PROFESOR: Práctica 9. Convertidor Analógico-Digital
|
|
|
- Julián Velázquez Márquez
- hace 9 años
- Vistas:
Transcripción
1 INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Micro Electrónica Programable NOMBRE DEL ALUMNO: Apellido Paterno ASIGNATURA: Micro Electrónica Programable FECHA EVALUACION HOJA DE Apellido Paterno Nombre DIA MES AÑO N DE BOLETA: GRUPO: PROFESOR: Práctica 9 Convertidor Analógico-Digital Competencias de La Unidad: Emplea un microcontrolador para procesamiento de señales analógicas y digitales Resultado de Aprendizaje Propuesto (RAP): Usa el convertidor analógico digital que contiene el microcontrolador para interpretar y emplear señales analógicas Objetivos de la Práctica: 1. Adquirir señales analógicas mediante el convertidor analógico-digital integrado en el microcontrolador 2. Realizar un monitoreo de una variable física, con el fin de efectuar una acción de control. 3. Implementar programas en un circuito basado en microcontrolador, para comprobar su funcionamiento. Equipo Necesario Computadora (con el Software MPLAB IDE, IC-PROG o similar, compilador C, Simulador de circuitos electrónicos Proteus ) Programador tipo JDM o similar. Material Necesario Instrucciones del PIC 16F887 gama media o alta. u otro de Hoja de especificaciones del PIC 16F887 u otro de gama media o alta Manual de Referencia de CCS 80
2 Introducción Teórica Convertidor analógico-digital El interés en digitalizar una señal puede surgir por varios motivos: uno de ellos es almacenarla en un soporte digital o transmitirla digitalmente para poder reconstruirla, poder tratar con programas los valores analógicos que dé un sensor, etc. El microcontrolador PIC16F88X puede desempeñar muchas funciones y una de más relevantes es la convertidor analógico-digital. Antes iniciar comentando es necesario comentar los conceptos. Para lo cual, tiene los siguientes registros asociados al módulo Estos registros son: ADRESH : Parte alta del resultado de la conversión ADRESL: Parte baja del resultado de la conversión ADCON0: Registro de Control 0 ; control del funcionamiento del conversor ADCON1, Registro de Control 1; configuración de los pines del puerto Para utilizar el convertidor analógico digital es necesario realizar los siguientes pasos: Inicializa los registros ADCON0 y ADCON1 Seleccionar el canal por donde se realizará la conversión (hay 8 canales posibles). Poner el bit GO/DONE en 1 para que comience a convertir. (La función de CCS lo realiza) Leer el valor de conversión almacenado en los registros ADRESL y ADRESH. ACTIVIDADES TEÓRICAS PREVIAS Investigar los siguientes: Investigar que significa el concepto de cuantificación y muestro Menciona que características tiene un convertido analógico-digital de aproximaciones sucesivas? Investiga la configuración de cada uno de los registros asociados al convertidor analógicodigital. Cuales es el tiempo mínimo para realizar una conversión adecuada en el PIC? Cuál es criterio de Nyquist? Investiga las características de los registros asociados al modulo de conversión analógicadigital Que significado tienen las terminales +Vref y Vref en el microcontotrador? Cómo se configuración los canales analógicos del microcontrolador? Cuáles son las funciones asociados al convertidor en el compilador CCS? 81
3 ACTIVIDADES PREVIAS Crear un proyecto de nombre pra9 en la carpeta c:\mepic\practica9 en MPLAB o PIC C Compiler. Los programas de cada ejercicio deben ser guardados con el nombre practica9x.c con X= 1, 2, 3,A. En el caso de utilizar MPLAB, realizar los siguientes pasos: a. Utilizar Project wizard y seleccionar el compilador de c b. Agregar al proyecto los archivos adecuados con extensión c y h. c. Habilitar Simulador MPLAB SIM y modificar la frecuencia del simulador a 4 Mhz. d. Utilizaremos la herramienta de stopwatch, para obtener la elija Debugger >> Stopwatch. e. Obtener la herramienta de watch, de la siguiente manera View>> watch. f. Y seleccione los registros PORTA, PORTB, PORTC, PORTD, PORTE, TRISA, TRISB, TRISC, TRISD, TRISE y W Si usa PIC C compiler crear el proyecto únicamente. ACTIVIDADES PRÁCTICAS Parte 1 1. Realizar los siguientes programas que ejemplifican el funcionamiento del convertidor analógico digital, simulándolos en Proteus mediante el circuito propuesto. Ejemplo 1 El siguiente programa ejemplifica el uso del convertidor (figura 9. 1) #include <16F887.h> #device adc=10 //define el numero de bits a utilizar en el módulo adc #fuses XT,NOWDT,NOPUT,NOMCLR,NOPROTECT,NOCPD,NOBROWNOUT,NOIESO,NOFCMEN,NOLVP #use delay(clock= ) #include <LCD.C> void main() { int16 q; float p; setup_adc_ports(san0); //configura Canal 0 como analógico // En el caso de requerir todos los //canales colocar ALL_ANALOG setup_adc(adc_clock_div_32); //Fuente de reloj lcd_init(); while (true) { set_adc_channel(0); //Habilitación canal0 delay_us(20); // tiempo de retardo para iniciar lectura q = read_adc(); //Lectura canal0 p = 5.0 * q / ; //Conversión a voltaje printf(lcd_putc, "\fadc = %4ld", q); printf(lcd_putc, "\nvoltaje = %01.2fV", p); delay_ms(100); 82
4 Figura9.1 En el programa anterior modifique la directiva #device adc=10 sucede: a #device adc=8 y explique que Ejemplo 2 Mediante el Timer0 adquiere dos señales (sensor de temperatura LM35) cada determinado tiempo (figura9.2) y la lectura de temperatura de cada sensor se visualiza en el LCD. #include <16F887.h> #device adc=10 #fuses XT,NOWDT,NOPUT,NOMCLR,NOPROTECT,NOCPD,NOBROWNOUT,NOIESO,NOFCMEN,NOLVP #use delay(clock= ) #include <LCD.C> #byte INTCON= 0x0B int16 q,r; float p,temp,d,res; int aux; #INT_TIMER0 void TIMER0_isr(void) { delay_us(10); aux=1; set_timer0 (170); void main() { setup_timer_0(rtcc_internal RTCC_DIV_256); //Configuración timer0 set_timer0 (170); //Carga del timer0 enable_interrupts(int_timer0); //Habilita interrupción timer0 enable_interrupts(global); setup_adc_ports(all_analog); //configura Canal 0 como analógico // En el caso de requerir todos los canales colocar ALL_ANALOG setup_adc(adc_clock_div_32); //Fuente de reloj RC lcd_init(); while (true) { aux=0; //Lectura canal0 83
5 set_adc_channel(0); //Habilitación canal0 delay_us(30); // tiempo de retardo para iniciar lectura q = read_adc(); set_adc_channel(1); //Habilitación canal0 delay_us(30); // tiempo de retardo para iniciar lectura r = read_adc(); res=5.0/1023.0; //resolucion adc p = q* res; //Conversión a voltaje temp = * q / 308; d = * r / 308; printf(lcd_putc, "\ftemp = %01.2f gd", temp); printf(lcd_putc, "\ntemp2 = %01.2f gd", d); while(bit_test(aux,0)!=1) {delay_us(1); Figura 9.2 Explique cuál es la función tiene la instrucción ejemplo 2. while(bit_test(aux,0)!=1) en el programa del Parte 2 Realizar el siguiente programa con su respectiva simulación, obtenga la lectura de dos sensores conectados al convertidor analógico digital en AN0 y AN1 como en la figura 9.2 cada 40ms y cuando el sensor conectado a AN0 sea de mayor 30 grado y el conectado AN1 sea menor a 18 y se active un motor de CD que simula un ventilador, el valor de lectura de temperatura de cada sensor se tiene que visualizar en el LCD. 84
6 2. Conclusiones A. Realizar conclusiones de manera individual. 3. Cuestionario a) Cómo se determina la resolución en un convertidor analógico digital? b) Cuántas canales analógicas puede seleccionar en el PIC16f887? c) Qué registros están asociado al convertidor analógico digital? d) Investigue cómo funciona la interrupción del convertidor analógico digital? Comentarios Finales El alumno entrega un reporte de la práctica, como el profesor lo indique. El reporte debe contener el diagrama de flujo o algoritmo (Seudo código) de cada uno de los programas. Además, en el reporte deben anexarse las conclusiones y cuestionario contestado. 85
PROFESOR: Práctica 10. Modulación por ancho de pulso (PWM) Emplea un microcontrolador para procesamiento de señales analógicas y digitales
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Micro Electrónica Programable NOMBRE DEL ALUMNO: Apellido
PROFESOR: Práctica 8. Temporizador 0 (Timer 0)
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Micro Electrónica Programable NOMBRE DEL ALUMNO: Apellido
PROFESOR: Práctica 5. Manejo de Motores
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Micro Electrónica Programable NOMBRE DEL ALUMNO: Apellido
Práctica 3 Gestión de puertos de entrada
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Micro Electrónica Programable NOMBRE DEL ALUMNO: Apellido
PROFESOR: Práctica 2. Gestión de puertos de salida
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Micro Electrónica Programable NOMBRE DEL ALUMNO: Apellido
PROFESOR: Práctica 10. Manejo de Tabla de datos con Microcontrolador PIC
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Arquitectura de Microprocesadores y Microcontroladores
PROFESOR: Práctica 6. LDC y Teclado Matricial
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Micro Electrónica Programable NOMBRE DEL ALUMNO: Apellido
EL módulo conversor A/D. (c) Domingo Llorente
EL módulo conversor A/D (c) Domingo Llorente 2010 1 Características del conversor A/D Ocho entradas de señal analógica. (5 para el 16F876x) Resolución de la conversión de 10 bits. (0-1024) Distintas fuentes
PROFESOR: Práctica 9. Control de Motores de CD con Microcontrolador PIC
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Arquitectura de Microprocesadores y Microcontroladores
TUTORIAL II parte A. Observemos el diagrama de pines del microcontrolador 16F877A:
1 TUTORIAL II parte A OBJETIVOS Conocer el manejo de puertos del microcontrolador 16F877A, registros TRIS y PORT. Familiarizarse con las principales instrucciones del lenguaje y la estructura de un programa
PROFESOR: Práctica 7. Puertos de salida del Microcontrolador
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Arquitectura de Microprocesadores y Microcontroladores
CONVERTIDOR ANÁLOGICO-DIGITAL (ADC)
Aplicar los conocimientos básicos de electrónica de manera teórica (lenguaje ANSI-C) y práctica (montaje de circuitos). Conocer las funciones que gobiernan las entradas y salidas del microcontrolador PIC18F47J53.
Conversores Análogo-Digital
Conversores Análogo-Digital mc PIC Preparado por : jhuircan Depto. Ingeniería Eléctrica Universidad de La Frontera Proceso de Conversión Código Correspondiente a la muestra j S(t) S(k) 0010..0011 ADC t
UNIVERSIDAD DE OVIEDO
UNIVERSI E OVIEO 1 Características generales en el PIC16F877 Ocho canales de conversión. Cinco pines E/S de PORT y los tres de PORTE. Convierte la señal analógica en un número digital de 10 bits. Tensión
Se recomienda consultar el siguiente enlace y el datasheet del PIC18F2550.
Se recomienda consultar el siguiente enlace y el datasheet del PIC18F2550. http://picfernalia.blogspot.com.es/2012/07/conversor-adc.html ADCON0: - ADON: Habilita el módulo convertidor A/D. - GO/DONE: Con
UNIVERSIDAD DE OVIEDO
1 Compiladores de C: Ficheros de Código Fuente.C Escritos para Lenguaje C Ficheros de Directivas y Encabezamiento.H COMPILADOR de C Fichero para depuración del Programa.COD Fichero con Errores de Compilación.ERR
INTRODUCCION A LA CONFIGURACION DEL CONVERSOR ANALOGICO DEL PIC16F876A
Rev. 24/09/2018 : Se realizó algunas correcciones. INTRODUCCION A LA CONFIGURACION DEL CONVERSOR ANALOGICO DEL PIC16F876A La teoría que se presenta es válida para los micro controladores de la empresa
PROFESOR: Práctica 8. Manejo de Puertos de Entrada y salida del Microcontrolador PIC
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Arquitectura de Microprocesadores y Microcontroladores
GUIA DE EJERCICIOS Nº 2 INSTRUMENTACIÓN AVANZADA
GUIA DE EJERCICIOS Nº 2 INSTRUMENTACIÓN AVANZADA Comunicando LabVIEW a un PIC18F2550 1 2.-COMUNICANDO LABVIEW A UN PIC18F2550 Ejercicio 2.1 Tomando el ejercicio 1.4 realizar los ajustes necesarios para
Proyecto final "Sistema de instrumentación virtual"
"Sistema de instrumentación virtual" M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com @efranco_escom [email protected] 1 Contenido Introducción Objetivos Actividades Observaciones Reporte
CURSO BÁSICO MICROCONTROLADORES PIC
CURSO BÁSICO MICROCONTROLADORES PIC CONFIGURACIÓN BÁSICA FUSIBLES Los fusibles son palabras de configuración que definen las condiciones de funcionamiento del microcontrolador. Algunos fusibles importantes
partir de los 5 Volts que entrega el puerto USB La alimentación puede ser
Introducción: La tarjeta de desarrollo de Intesc μvva PRO (Miuva PRO), ha sido diseñada para satisfacer las necesidades tanto básicas como avanzadas de estudiantes y/o profesionistas que trabajan con microcontroladores
MICROPROCESADORES II LENGUAJE C EN LOS MICROCONTROLADORES PIC
MICROPROCESADORES II LENGUAJE C EN LOS MICROCONTROLADORES PIC Tipos de datos en CCS TIPO TAMAÑO RANGO DESCRIPCION int1 short 1 bit 0 a 1 Binario int int8 8 bits 0 a 255 Entero int16 long 16 bits 0 a 65535
CAPÍTULO 3. Las principales funciones del microcontrolador son: adquirir por medio del A/D y también, mostrar mensajes de pesos y voltaje en el LCD.
CAPÍTULO 3 3. DISEÑO DEL SOFTWARE. La programación del PIC se realizó en lenguaje C, usando el compilador mikroc PRO for PIC. Este compilador se utilizó, ya que tiene una versión demo muy buena, además
Universidad Nacional de Ingeniería Arquitectura de Maquinas I
Universidad Nacional de Ingeniería Arquitectura de Maquinas I Unidad III: Introduccion a los Microcontroladores PIC MICROCHIP CCS un lenguaje de Alto nivel para PIC. Compilador C de CCS Este compilador
La siguiente función configura el puerto como entrada y realiza su lectura: input_x( )
Laboratorio 2: Puertos de Entrada y Salida. 2.1 Objetivo. Familiarizarse con los Puertos de Entrada y Salida mediante la implementación práctica del ejemplo LED y Botones y el ejemplo Pantalla LCD. 2.2
COMUNICACIÓN I2C PROTOTIPO BRAZO ROBÓTICO BM001
COMUNICACIÓN I2C PROTOTIPO BRAZO ROBÓTICO BM001 Autor: Oscar Eduardo Herrera Zuleta Estudiante de Ingeniería Electrónica. Corporación Universitaria Autónoma del Cauca. Revisado y Corregido Por: Ing. Francisco
MICROCONTROLADOR PIC DE MICROCHIP
MICROCONTROLADOR PIC DE MICROCHIP PIC16F877-28-PIN 8-BIT CMOS FLASH MICROCONTROLLER PIC16F877: ESTRUCTURA INTERNA Bus de Datos Bus de Datos (programa) Registro de trabajo (acumulador) Conversor A/D Contador/Temporizador
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Microcontroladores para instrumentación y control. 2.
INTELIGENCIA ARTIFICIAL ELECTRÓNICA (16 Hrs)
Página 1 de 17 CAPITULO 8 INTELIGENCIA ARTIFICIAL ELECTRÓNICA (16 Hrs) Objetivo: Que el alumno explore en la inteligencia artificial usando elementos electrónicos y conceptos de programación 8.1 INTELIGENCIA
PROFESOR: Práctica 3. Introducción al Ambiente de desarrollo MPLAB
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Arquitectura de Microprocesadores y Microcontroladores
Proyecto final "Sistema de instrumentación virtual"
"Sistema de instrumentación virtual" M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com @efranco_escom [email protected] 1 Contenido Introducción Objetivos Actividades Observaciones Reporte
Instituto Tecnológico de Puebla Ingeniería Electrónica Control Digital
Instituto Tecnológico de Puebla Ingeniería Electrónica Control Digital Actividad 5 CONVERTIDOR ANALÓGICO DIGITAL INTEGRADO Objetivos Comprobar experimentalmente el funcionamiento del convertidor analógico
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE MICROCONTROLADORES
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE MICROCONTROLADORES 1. Competencias Implementar sistemas de medición y control bajo los estándares
TEMA 20 EL CONVERSOR A/D
TEMA 20 EL CONVERSOR A/D Introducción Al Conversor Analógico/Digital Los microcontroladores PIC de la familia 16F78x, poseen un conversor A/D de 10 bits de resolución, y con 5 entradas para los dispositivos
ANEXOS DIAGRAMA DE FLUJO PRINCIPAL
ANEXOS DIAGRAMA DE FLUJO PRINCIPAL inicio CT = 25% Retardo 250 ms Leer voltaje Vol dec CT c 129 = 131? inc CT j = 0 mir = miir = 255 mar = mair = 0 cont = 1? b cont = 6? array1[j] =
Laboratorio 8: Interrupción por Lectura de Entradas y por Desbordamiento del TMR0.
Laboratorio 8: Interrupción por Lectura de Entradas y por Desbordamiento del TMR0. 8.1 Objetivo. Familiarizarse con la utilización de la interrupción por cambio en las Entradas digitales mediante la implementación
Practica 03: El convertidor analógico digital
Practica 03: El convertidor analógico digital M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom 1 Contenido Introducción Objetivos Actividades
5 Responde las preguntas. 5.1 Cuál es la razón de que al iniciar el programa se muestre un cero al principio
Práctica 5 Contador Binario Competencias Profesional.- Utiliza equipo, herramienta y suministros empleados en el desarrollo de prototipos con 1 PIC18f2520 8 Resistencias 220Ω 8 Leds 1 Elabora el diagrama
Laboratorio de Diseño de Robots Móviles Practica No. 2 Sistema mínimo del microcontrolador PIC16F877
Laboratorio de Diseño de Robots Móviles Practica No. 2 Sistema mínimo del microcontrolador PIC16F877 Objetivo: Conocer la estructura y características de la tarjeta con un microcontrolador PIC que se dispone
Diagrama de bloques del sistema
Software de control: Diagrama de bloques del sistema Para controlar todos los parámetros de funcionamiento de la pila de combustible, se ha creado un software específico, este funciona como se muestra
Robot laberinto Raúl Antona Fresno PE21
Faunos Laberinto (Robot laberinto) RAÚL ANTONA FRESNO Índice: Página INTRODUCCIÓN DEL PROYECTO. 2 2 DIAGRAMA EN BLOQUES. 6 2. EXPLICACIÓN DEL DIAGRAMA EN BLOQUES. 7 3 ESQUEMA ELECTRICO GENERAL. 8 3. EXPLICACIÓN
MICROCONTROLADORES PIC BÁSICO (PIC 16F84A / 16F627)
MICROCONTROLADORES PIC BÁSICO (PIC 16F84A / 16F627) TEMARIO Objetivo: El estudiante comprenderá la evolución de los microcontroladores y microprocesadores así como sus diferencias, desarrollara su habilidad
Pines de entrada/salida (I/O) de propósito general. Mediante ellos, el micro PIC puede monitorizar y controlar otros dispositivos.
1 Pines de entrada/salida (I/O) de propósito general Mediante ellos, el micro PIC puede monitorizar y controlar otros dispositivos. Para añadir flexibilidad al micro, muchos de sus pines de entrada/salida
Segundo Parcial Programación en Mikro C PIC16F877
Segundo Parcial Programación en Mikro C para microcontroladores PIC PIC16F877 Operadores a nivel de bits Operador operacion & AND; compara pares de bits y regresa 1 si ambos son 1 s, de otra manera regresa
Guía #2 Acceso a registros y uso de puertos.
Curso de microcontroladores PIC. Guía # 2 1 Guía #2 Acceso a registros y uso de puertos. Distribución de la memoria. Todo microcontrolador cuenta con periféricos para comunicarse con el mundo exterior,
MICROCONTROLADORES. 1. El PIC 16F84A es un microcontrolador de: a) 16 bits b) 8 bits c) 4 bits d) 32 bits e) 64 bits
1. El PIC 16F84A es un microcontrolador de: a) 16 bits b) 8 bits c) 4 bits d) 32 bits e) 64 bits MICROCONTROLADORES 2. La memoria de programa del PIC 16F84A es de tipo: a) ROM b) OTP c) RAM d) EPROM e)
Dependiendo del dispositivo usado, se tienen hasta 5 puertos de entrada/salida disponibles: PORTA PORTB PORTC PORTD PORTE
25 3 ENTRADA / SALIDA Dependiendo del dispositivo usado, se tienen hasta 5 puertos de entrada/salida disponibles: PORTA PORTB PORTC PORTD PORTE Cada uno de estos puertos es de 8 bits, sin embargo no todos
Apéndice B Programa para calcular inclinación con PIC 16F877A
Apéndice B Programa para calcular inclinación con PIC 16F877A list p=16f877a ; list directive to define processor #include ; processor specific variable definitions ;***** DEFINICIÓN DE
Práctica 1 ALU de 1 BIT
INSTITUTO POLITÉCNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Nº 1 Gonzalo Vázquez Vela Academia de Sistemas Digitales Prácticas de Arquitectura de Microprocesadores y Microcontroladores
Microcontrolador PIC16F84: Arquitectura
Microcontrolador PIC16F84: Arquitectura La arquitectura del PIC es tipo Harvard: Mem. de Programa (instrucciones) (tipo FLASH) Control DIR DATOS µp (tipo RISC, pipeline de 2 etapas) Control DIR DATOS 14
Convertidor Analógico Digital ADC
Convertidor Analógico Digital ADC M.C. Jorge Eduardo Ibarra Esquer Convertidor analógico a digital ADC Las características de este módulo son: Ocho canales con entrada multiplexada Aproximación lineal
Práctica No. 6 del Curso "Meteorología y Transductores". "Convertidores ADC y DAC"
Objetivos. Práctica No. 6 del Curso "Meteorología y Transductores". "Convertidores ADC y DAC" Comprobar por medio de simulaciones el funcionamiento de los convertidores analógico digital (ADC) y el digital
UNIVERSIDAD DE OVIEDO
1 Funcionamiento Multiplexado con otros módulos Características generales de los puertos en el PIC16F877 Son 5 Puertos de E/S configurables PORTA: 6 pines (dir 0x05) PORTB: 8 pines (dir 0x06 y 0x106) PORTC:
Conversor A/D. Conversor Analógico a Digital
Conversor Analógico a Digital Analógico Analógico Controlador Sensor Nivel Valor Deseado V.D. Controlador Proceso Proceso V.D. Controlador Proceso Controlador Digital A/D Micro procesador D/A Conversor
Programación y Aplicaciones de los Microcontroladores PIC16FXXX (Nivel Básico) ING. EULER DEZA FIGUEROA
Programación y Aplicaciones de los Microcontroladores PIC16FXXX (Nivel Básico) ING. EULER DEZA FIGUEROA ESTRUCTURA Y CONTENIDO: SESIONES DE CLASE CONTENIDOS PRACTICA PRIMERA (5 horas ) SEGUNDA (5 horas
ANEXO II. PROGRAMACIÓN DEL INTEGRADO PIC16F87XA
ANEXO II. PROGRAMACIÓN DEL INTEGRADO PIC16F87XA ANEXO II. PROGRAMACIÓN DEL INTEGRADO PIC16F87XA Página 1 de 15 1. FICHEROS DE CABECERA ANEXO II. PROGRAMACIÓN DEL INTEGRADO PIC16F87XA Página 2 de 15 #include
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE INGENIERÍA EN COMPUTACIÓN
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE INGENIERÍA EN COMPUTACIÓN PRACTICAS LABORATORIO DE MICROCOMPUTADORAS Basadas en el Microcontrolador
CODIGO EN ASSEMBLER TRANSMISOR. list p=16f876 ;selecion de pic
TRANSMISOR CODIGO EN ASSEMBLER list p=16f876 ;selecion de pic radix hex ; codigo hex indf equ 0h ;direcionamiento indirecto tmro equ 1h ;contador de tiempo real pc equ 2h ;contador del programa status
El circuito integrado ADC1230, fabricado
ADC12130 Conversor A/D serial de 12 bits GUILLERMO RAMOS RAMOS [email protected] Los conversores A/D seriales se caracterizan por su tamaño reducido y bajo costo. El circuito integrado que describimos
GUIA DE EJERCICIOS Nº 8 INSTRUMENTACIÓN AVANZADA
GUIA DE EJERCICIOS Nº 8 INSTRUMENTACIÓN AVANZADA Muestreo de señales alternas con PIC y ARDUINO 1 10.-MUESTREO DE SEÑALES ALTERNAS CON PIC Y ARDUINO Ejercicio 10.1 Determine de manera aproximada la frecuencia
LOS PIC16F88X: LOS PUERTOS DE E/S
LOS PIC16F88X: LOS PUERTOS DE E/S IES Juan de la Cierva Aprendizaje de la Electrónica a través de la Robótica Fernando Remiro Domínguez PORTA Es un puerto bidireccional de 8 bits que permite el acceso
PIC 18F45XX CARACTERÍSTICAS GENERALES
PIC 18F45XX CARACTERÍSTICAS GENERALES 1. Características generales CPU con arquitectura Harvard (77 instrucciones) Todas las instrucciones constan de 1 sola palabra de 16 bits (2 bytes) excepto las de
Diseño e implementación de un equipo de prácticas de control automático
Pantalla de funcionamiento manual. Esperando datos de entrada y salida (corriente, tensión o posición) 5 Esquemas eléctricos 5.1 Placa principal. En el esquema eléctrico general que se representa más adelante
Tema: Utilización del módulo CCP (PWM) en los microcontroladores PIC.
1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Microcontroladores Lugar de ejecución: Laboratorio de microprocesadores, Edif. 3 Electrónica. Tema: Utilización del módulo CCP (PWM) en los microcontroladores
V = 3,4567 V M:4,45V m:0,23v
Práctica 10 Módulo de conversión A/D: voltímetro digital Fecha: 28 de Abril de 2005 Se pretende realizar un programa que se encargue de efectuar la medida continua de una tensión analógica comprendida
SUMO _ CACAHUETE. Departamento de Electricidad-Electrónica. Ciclo Superior de Desarrollo de Productos Electrónicos. Alumno: Ignacio Díaz Díaz-Regañón.
SUMO _ CACAHUETE Departamento de Electricidad-Electrónica Ciclo Superior de Desarrollo de Productos Electrónicos Alumno: Ignacio Díaz Díaz-Regañón. Profesores: Pedro Alonso Sanz Alfonso García Gallego
Corporacion Universitaria Autonoma del Cauca EJEMPLARIZACION DE COMUNICACIÓN ENTRE DOS MODOULOS XBEE SERIE 2.
EJEMPLARIZACION DE COMUNICACIÓN ENTRE DOS MODOULOS XBEE SERIE 2. RESUMEN Hoy en día son muchos los dispositivos que cumplen la función de comunicarse uno con el otro, siendo útiles y cumpliendo objetivos
PIC-Ready1. Placa adicional. Manual de usuario. MikroElektronika
PIC-Ready1 Manual de usuario Todos los sistemas de desarrollo de Mikroelektronika disponen de un gran número de módulos periféricos, ampliando el rango de aplicaciones de los microcontroladores y facilitando
PRACTICA Nº 2. Puertos de Entrada Digital. Sistemas Electrónicos Digitales. Subgrupo: de febrero de 2.015
PRACTICA Nº 2 Puertos de Entrada Digital Sistemas Electrónicos Digitales Subgrupo: 1-8 23 de febrero de 2.015 Índice 1. Objetivos 2. Introducción 3. Desarrollo 4. Conclusiones 5. Bibliografía 6. Hojas
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM ELECTRONICA 6
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM ELECTRONICA 6 ~ 1 ~ ÍNDICE Introducción...página 3 Teoría y prácticas de instrumentación...página
Práctica 6. Control de LCD 16x2 con PIC 16F84A.
Práctica 6 Control de LCD 16x2 con PIC 16F84A. Eduardo V. Abad Descripción de las características y funcionamiento del LCD 44780 Las pantallas de cristal líquido (LCD) se han popularizado mucho en los
Registros SFR vistos hasta ahora: Microcontroladores PIC
Registros SFR vistos hasta ahora: Microcontroladores PIC Microcontroladores PIC: Timer Características del Timer TMR0: Cumple básicamente la función de contador de eventos (o divisor de frecuencia). El
El TIMER 0. (c) Domingo Llorente 2010 1
El TIMER 0 (c) Domingo Llorente 2010 1 Características Se trata de un registro de 8 bits. (SFR: 01h, 101h) Puede trabajar como contador o temporizador. Se puede leer o escribir en él. Dispone de un preescaler
El TIMER 1. (c) Domingo Llorente
El TIMER 1 (c) Domingo Llorente 2010 1 TIMER 1: Características Se trata de un contador/temporizador de 16 bits. Puede trabajar como contador o temporizador. Está implementado en dos registos TMR1H y TMR1L
MICROCONTROLADORES II (FAMILIA PIC16F87X) LENGUAJE C PARA PICS
MICROCONTROLADORES II (FAMILIA PIC16F87X) LENGUAJE C PARA PICS 1 CARACTERÍSTICAS Velocidad de operación: hasta 20 MHz de reloj. 8K x 14 bits por palabra de memoria de programa FLASH. 368 x 8 bytes de memoria
9. Plataforma Desarrollo del ATmega
9. Plataforma Desarrollo del ATmega 9.1. WIN AVR Contiene todas las librerías necesarias para el desarrollo de aplicaciones en los microprocesadores AVR de Atmel. Al instalarlo sobre el PC se podrán realizar
UNIVERSIDAD DON BOSCO
CICLO 02 2013 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA GUÍA DE LABORATORIO Nº 03 ASIGNATURA: Control Digital NOMBRE DE LA PRACTICA: Configuración de los Puertos
Guía de Microcontroladores
Guía de Introducción Este documento tiene como objetivo de para comenzar con el desarrollo de programas para microcontroladores. Por motivos prácticos se utilizan líneas microcontroladores PIC de 8 bits
T E S I S. Presenta: AGUILAR GARCÍA VÍCTOR CÉSAR. Director de Tesis: M. I. A. Leticia Cuéllar Hernández
UNIVERSIDAD VERACRUZANA FACULTAD DE INSTRUMENTACIÓN ELECTRÓNICA Y CIENCIAS ATMOSFÉRICAS SISTEMA DE ADQUISICIÓN DE SEÑALES DE SENSORES NO LINEALES PARA OBTENER Y VISUALIZAR LA FUNCIÓN DE CALIBRACIÓN UTILIZANDO
EL sensor de distancias GP2D120. (c) Domingo Llorente
EL sensor de distancias GP2D120 (c) Domingo Llorente 2010 1 Características del sensor Salida analógica (Vo) Alimentación a +5v Rango efectivo de medida de 4 a 40 cm Tiempo típico de respuesta 39ms Retardo
RECURSOS FUNDAMENTALES
RECURSOS FUNDAMENTALES Los recursos que se considerarán son : Temporizadores Puertos de E/S La Palabra de Configuración EEPROM de datos 1 TEMPORIZADORES Una labor habitual en los programas de control suele
PIC 18F45XX EL TIMER 0
PIC 18F45XX EL TIMER 0 1. Hardware asociado 2. Características Se puede configurar como temporizador o contador de 8/16 bits. Se puede leer o escribir en él a través del registro TMR0. Dispone de un preescaler
DESARROLLO DE SISTEMAS BASADOS EN MICRONTROLADORES Y DSPs
DESARROLLO DE SISTEMAS BASADOS EN MICRONTROLADORES Y DSPs Manejo de puertos Entradas Salidas PIC24FJ128GA010 EXPLORER16 Puertos de E/S Los microcontroladores cuentan con pines especialmente diseñados para
Programa del PIC 16F877A
APÉNDICE B Programa del PIC 16F877A ;* "CONTROL AUTOMÁTICO DE VELOCIDAD VEHICULAR". * ;* EL PRESENTE PROGRAMA TIENE COMO FINALIDAD CONTROLAR LA VELOCIDAD DEL * ;* VEHÍCULO, DEPENDIENDO DE LA SEÑAL RECIBIDA
TUTORIAL PRIMERA PARTE: GENERACIÓN DE UN RETARDO CON TIMER.
1 TUTORIAL OBJETIVOS Familiarizarse con el TMR0 como contador de pulsos internos y generador de retardos. Conocer el método del polling para verificar banderas de dispositivos. Crear y manipular variables
Práctica 5. Comunicación serie y entradas analógicas
Práctica 5 Comunicación serie y entradas analógicas Práctica 5 Comunicación serie y entradas analógicas. Objetivos El objetivo de esta sesión es que el alumno aprenda a programar la EUART interna del PIC,
ÍNDICE INTRODUCCIÓN...17
ÍNDICE INTRODUCCIÓN...17 CAPÍTULO 1. MICROCONTROLADORES...19 1.1 MICROCONTROLADOR...19 1.1.1 Controlador y microcontrolador...19 1.1.2 Diferencia entre microprocesador y microcontrolador...21 1.1.3 Aplicaciones
CONVERSOR ANALÓGICO DIGITAL DEL PIC16F877 GRUPO A02-A03
CONVERSOR ANALÓGICO DIGITAL DEL PIC16F877 GRUPO A02-A03 Proyecto PAEEES 04/993. U.P.V. Escuela Politécnica Superior de Alcoy Marzo 2005 Cantero Siñuela, Iván Saúl Gil Hernández, Diego Ponsoda Hernández,
Competencia de Robótica JOHNNY
Competencia de Robótica JOHNNY 5 2015 Categoría: MINISUMO Nombre del Robot: CORAJE Institución: EEST Nro. 6 SAN NICOLAS Participantes: RAMIRO MARTIN PAEZ ELIO ANTONIO PAEZ RODRIGO NICOLAS PAEZ El robot
Usando los Codificadores Cuadráticos
Usando los Codificadores Cuadráticos Autor: Ing. Carlos Narváez Universidad de Oriente email: [email protected] Introducción El presente trabajo es una introducción a los denominados codificadores cuadráticos,
