componente físico, la unidad de mantenimiento, se suele simplificar todo lo anterior con un único símbolo. Además, cada válvula neumática tendrá que tener una vía de conexión al circuito de aire comprimido del sistema. Si el circuito es muy complejo, indicar con líneas la conexión de cada uno de estos elementos con la unidad de mantenimiento puede hacer el circuito ilegible. Para simplificar, se puede usar, en cada vía de entrada de aire a presión, el símbolo de toma de presión. 3/8

4 Actuadores Son los elementos que van a realizar trabajo. En función de qué tipo de movimiento realice, podemos tener cilindros o motores. Cilindros neumáticos Realizan un movimiento lineal. El aire a presión se introduce dentro del cilindro, y mueve un émbolo, que a su vez hace que salga (avance) o entre (retroceda) un vástago. Existe una gran variedad de cilindros neumáticos, pero sólo nos vamos a centrar en dos: Cilindros de simple efecto En ellos, sólo uno de los dos movimientos (en el caso de la imagen, el de avance) se realiza introduciendo aire a presión. El otro se produce de forma automática por la fuerza ejercida por el muelle. Para ello, también se necesita que la toma de aire se ponga en contacto con la atmósfera para dejar escapar el aire a presión. Cilindros de doble efecto. En ellos, tanto el avance como el retroceso del vástago se realiza con aire a presión. Para el avance, introducimos aire a presión por el conducto de la izquierda, y ponemos el de la derecha en contacto con la atmósfera. Para el retroceso, introducimos el aire a presión por el de la derecha, y el de la izquierda se pone en contacto con la atmósfera. Motores neumáticos Los motores neumáticos realizan un movimiento circular. Son muy usados en sitios en los que no sea conveniente usar un motor eléctrico, como por ejemplo en los tornos de los dentistas. Regulación y control Los elementos de regulación y control son los que dirigen el flujo de aire comprimido hacia los elementos actuadores. Estos elementos se denominan válvulas, que a su vez se clasifican en válvulas distribuidoras o de dirección y válvulas de control. Válvulas distribuidoras. Como su nombre indica, estas válvulas se encargan de dirigir el aire a presión hacia los diferentes componentes de la instalación, así como hacia el exterior, a través de los escapes. Las válvulas distribuidoras se caracterizan por el número de vías, o de orificios por los que puede circular el aire, y el número de posiciones, o de maneras en las que las vías pueden conectarse entre sí. De esta forma, podemos tener válvulas 3/2 (tres vías y dos posiciones), 4/2 (cuatro vías y dos posiciones), 4/3 (igual que la anterior, pero con tres posible maneras de conectar entre sí las cuatro vías), etc. Las válvulas deben tener una vía de presión, por la que entrará el aire comprimido, y que denominaremos como P. Podrán tener una o más vías de escape, en contacto con la atmósfera. Las vías de escape se nombran sucesivamente como R, S, T... El resto de vía se denominan vías de trabajo, y ponen en comunicación las vías de presión y escape con el resto del circuito. Se denominan con las letras A, B, C... Para su representación, emplearemos la siguiente simbología: Cada válvula se representará por un dibujo en el que haya tantos cuadrados como posiciones tenga la válvula. En cada uno de los 4/8

5 cuadrados se representará la manera en que se unen entre sí las vías en la posición correspondiente. Además, deberemos nombrar apropiadamente las vías. Esto último sólo se hace en uno de los cuadrados, el que indica las conexiones de las vías en reposo (es decir, cuando no se actúa sobre la válvula). Si la válvula es de 2 posiciones, la de reposo se dibuja en el cuadrado de la derecha. Si es de tres, en el central. En la parte inferior se dibujarán las vías de presión y escape y en la superior las de trabajo. Si además, tenemos válvulas de 2 o 3 vías debemos indicar si es normalmente cerrada (NC) o normalmente abierta (NA). NC significa que en la posición de reposo bloqueamos el paso de aire a presión por el interior de la válvula, ocurriendo lo contrario en las NA. Veamos algunos ejemplos: La válvula de la izquierda tiene tres vías y dos posiciones. Será por tanto, una válvula 3/2. Una de las vías es de presión (P), otra de escape (R) (ambas dibujadas en la parte inferior del símbolo) y la tercera es la vía de trabajo (A), en la parte superior. En la posición de reposo bloqueamos el paso de aire a presión y conectamos la vía de trabajo con el escape, dejando salir aire del circuito a la atmósfera. Por lo tanto, se trata de una válvula normalmente cerrada. La nomenclatura completa será pues válvula 3/2 NC. En la otra posible posición, se bloquea el escape e introducimos aire a presión al circuito neumático a través de la vía A. Evidentemente, podríamos tener una válvula 3/2 NA. En ese caso, indicaríamos claramente en el cuadrado de la derecha que la vía de presión se comunica con la de trabajo y que la de escape queda bloqueada. En válvulas de más de tres vías no tiene mucho sentido hablar de posiciones NA y NC. En caso de que haya alguna posición en la que no se deje pasar aire ni desde la alimentación ni hacia los escapes, hablaremos de posición de bloqueo. Ejercicio: Nombrar las siguientes válvulas: También es necesario especificar cómo hacemos que la válvula cambie de una posición a otra. Es decir, tenemos que indicar cuál es el accionamiento y el retorno de la válvula. Para las válvulas de dos posiciones. el accionamiento se dibuja al lado del cuadrado de la izquierda, indicando cómo se logra que las vías se comuniquen entre sí de la forma indicada por el dibujo. Los accionamientos se clasifican en varios tipos: Manuales Mecánicos Neumáticos Eléctricos 5/8

6 Accionamientos manuales Son los únicos manejados directamente por el usuario. Accionamientos mecánicos Son accionados por partes móviles del sistema. El accionamiento por muelle es el empleado en el caso de que una de las posiciones (la de reposo) sea la que adquiera la válvula automáticamente si no se actúa sobre ningún otro accionamiento. Accionamientos neumáticos La válvula cambia de posición por la presencia o ausencia de aire comprimido. Accionamientos eléctricos Se realizan mediante electroimanes (relés) Accionamientos con enclavamiento En las válvulas accionadas manualmente, se puede tener la opción de que el retorno no sea automático, sino que se produzca al actuar una segunda vez sobre el mando (al igual que lo que ocurre con un interruptor eléctrico). En ese caso, se dice que el mando es con enclavamiento. El símbolo es igual que el mando sin enclavar pero con una muesca, y sólo se dibuja a la izquierda de la válvula. Si la válvula tiene más de dos posiciones, el enclavamiento significa que la válvula irá adoptando cada una de las posiciones secuencialmente al actuar sobre el mando. 6/8

7 Ejercicio: Dibujar las siguientes válvulas. 3/2 NC, accionamiento por pulsador, retorno por muelle 3/2 NA, accionamiento por pedal enclavado 4/2, accionamiento y retorno por presión. 3/2 NC, accionamiento por final de carrera (rodillo), retorno por palanca Válvulas de control 5/3, accionamiento y retorno por presión, posición intermedia de bloqueo 2/2 NC, accionada por electroimán, retorno automático También llamadas de bloqueo, permiten una amplia variedad de control del paso del aire por el circuito. Las principales son: Válvulas antirretorno Las válvulas antirretorno permiten el paso libre del aire en un sentido (en el símbolo de la izquierda, hacia la derecha) pero lo bloquean totalmente en el otro (hacia la izquierda en la figura. Válvula estranguladora bidireccional Regulan el caudal de aire a presión que pasa por esa parte del circuito neumático. Se actúa sobre la anchura de la apertura del conducto, sin cambiar la presión. Válvula estranguladora unidireccional Hace lo mismo que la anterior, pero sólo en un sentido. En el otro, permiten el paso libre del aire. Es una combinación de estranguladora bidireccional y antirretorno. En la figura, se estrangula el aire que va de izquierda a derecha, ya que la antirretorno no permite el paso del aire en ese sentido. El único camino disponible es, por tanto, a través de la estranguladora. En sentido inverso (de derecha a izquierda) la antirretorno permite el paso libre del aire, por lo que no se produce la estrangulación. Estas válvulas se usan para amortiguar la velocidad de los actuadores. Válvula de escape rápido Válvula de simultaneidad (Y) Hacen exactamente lo contrario de las anteriores; esto es, acelerar la velocidad de los actuadores. Si el aire fluye desde la vía 1, pasa por la válvula y sale por la 2. Sin embargo, en sentido contrario el aire no fluye de la vía 2 a la 1, y desde allí al resto del circuito, sino que escapa directamente hacia la atmósfera. Las válvulas de simultaneidad actúan como una puerta AND en electrónica digital. Sólo proporcionan salida de aire si reciben aire a presión por sus dos vías de entrada. Se usan mucho en sistemas de seguridad, en los que se precise que el operario actúe simultáneamente sobre dos pulsadores, para mantener las manos alejadas de elementos móviles que pueden resultar peligrosos. 7/8

8 Válvula selectora (O) Temporizador Funcionan como una puerta OR. Proporcionan salida de aire si hay presión en cualquiera de sus dos entradas, o en ambas simultáneamente. Se usan si es necesario poder controlar algún componente desde varios lugares diferentes. Es un dispositivo que proporciona salida de aire después de que haya pasado cierto tiempo desde que se inicia la entrada del mismo. Combina una estranguladora unidireccional y un depósito. Hasta que el depósito no se haya llenado de aire, no habrá suficiente presión a la salida para accionar el elemento que esté a continuación. El tiempo que se tarda en llenar se controla estrangulando más o menos la entrada de aire. 8/8

NEUMÁTICA E HIDRÁULICA

NEUMÁTICA E HIDRÁULICA INTRODUCCIÓN NEUMÁTICA E HIDRÁULICA La fuerza que ejerce un fluido sobre las paredes del recipiente que lo contiene se define como F=P S, siendo P la presión y S la superficie sobre la que se ejerce la

Más detalles

Neumática y oleohidráulica

Neumática y oleohidráulica Neumática y oleohidráulica CIRCUITOS NEUMÁTICOS Los circuitos neumáticos utilizan el aire sometido a presión como medio de transmisión de una fuerza. El aire se toma directamente de la atmósfera y se deja

Más detalles

NEUMATICA E HIDRAULICA

NEUMATICA E HIDRAULICA 1. INTRODUCCIÓN NEUMATICA E HIDRAULICA A nuestro alrededor existen multitud de ejemplos en los que se emplean sistemas neumáticos o hidráulicos. Normalmente se usan en aquellas aplicaciones que requieren

Más detalles

SISTEMAS NEUMÁTICOS E HIDRÁULICOS

SISTEMAS NEUMÁTICOS E HIDRÁULICOS 1. INTRODUCCIÓN SISTEMAS NEUMÁTICOS E HIDRÁULICOS La neumática es la rama de la tecnología que se dedica a estudiar y a desarrollar aplicaciones prácticas con aire comprimido, realizadas mediante circuitos

Más detalles

1. GENERALIDADES DE LOS SISTEMAS NEUMÁTICOS E HIDRÁULICOS. Las diferencias entre ambas vienen dadas por la naturaleza de los fluidos utilizados:

1. GENERALIDADES DE LOS SISTEMAS NEUMÁTICOS E HIDRÁULICOS. Las diferencias entre ambas vienen dadas por la naturaleza de los fluidos utilizados: CONTENIDOS: -Técnicas de producción, conducción y depuración de fluidos. - Caudal. Pérdida de carga. - Elementos de accionamiento, regulación y control. Simbología. - Circuitos característicos de aplicación:

Más detalles

NEUMÁTICA. El fluido que utiliza la neumática es el aire comprimido, y es una de las formas de energía más antiguas utilizadas por el hombre.

NEUMÁTICA. El fluido que utiliza la neumática es el aire comprimido, y es una de las formas de energía más antiguas utilizadas por el hombre. NEUMÁTICA La neumática es la tecnología que emplea el aire comprimido como modo de transmisión de la energía necesaria para mover y hacer funcionar mecanismos. HISTORIA El fluido que utiliza la neumática

Más detalles

BLOQUE "D" Circuitos neumáticos y oleohidráulicos

BLOQUE D Circuitos neumáticos y oleohidráulicos Año 1997 1.- Considere los siguientes aparatos de medida utilizados en neumática: manómetro, termómetro, caudalímetro y contador totalizador. Se pide, para cada aparato: Explicar su funcionamiento y aplicación.

Más detalles

CIRCUITO 1: 1. OBJETIVO 2. FUNCIONAMIENTO 3. DIAGRAMA DE MOVIMIENTOS 4 RELACION DE COMPONENTES 5. ESQUEMA 6 CUESTIONARIO

CIRCUITO 1: 1. OBJETIVO 2. FUNCIONAMIENTO 3. DIAGRAMA DE MOVIMIENTOS 4 RELACION DE COMPONENTES 5. ESQUEMA 6 CUESTIONARIO CIRCUITO 1: Conocer la composición y conexionado del grupo de mantenimiento. Mando directo de un cilindro de simple efecto con retorno por muelle mediante una válvula 3/2, NC, de accionamiento manual y

Más detalles

NEUMÁTICA E HIDRÁULICA. Tema 6

NEUMÁTICA E HIDRÁULICA. Tema 6 NEUMÁTICA E HIDRÁULICA Tema 6 FLUIDOS COMPRESIBLES E INCOMPRESIBLES Un fluido es un estado de la materia sin forma definida y que se adapta al recipiente que lo contiene. Los dos estados fluidos más cotidianos

Más detalles

Practicas de simulación de Neumática Tecnología Industrial I

Practicas de simulación de Neumática Tecnología Industrial I PRACTICA 1. Simula y analiza el siguiente circuito neumático que permite, accionando el pulsador de una válvula distribuidora 3/2, desplazar el émbolo de una imprenta que presiona el papel contra los tipos

Más detalles

2. NEUMÁTICA E HIDRÁULICA

2. NEUMÁTICA E HIDRÁULICA 2. NEUMÁTICA E HIDRÁULICA 2.1. LEY DE LOS GASES IDEALES. LEY DE BOYLE 1. En un acumulador de 3 m³ existe aire a una presión relativa de 6 bar, siendo la temperatura de 295 K Que volumen de aire en condiciones

Más detalles

Ejercicios y problemas de neumática e hidráulica

Ejercicios y problemas de neumática e hidráulica Ejercicios y problemas de neumática e hidráulica 1. Un depósito contiene aire comprimido a 4 atm. Cuál es su presión en pascales? (Sol.: 400.000 pascales). 2. Si tenemos una jeringuilla que contiene 0,02

Más detalles

TEMA 13: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS

TEMA 13: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS TEMA 13: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS Ejercicio PAU Junio 2014/2015 DATOS: cilindro de Simple Efecto F útil = 2000 N F muelle = 300 N C= 70 mm p = 6 bar = 6. 10 5 N/m 2 a) El diámetro del cilindro.

Más detalles

Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz. TEMA 15 y 16: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS.

Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz. TEMA 15 y 16: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS. TEMA 15 y 16: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS Ejercicio PAU Septiembre 2013/2014 DATOS: cilindro de Doble Efecto D embolo = 80 mm D vástago = 35 mm C= 90 mm p = 6,5 bar = 6,5. 10 5 Pa 12 ciclos/min

Más detalles

BLOQUE "D" Circuitos neumáticos y oleohidráulicos

BLOQUE D Circuitos neumáticos y oleohidráulicos Año 1997 1.- Considere los siguientes aparatos de medida utilizados en neumática: manómetro, termómetro, caudalímetro y contador totalizador. Se pide, para cada aparato: Explicar su funcionamiento y aplicación.

Más detalles

TEMA 5: CIRCUITOS NEUMÁTICOS. 2.- Elementos básicos de un circuito neumático:

TEMA 5: CIRCUITOS NEUMÁTICOS. 2.- Elementos básicos de un circuito neumático: TEMA 5: CIRCUITOS NEUMÁTICOS Neumática es la tecnología que utiliza la energía del aire comprimido para realizar un trabajo. Se utiliza para automatizar procesos productivos. Hoy en día son muchos los

Más detalles

Bloque IV. Cilindros neumáticos y oleohidráulicos pág. 7

Bloque IV. Cilindros neumáticos y oleohidráulicos pág. 7 Bloque IV. Cilindros neumáticos y oleohidráulicos pág. 7 V V av V re D L 4 ( D d 4 ) L (D 4 d ) L Siendo V el volumen de aire consumido durante un ciclo en las condiciones de trabajo, V av el volumen de

Más detalles

TEMA: NEUMÁTICA E HIDRÁULICA

TEMA: NEUMÁTICA E HIDRÁULICA A1.- Introducción a la neumática TEMA: NEUMÁTICA E HIDRÁULICA Una instalación neumática es un conjunto de dispositivos que funcionan mediante aire comprimido. Los sistemas neumáticos se basan en la utilización

Más detalles

NEUMÁTICA. La Neumática estudia el comportamiento de los gases, en particular el aire comprimido y sus efectos mecánicos.

NEUMÁTICA. La Neumática estudia el comportamiento de los gases, en particular el aire comprimido y sus efectos mecánicos. NEUMÁTICA 1. Definición 2. Magnitudes y unidades 2.1. Presión 2.2. Caudal 2.3. Fuerza 2.4. Potencia 2.5. Energía 2.6. Rendimiento 2.7. Ley de Hooke 3. Circuito Neumático 3.1. Elementos generadores de energía:

Más detalles

Colegio Cristo Rey Escolapios

Colegio Cristo Rey Escolapios 1- Cuál es el fluido de trabajo en oleohidráulica? a) Agua. b) Aceite mineral. c) Aire comprimido. d) Cualquier fluido. 2- Cuál es el fluido de trabajo en neumática? a) Agua. b) Aire comprimido. c) Cualquier

Más detalles

BLOQUE 1: Neumática. BLOQUE 1: Neumática

BLOQUE 1: Neumática. BLOQUE 1: Neumática BLOQUE : Neumática Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros,

Más detalles

SIMBOLOGÍA NEUMÁTICA. Conversión de energía. Motor neumático unidireccional de caudal constante. Motor neumático bidireccional de caudal constante

SIMBOLOGÍA NEUMÁTICA. Conversión de energía. Motor neumático unidireccional de caudal constante. Motor neumático bidireccional de caudal constante APÉNDICE A-1 SIMBOLOGÍA NEUMÁTICA Conversión de energía Compresor Bomba de vacío Motor neumático unidireccional de caudal constante Motor neumático bidireccional de caudal constante Actuador de giro Cilindro

Más detalles

NEUMÁTICA 1. INTRODUCCIÓN.

NEUMÁTICA 1. INTRODUCCIÓN. NEUMÁTICA 1. INTRODUCCIÓN. La neumática es la parte de la Tecnología que emplea el aire comprimido para producir un trabajo útil. El aire comprimido es una forma de almacenar energía mecánica, que puede

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 6.5. Neumáca Industrial: Válvulas Distribuidoras Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix Orz Fernández Departamento de

Más detalles

NEUMÁTICA E HIDRÁULICA

NEUMÁTICA E HIDRÁULICA UNIDAD DIDÁCTICA NEUMÁTICA E HIDRÁULICA NIVEL: 4ºESO 1 Conceptos previos... 2 1.1 Neumática e hidráulica... 2 1.2 Presión... 2 1.3 Caudal... 2 1.4 Leyes y principios... 3 2 Generalidades de los circuitos

Más detalles

Bloque 3. Circuitos (hidráulicos y neumáticos) 25. Dado el circuito de la figura, responde a las cuestiones planteadas.

Bloque 3. Circuitos (hidráulicos y neumáticos) 25. Dado el circuito de la figura, responde a las cuestiones planteadas. Bloque 3. Circuitos (hidráulicos y neumáticos) 25. Dado el circuito de la figura, responde a las cuestiones planteadas. A. Describe su funcionamiento. (1p.) B. Nombra todos los componentes del circuito

Más detalles

Circuitos neumáticos e hidráulicos

Circuitos neumáticos e hidráulicos Circuitos neumáticos e hidráulicos I E S Venancio Blanco Dpto. Tecnología 4º de ESO Introducción En el tema anterior has podido estudiar como los circuitos eléctricos y electrónicos permiten dotar a una

Más detalles

- TECNOLOGÍA INDUSTRIAL -

- TECNOLOGÍA INDUSTRIAL - - TECNOLOGÍA INDUSTRIAL - BLOQUE 3: Circuitos ACTIVIDADES NEUMÁTICA 1. Calcula la presión en bar, atm y Pa de un circuito neumático que se encuentra a 7 Kp/cm 2. 2. Calcula el caudal de aire en l/min que

Más detalles

PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA. 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar;

PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA. 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar; PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar; 4.558.500 Pa) 2. Expresa en bares, en atmósferas y en milímetros de mercurio una presión

Más detalles

Ing. R. Retamar E. Marks

Ing. R. Retamar E. Marks !"# $%&#%'!"("# 11 Esquemas básicos 11.1 Mando de un cilindro de simple efecto Ejercicio: El vástago de un cilindro de simple efecto debe salir al accionar un pulsador y regresar inmediatamente al soltarlo.

Más detalles

EXÁMENES DE HIDRÁULICA

EXÁMENES DE HIDRÁULICA EXÁMENES DE HIDRÁULICA PROGRAMACIÓN DE ACTIVIDADES Y EXÁMENES Hidráulica. - Actividad ------------------------ Al inicio, los símbolos iguales que en neumática - Actividad ------------------------ A continuación

Más detalles

6.- a) Explique el funcionamiento del circuito neumático representado en el esquema. b) defina cada uno de los elementos que lo componen.

6.- a) Explique el funcionamiento del circuito neumático representado en el esquema. b) defina cada uno de los elementos que lo componen. 1.- a) Describa los componentes empleados en el circuito neumático representado en la siguiente figura. (0,5 puntos) b) Explique el funcionamiento del circuito neumático. (1,5 puntos) 2.-.- Se dispone

Más detalles

TEMA 5: CIRCUITOS NEUMÁTICOS E HIDRAÚLICOS

TEMA 5: CIRCUITOS NEUMÁTICOS E HIDRAÚLICOS TEMA 5: CIRCUITOS NEUMÁTICOS E HIDRAÚLICOS Neumática es la tecnología que utiliza la energía del aire comprimido para realizar un trabajo. Se utiliza para automatizar procesos productivos. Hoy en día son

Más detalles

Neumática Tecnología industrial I. 1er curso de Bachillerato. RIES Jovellanos.

Neumática Tecnología industrial I. 1er curso de Bachillerato. RIES Jovellanos. Neumática Tecnología industrial I 1er curso de Bachillerato. RIES Jovellanos. Tecnología Industrial I. Programación anual. Recursos energéticos Materiales Elementos de máquinas y sistemas Procedimientos

Más detalles

FABRICACIÓN N SISTIDA POR ORDENADOR

FABRICACIÓN N SISTIDA POR ORDENADOR FABRICACIÓN N SISTIDA POR ORDENADOR TEMA 12: VÁLVULAS DE LOS SISTEMAS NEUMÁTICOS Índice 1.- Introducción 2.- Válvulas distribuidoras 3.- Elementos procesadores 4.- Cálculo del caudal INTRODUCCIÓN Fiabilidad

Más detalles

VALVULAS DISTRIBUIDORAS T14.- VALVULAS DISTRIBUIDORAS

VALVULAS DISTRIBUIDORAS T14.- VALVULAS DISTRIBUIDORAS T4.- VALVULAS DISTRIBUIDORAS Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información

Más detalles

4º ESO. Neumática e hidráulica

4º ESO. Neumática e hidráulica 4º ESO Neumática e hidráulica Videos Neumatica. Neumática en la Industria Alimentaria https://www.youtube.com/watch?v=yish58sdwea Circuitos neumaticos diseño https://www.youtube.com/watch?v=0vk51tfmdhk

Más detalles

Presentación y objetivos

Presentación y objetivos Presentación y objetivos Dentro de la industria, son numerosas las técnicas empleadas para la implementación de un sistema (tanto a nivel de mando como de potencia), pero entre todas ellas, las técnicas

Más detalles

PRÁCTICAS NEUMÁTICA BÁSICA

PRÁCTICAS NEUMÁTICA BÁSICA PRÁCTICAS NEUMÁTICA BÁSICA GENERACIÓN DE AIRE COMPRIMIDO Filtro Bloque de Generación Motor Manómetro Entrada de aire Salida de aire Presóstato Tanque de Almacenamiento Conexión a red Descarga de Condensado

Más detalles

D cm 2 F SALIDA = p π = 6 Kp/cm 2 3,14 = 301, 44 Kp 4 4

D cm 2 F SALIDA = p π = 6 Kp/cm 2 3,14 = 301, 44 Kp 4 4 1.- En una cierta instalación neumática se dispone de un cilindro de doble efecto cuyos datos son los siguientes: - Diámetro interior = 80 mm. - Carrera = 1000 mm. - Diámetro del vástago = 30 mm. - Carreras

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 6.6. Neumá0ca Industrial: Regulación, Control y Bloqueo Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix Or0z Fernández Departamento

Más detalles

Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO

Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO Sistemas de Control Hidráulico y Neumático. Guía 2 1 Tema: UTILIZACIÓN DE SOFTWARE PARA DISEÑO Y SIMULACIÓN DE CIRCUITOS NEUMÁTICOS.

Más detalles

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS Bloque IV. Cilindros neumáticos y oleohidráulicos pág. 1 BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS INTRODUCCIÓN La Neumática es la parte de la Tecnología que estudia los fenómenos y las aplicaciones

Más detalles

Prof. Ander Miranda. Prof. Ander Miranda

Prof. Ander Miranda. Prof. Ander Miranda 1 2 3 4 5 6 CENTRAL OLEOHIDRAULICA 7 8 CENTRAL OLEOHIDRAULICA 9 10 11 12 13 14 15 16 17 18 19 20 DESPIECE DE UNA BOMBA DE ENGRANAJES 21 22 Preguntas de Repaso 1. Al aumentar la solicitud de presión en

Más detalles

PRACTICA Nº 1: MANDO DIRECTO DE UN CILINDRO DE SIMPLE EFECTO

PRACTICA Nº 1: MANDO DIRECTO DE UN CILINDRO DE SIMPLE EFECTO NOMBRES: PÁG: 1 PRACTICA Nº 1: MANDO DIRECTO DE UN CILINDRO DE SIMPLE EFECTO Realiza la simulación del montaje con ayuda del programa FluidSIM, y comprueba su correcto funcionamiento, Se representa en

Más detalles

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS Bloque IV. Circuitos neumáticos y oleohidráulicos pág. 1 BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS INTRODUCCIÓN La Neumática es la parte de la Tecnología que estudia los fenómenos y las aplicaciones

Más detalles

PRÁCTICAS DE LABORATORIO

PRÁCTICAS DE LABORATORIO PRÁCTICAS DE LABORATORIO INSTALACIONES MECÁNICAS 1. Introducción En estas prácticas se pretende que el alumno se familiarice con los elementos de la neumática y la hidráulica y su funcionamiento, y que

Más detalles

TEMA 2. NEUMÁTICA E HIDRÁULICA

TEMA 2. NEUMÁTICA E HIDRÁULICA TEMA 2. NEUMÁTICA E HIDRÁULICA 1. INTRODUCCIÓN La neumática es la parte de la Tecnología que emplea el aire comprimido para producir un trabajo útil. El aire comprimido es una forma de almacenar energía

Más detalles

Ejercicios resueltos de Neumática

Ejercicios resueltos de Neumática Ejercicios resueltos de Neumática a) 1.0 1.1 1. b) 1.0: cilindro de simple efecto, luego realiza trabajo sólo en la carrera de avance. 1.1: válvula reguladora de caudal unidireccional: regula la velocidad

Más detalles

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS Bloque IV. Cilindros neumáticos y oleohidráulicos pág. 1 BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS INTRODUCCIÓN La Neumática es la parte de la Tecnología que estudia los fenómenos y las aplicaciones

Más detalles

BLOQUE 1: Neumática. BLOQUE 1: Neumática

BLOQUE 1: Neumática. BLOQUE 1: Neumática Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros, ) y elaborar sus

Más detalles

Tema 1. Circuitos hidráulicos y neumáticos

Tema 1. Circuitos hidráulicos y neumáticos Tema 1. Circuitos hidráulicos y neumáticos Víctor M. Acosta Guerrero Profesor de Tecnología Tema1. Circuitos hidráulicos y neumáticos. 1. INTRODUCCIÓN. A lo largo de la Historia, el ser humano ha empleado

Más detalles

Neumática. Circuitos Neumáticos Básicos para control y automatización. Símbolos de cilindros de simple efecto. Símbolos Cilindros de doble efecto

Neumática. Circuitos Neumáticos Básicos para control y automatización. Símbolos de cilindros de simple efecto. Símbolos Cilindros de doble efecto Neumática Circuitos Neumáticos Básicos para control y automatización Símbolos Control de Cilindro de Simple Efecto con válvulas de 2/2 Control de un CSE con una válvula de 3/2 Control de un Cilindro de

Más detalles

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS Bloque IV. Cilindros neumáticos y oleohidráulicos pág. 1 BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS INTRODUCCIÓN La Neumática es la parte de la Tecnología que estudia los fenómenos y las aplicaciones

Más detalles

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERIA MECANICA ELECTRICA XALAPA, VER.

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERIA MECANICA ELECTRICA XALAPA, VER. UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERIA MECANICA ELECTRICA XALAPA, VER. LABORATORIO DE AUTOMATIZACION INDUSTRIAL NOMBRE: MATRICULA:. MATERIA: GRUPO:. BRIGADA No. SEMESTRE: FECHA:. PRACTICA Nº 1

Más detalles

CONCEPTOS DE HIDRAULICA Y NEUMÁTICA

CONCEPTOS DE HIDRAULICA Y NEUMÁTICA CONCEPTOS DE HIDRAULICA Y NEUMÁTICA Magnitudes fundamentales del sistema Internacional. Las magnitudes fundamentales se agrupan en sistemas de unidades. - Longitud, cuya unidad basica es el metro (m) -

Más detalles

ACTIVIDADES NEUMÁTICA

ACTIVIDADES NEUMÁTICA ACTIVIDADES NEUMÁTICA 1.- Indica el nombre de la siguiente válvula: Dibuja los cambios y explica que ocurre al accionarla Norma ISO A Norma CETOP 2 P 1 2.- Dibuja el símbolo de una válvula 3/2 accionada

Más detalles

Tecnología Industrial II Tema 8: AUTOMATIZACIÓN NEUMÁTICA

Tecnología Industrial II Tema 8: AUTOMATIZACIÓN NEUMÁTICA Tema 8. AUTOMATIZACIÓN NEUMÁTICA 1. INTRODUCCIÓN...2 2. PRODUCCIÓN Y TRATAMIENTO DE AIRE COMPRIMIDO...2 A) Producción de aire comprimido: compresores...2 B) Tratamiento de aire comprimido...3 2. RED DE

Más detalles

Unidad Didáctica Neumática e hidráulica 4º ESO

Unidad Didáctica Neumática e hidráulica 4º ESO Unidad Didáctica Neumática e hidráulica 4º ESO Propiedades de los fluidos, principios básicos Presión: se define como la relación entre la fuerza ejercida sobre la superficie de un cuerpo. Presión = Fuerza

Más detalles

Automatización Industrial Telecontrol y automatismos. IES Consaburum- Consuegra

Automatización Industrial Telecontrol y automatismos. IES Consaburum- Consuegra Introducción Definiciones Actuador: es aquel elemento que puede provocar un efecto controlado sobre un proceso. Según la fuente de energía: Eléctricos: energía eléctrica Neumáticos: aire comprimido Hidráulicos:

Más detalles

Es abundante (disponible de manera ilimitada). Transportable (fácilmente transportable, además los conductos de retorno son innecesarios).

Es abundante (disponible de manera ilimitada). Transportable (fácilmente transportable, además los conductos de retorno son innecesarios). Es abundante (disponible de manera ilimitada). Transportable (fácilmente transportable, además los conductos de retorno son innecesarios). Se puede almacenar (permite el almacenamiento en depósitos). Resistente

Más detalles

MÓDULO: Sistemas Neumáticos e Hidráulicos UNIDAD 3: Cilindros y Válvulas Neumáticas CILINDROS NEUMÁTICOS

MÓDULO: Sistemas Neumáticos e Hidráulicos UNIDAD 3: Cilindros y Válvulas Neumáticas CILINDROS NEUMÁTICOS 1 MÓDULO: Sistemas Neumáticos e Hidráulicos UNIDAD 3: Cilindros y Válvulas Neumáticas CILINDROS NEUMÁTICOS Cilindros Neumáticos 2 Introducción El aire comprimido es de amplio uso en una instalación industrial.

Más detalles

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD 83.- Un cilindro neumático tiene las siguientes características: Diámetro del émbolo: 100 mm, diámetro del vástago: 20 mm, carrera: 700 mm, presión de trabajo:

Más detalles

Neumática. Capítulo 5. Válvulas distribuidoras. Fecha de impresión 25/04/ :38:00. Material compilado por: Ing. Ricardo Minniti Página 1 de 14

Neumática. Capítulo 5. Válvulas distribuidoras. Fecha de impresión 25/04/ :38:00. Material compilado por: Ing. Ricardo Minniti Página 1 de 14 Fecha de impresión 25/04/2008 17:38:00 Material compilado por: Ing. Ricardo Minniti Página 1 de 14 Objetivo del manual Con este material se persigue que el estudiante pueda interpretar los símbolos que

Más detalles

EJERCICIOS DE HIDRÁULICA CONVENCIONAL

EJERCICIOS DE HIDRÁULICA CONVENCIONAL Nº 1 GRUPO HIDRÁULICO. EJERCICIOS DE HIDRÁULICA CONVENCIONAL - Medir la presión P 1 en función del diámetro de paso de la válvula de cierre con escala y anotarla en la tabla 1. - Medir la presión P 1 en

Más detalles

Automatización Automatismos neumáticos II: Mando y regulación de actuadores. Escuela Politécnica Superior UNIVERSIDAD DE ALCALÁ

Automatización Automatismos neumáticos II: Mando y regulación de actuadores. Escuela Politécnica Superior UNIVERSIDAD DE ALCALÁ 1/1 Automatización (Cód. 600013) Automatismos neumáticos II: Mando y regulación de actuadores Escuela Politécnica Superior UNIVERSIDAD DE ALCALÁ Mando Regulación Temporización Esquemas Ejercicios 2/18

Más detalles

Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO

Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO Sistemas de Control Hidráulico y Neumático. Guía 2 1 Tema: UTILIZACIÓN DE SOFTWARE PARA DISEÑO Y SIMULACIÓN DE CIRCUITOS NEUMÁTICOS.

Más detalles

Circuitos de Presión - Circuitos Neumáticos Básicos

Circuitos de Presión - Circuitos Neumáticos Básicos Circuitos de Presión - Circuitos Neumáticos Básicos Ing. Aeron. Juan Sebastián Delnero mayo 2016 Esquema Nº 1 Mando directo de un cilindro de simple efecto con válvula monoestable de comando manual por

Más detalles

Hidráulica y Neumática

Hidráulica y Neumática Hidráulica y Neumática Mech-Tech College Egberto Hernandez E-mail: Prof.Ehernandez@hotmail.com egbertohernandez487@faculty.mechtech.edu Website: http://profehernandez.weebly.com Copyright2013@Prof.ehernandez

Más detalles

Libro: Tecnología 4ºESO Editorial Oxford Proyecto Ánfora

Libro: Tecnología 4ºESO Editorial Oxford Proyecto Ánfora Libro: Tecnología 4ºESO Editorial Oxford Proyecto Ánfora Unidad 6: Neumática Aunque en el libro se incluyan también los sistemas hidráulicos, sólo vamos a ver los neumáticos. Necesidades para la unidad

Más detalles

GUÍA 11: CIRCUITOS HIDRÁULICOS

GUÍA 11: CIRCUITOS HIDRÁULICOS GUÍ 11: CIRCUIOS HIDRÁULICOS INRODUCCIÓN En todo circuito hidráulico hay tres partes bien diferenciadas: El grupo generador de presión, el sistema de mando y el actuador. El grupo generador de presión

Más detalles

TEMA 10.- Circuitos neumáticos y oleohidráulicos.

TEMA 10.- Circuitos neumáticos y oleohidráulicos. TEMA 10.- Circuitos neumáticos y oleohidráulicos. 1.- Introducción La Neumática es la parte de la Tecnología que estudia los fenómenos y las aplicaciones del aire comprimido para transmitir energía de

Más detalles

EJERCICIOS RESUELTOS DE CIRCUITOS HIDRÁULICOS

EJERCICIOS RESUELTOS DE CIRCUITOS HIDRÁULICOS EJERCICIOS RESUELTOS DE CIRCUITOS HIDRÁULICOS EJERCICIO Nº1: Se mueve un cilindro de simple efecto con un fluido. El diámetro del pistón es de 75 mm y el diámetro del vástago de 20 mm, la presión de trabajo

Más detalles

NEUMÁTICA E HIDRÁULICA TECNOLOGÍA

NEUMÁTICA E HIDRÁULICA TECNOLOGÍA TEMA 3 NEUMÁTICA E HIDRÁULICA TECNOLOGÍA 4º ESO Samuel Escudero Melendo QUÉ VEREMOS? FLUIDOS PROPIEDADES PRESIÓN ENERGÍA NEUMÁTICA CONCEPTO ELEMENTOS DE UN CIRCUITO NEUMÁTICO: PRODUCCIÓN UNIDAD DE

Más detalles

EJERCICIOS TEMA 13: CIRCUITOS NEUMÁTICOS

EJERCICIOS TEMA 13: CIRCUITOS NEUMÁTICOS TNOLOGÍ INUSTRIL 1. epartamento de Tecnología. IS Nuestra Señora de la lmudena Mª Jesús Saiz JRIIOS TM 13: IRUITOS NUMÁTIOS 1. alcula la fuerza que ejercerá un pistón de 5 cm de diámetro, si le llega aire

Más detalles

Neumática e Hidráulica 4º ESO

Neumática e Hidráulica 4º ESO NEUMÁTICA E HIDRÁULICA 1. Introducción. Hasta ahora hemos estudiado cómo determinados objetos tecnológicos se ponen en funcionamiento con energía muscular una bicicleta-, con energía eléctrica -el motor

Más detalles

TECNOLOGÍA 4º ESO. NEUMÁTICA E HIDRÁULICA. Los fluidos a presión.

TECNOLOGÍA 4º ESO. NEUMÁTICA E HIDRÁULICA. Los fluidos a presión. TECNOLOGÍA 4º ESO. NEUMÁTICA E HIDRÁULICA. La neumática es la tecnología que emplea el aire comprimido como fuente de energía y la hidráulica la que emplea un líquido, generalmente agua o aceite (hoy en

Más detalles

EXÁMEN FINAL DE NEUMÁTICA E HIDRÁULICA INDUSTRIAL. Parte de Hidráulica

EXÁMEN FINAL DE NEUMÁTICA E HIDRÁULICA INDUSTRIAL. Parte de Hidráulica EXÁMEN FINAL DE NEUMÁTICA E HIDRÁULICA INDUSTRIAL Parte de Hidráulica 28 de Mayo de 2009 Apellidos: Nombre: DNI: TEORÍA 1. Cuestionario tipo test (2 puntos) Las respuestas deberán marcarse con una X en

Más detalles

TEMA 13: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS

TEMA 13: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS TEMA 13: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS Neumática es la tecnología que utiliza la energía del aire comprimido para realizar un trabajo. Se utiliza para automatizar procesos productivos. Hoy en

Más detalles

Explicamos unos cuantos tipos de válvulas distribuidoras, donde vemos diferencias tanto en el número de vías como en el accionamiento, etc.

Explicamos unos cuantos tipos de válvulas distribuidoras, donde vemos diferencias tanto en el número de vías como en el accionamiento, etc. Válvulas distribuidoras Explicamos unos cuantos tipos de válvulas distribuidoras, donde vemos diferencias tanto en el número de vías como en el accionamiento, etc. Válvula distribuidora 2/2, monoestable,

Más detalles

INTRODUCCIÓN AL CONTROL AUTOMÁTICO DE PROCESOS. FORMAS DE REALIZAR CONTROL EN UN PROCESO.

INTRODUCCIÓN AL CONTROL AUTOMÁTICO DE PROCESOS. FORMAS DE REALIZAR CONTROL EN UN PROCESO. INTRODUCCIÓN AL CONTROL AUTOMÁTICO DE PROCESOS. FORMAS DE REALIZAR CONTROL EN UN PROCESO. Qué se necesita para diseñar un sistema de control?? Saber qué es, qué hace, cuáles son sus variables principales,

Más detalles

Dispositivos de control

Dispositivos de control Dispositivos de control Los mandos neumáticos están constituidos por: elementos de señalización, elementos de mando, y una porte de trabajo. Los elementos de señalización y mando modulan las fases de trabajo

Más detalles

5.SISTEMAS NEUMÁTICOS Y OLEOHIDRÁULICOS

5.SISTEMAS NEUMÁTICOS Y OLEOHIDRÁULICOS 5.SISTEMAS NEUMÁTICOS Y OLEOHIDRÁULICOS. Neumática.. Hidráulica 3.Circuitos neumáticos. 4. Simulación de circuitos neumáticos con Fluidsim 5. Problemas. NEUMÁTICA.. Definición La neumática es la técnica

Más detalles

CIRCUITOS NEUMÁTICOS BÁSICOS

CIRCUITOS NEUMÁTICOS BÁSICOS CIRCUITOS NEUMÁTICOS BÁSICOS ESO4 página 1 de 20 INDICE DEL TEMA 1. INTRODUCCIÓN... 3 2. UN POCO DE HISTORIA... 4 3. CONCEPTOS BÁSICOS... 4 4. COMPONENTES DE UN CIRCUITO NEUMÁTICO... 5 5. COMPRESOR...

Más detalles

I.P.N. CECyT Gonzalo Vázquez Vela BANCO DE 100 REACTIVOS DE LA UNIDAD DE APRENDIZAJE DE SISTEMAS DE CONTROL ELECTRONEUMÁTICO PARA ALUMNOS

I.P.N. CECyT Gonzalo Vázquez Vela BANCO DE 100 REACTIVOS DE LA UNIDAD DE APRENDIZAJE DE SISTEMAS DE CONTROL ELECTRONEUMÁTICO PARA ALUMNOS I.P.N. CECyT Gonzalo Vázquez Vela BANCO DE 100 REACTIVOS DE LA UNIDAD DE APRENDIZAJE DE SISTEMAS DE CONTROL ELECTRONEUMÁTICO PARA ALUMNOS DE 5º SEMESTRE DE LA ESPECIALIDAD DE SISTEMAS DE CONTROL ELÉCTRICO

Más detalles

Compresor. PROFESOR: JUAN PLAZA L. FUNDAMENTOS DE NEUMATICA.

Compresor. PROFESOR: JUAN PLAZA L. FUNDAMENTOS DE NEUMATICA. Compresor. PROFESOR: JUAN PLAZA L. 1 Compresor. Compresor: Aparato que sirve para comprimir un fluido, generalmente aire, a una presión dada. Existen dos categorías. Las máquinas volumétricas (aumento

Más detalles

EXÁMEN FINAL DE NEUMÁTICA E HIDRÁULICA INDUSTRIAL. Parte de Neumática

EXÁMEN FINAL DE NEUMÁTICA E HIDRÁULICA INDUSTRIAL. Parte de Neumática EXÁMEN FINAL DE NEUMÁTICA E HIDRÁULICA INDUSTRIAL Parte de Neumática 28 de Mayo de 2009 Apellidos: Nombre: DNI: TEORÍA 1. Cuestionario tipo test (2 puntos) Las respuestas deberán marcarse con una X en

Más detalles

TEMA 15 y 16: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS

TEMA 15 y 16: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS TEMA 15 y 16: CIRCUITOS NEUMÁTICOS Y OLEOHIDRAÚLICOS Neumática es la tecnología que utiliza la energía del aire comprimido para realizar un trabajo. Se utiliza para automatizar procesos productivos. Hoy

Más detalles

CIDEAD. TECNOLOGÍA INDUSTRIAL. TEMA 8.- los CIRCUITOS NEUMÁTICOS E HIDRAULICOS.

CIDEAD. TECNOLOGÍA INDUSTRIAL. TEMA 8.- los CIRCUITOS NEUMÁTICOS E HIDRAULICOS. Desarrollo del Tema: 1. Propiedades de los fluidos : líquidos y gases. 2. Estructura general de un circuito hidráulico y neumático. 3. Elementos activos del circuito: compresores y bombas. 4. Acumuladores

Más detalles

AUTOMATIZACION. Identificar los elementos utilizados en sistemas neumáticos por su respectivo símbolo y característica de conexión

AUTOMATIZACION. Identificar los elementos utilizados en sistemas neumáticos por su respectivo símbolo y característica de conexión AUTOMATIZACION GUIA DE TRABAJO 6 DOCENTE: VICTOR HUGO BERNAL UNIDAD No. 1 OBJETIVO GENERAL Identificar los elementos utilizados en sistemas neumáticos por su respectivo símbolo y característica de conexión

Más detalles

UNIDAD 3 SISTEMAS HIDRÁULICOS

UNIDAD 3 SISTEMAS HIDRÁULICOS UNIDAD 3 SISTEMAS HIDRÁULICOS Objetivo : Identificar en un plano hidráulico los componentes y accesorios en un sistema y reconocer como interactúan para realizar un trabajo mecánico. 2 SISTEMAS HIDRÁULICOS

Más detalles

I.E.S LOS ALBARES FAMILIA PROFESIONAL: INSTALACION Y MANTENIMIENTO 1º CFGM MANTENIMIENTO ELECTROMECANICO MODULO: AUTOMATISMOS NEUMATICOS E HIDRAULICOS

I.E.S LOS ALBARES FAMILIA PROFESIONAL: INSTALACION Y MANTENIMIENTO 1º CFGM MANTENIMIENTO ELECTROMECANICO MODULO: AUTOMATISMOS NEUMATICOS E HIDRAULICOS I.E.S LOS ALBARES FAMILIA PROFESIONAL: INSTALACION Y MANTENIMIENTO 1º CFGM MANTENIMIENTO ELECTROMECANICO MODULO: AUTOMATISMOS NEUMATICOS E HIDRAULICOS FECHA:--/09/2017 TRABAJO PARA EXAMEN EXTRAORDINARIO

Más detalles

Tecnología Industrial. Junio 2013. Opción A. Cuestión 1. a) La temperatura de fusión de A es 321 ºC y la de B 217 ºC. b) El comportamiento eutéctico se encuentra para la proporción 40% de A y 60 % de B.

Más detalles

NEUMÁTICA EN ENTORNOS PRODUCTIVOS

NEUMÁTICA EN ENTORNOS PRODUCTIVOS ASOCIACIÓN DE INGENIERÍA Y DISEÑO ASISTIDO NEUMÁTICA EN ENTORNOS PRODUCTIVOS María del Mar Espinosa Manuel Domínguez AIDA I 4 PUBLICACIONES Título original: Neumática en entornos productivos Autores: María

Más detalles

RECUPERACIÓN DEL SEGUNDO TRIMESTRE TECNOLOGÍA INDUSTRIAL 2º DE BACHIILERATO

RECUPERACIÓN DEL SEGUNDO TRIMESTRE TECNOLOGÍA INDUSTRIAL 2º DE BACHIILERATO 1 RECUPERACIÓN DEL SEGUNDO TRIMESTRE TECNOLOGÍA INDUSTRIAL 2º DE BACHIILERATO 1. Realizar 20 ejercicios de la siguiente relación. 2. Entregarlos antes del 30 de Abril 3. Realizar el examen de recuperación

Más detalles

Prácticas Presenciales. Neumática

Prácticas Presenciales. Neumática Prácticas Presenciales Área: (M076) LUGAR DE CELEBRACIÓN Instalaciones de Fundación San Valero, en c/ Violeta Parra 9 50015 Zaragoza Planta E, de 10:00 a 14:00 h. Las líneas de autobús que tienen parada

Más detalles

UNIDAD 16. SISTEMAS NEUMÁTICOS I

UNIDAD 16. SISTEMAS NEUMÁTICOS I UNIDAD 16. SISTEMAS NEUMÁTICOS I 1. GENERALIDADES... 310 2. PROPIEDADES DE LOS FLUIDOS GASEOSOS... 312 3. LEYES DE LOS GASES IDEALES... 313 4. GENERADORES DE AIRE COMPRIMIDO... 313 5. ELEMENTOS DE TRATAMIENTO

Más detalles

Conalep Tehuacán 150 P.T.B. en EMEC

Conalep Tehuacán 150 P.T.B. en EMEC Conalep Tehuacán 150 P.T.B. en EMEC Desarrollo de Dibujo Asistido por Computadora Manual de apoyo sobre Introducción a la Neumática Ing. Jonathan Quiroga Tinoco 23 de octubre de 2015 DEFINICION DE LA NEUMATICA

Más detalles