PROPIEDADADES COLIGATIVAS
|
|
|
- María Antonia Piñeiro Páez
- hace 9 años
- Vistas:
Transcripción
1 PROPIEDADADES COLIGATIVAS
2 Existen cuatro propiedades de las soluciones que, para un dado solvente, dependen del número de partículas de soluto pero no de la naturaleza de éste: descenso de la presión de vapor elevación del punto de ebullición descenso del punto de congelación presión osmótica Estas propiedades se denominan propiedades coligativas.
3 Las propiedades coligativas juegan un importante rol en muchos campos de la Química, porque por su dependencia con el número de moles del soluto, aportan un camino para determinar la concentración por medida de dichas propiedades, estos datos permitirán a su vez, conocer masas moleculares. Las soluciones que con más frecuencia se usan en la práctica, y que son las más sencillas de estudiar, son aquellas en que el soluto es no volátil. En éstas soluciones su vapor estará conformado con moléculas de solvente por lo tanto la presión de vapor de la solución es sólo presión de vapor del solvente. Nuestro estudio se referirá exclusivamente a estos sistemas.
4 Las propiedades coligativas tienen tanta importancia en la vida común como en las disciplinas científicas y tecnológicas, y su correcta aplicación permite: a) Separar los componentes de una solución por un método llamado destilación fraccionada. b) Formular y crear mezclas frigoríficas y anticongelantes. c) Determinar masas molares de solutos desconocidos. d) Formular sueros o soluciones fisiológicas que no provoquen desequilibrio hidrosalino en los organismos animales o que permitan corregir una anomalía del mismo. e) Formular caldos de cultivos adecuados para microorganismos específicos. f) Formular soluciones de nutrientes especiales para regadíos de vegetales en general.
5 VAPORSOLVENTE SOLUCIÓN (SOLUTO+SOLVENTE)
6 DESCENSO DE LA PRESIÓN DE VAPOR Si trabajamos con soluciones diluidas, donde en el vapor sólo hay moléculas del solvente, se puede plantear la Ley de Raoult P P P x A P donde x A es la fracción molar del solvente P es la presión de vapor de la solución Pº es la presión de vapor del solvente puro Es más útil expresarla en función del soluto: o o x B P o (1) o P 1 x B P P P o x B P o P P o X B P o
7 P P o x B (2) donde P es la propiedad coligativa, dado que el descenso de la presión de vapor para soluciones diluidas depende solo de la fracción molar del soluto
8 Determinación de pesos moleculares Como habitualmente se conocen las masas del soluto y el solvente, podemos expresar la propiedad coligativa en función de las masas, o también en función de los moles de soluto Recordando: x B n B n Y como para disoluciones diluidas n B B xb (3) na n A n n B A
9 Reemplazando la (3) en la ec. (2) y considerando que: B B B M w n A A A M w n y donde w A y M A son la masa y peso molecular del solvente y, w B y M B son la masa y el peso molecular del soluto, resulta para la expresión de esta propiedad coligativa B A B A o M w w M P P (4)
10 Si se conocen las masas del soluto y solvente se podrá calcular el peso molecular del soluto. si se fija la masa de solvente en 1000g P M w o A B P 1000M o P P M m A B (5)
11 ELEVACIÓN DEL PUNTO DE EBULLICIÓN Analicemos que ocurre si el líquido puro está en ebullición y se le agrega un soluto no volátil. P solvente puro solución Figura 1 P externa dp = - Pº dx B dp = Pº H v dt eb / R T eb 2 Tº eb solvente T eb solución T
12 El agregado de una cantidad pequeña de soluto provocará una disminución de la presión de vapor del solvente. Este cambio infinitesimal en la presión de vapor (dp) provocado por el agregado de una cantidad dn B (el cual se corresponde con un cambio diferencial en la fracción molar de este componente dx B,) teniendo en cuenta la ecuación (2), viene dada por la expresión: dp P o dx B dp P dx d ln 0 B B (6) P x
13 La solución no hervirá hasta que su presión de vapor sea incrementada en cuantía suficiente para compensar el descenso indicado por la ecuación (6). Por lo tanto deberá incrementarse la temperatura de la solución para lograr dicho aumento de la presión de vapor de la solución. Es así que la presencia de un soluto no volátil provoca un aumento en la temperatura de ebullición del solvente. La función matemática que describe el aumento progresivo de la presión de vapor de la solución como consecuencia del aumento de la temperatura de la misma es la ecuación de Clausius-Clapeyron
14 dp Pº H RT v 2 dt (7) donde P : presión de vapor del solvente puro H v : calor de vaporización del solvente R: constante general de los gases T: temperatura de ebullición Reordenando: d ln P dt H RT vap 2 d ln P H RT vap 2 dt
15 El descenso de la presión de vapor, debido a la adición del soluto, se compensa con el aumento de temperatura. Así: dlnp soluto +dlnp Temp. =0 dx B H RT RT 2 vap dt 0 dteb dx (8) 2 B Hvap H vap Para disoluciones diluidas estará muy próximo al valor del disolvente puro. La elevación del punto de ebullición de una disolución diluida por lo tanto es independiente de todas las propiedades del soluto, excepto de su fracción molar en la disolución. Por eso la elevación del punto de ebullición es otra propiedad coligativa.
16 Ahora nuevamente, si se fija la masa de solvente en 1000g, así los moles de soluto nb presentes en 1000 g de solvente representan la molalidad (m) y na señala el número de moles de solvente que existen en los 1000g la ecuación (8) queda: T eb K eb RT nah 2 eb vap m T eb K eb m (9) donde se conoce como constante de ascenso del punto de ebullición o constante ebulloscópica, que depende de la naturaleza del disolvente.
17 DESCENSO DEL PUNTO DE FUSIÓN El descenso del punto de congelación se comprende fácilmente considerando un sistema abierto en contacto con la atmósfera, en el que la presión sobre las fases condensadas es de 1 atm, pero que en el que la fase o fases condensadas pueden ejercer una presión de vapor. Para ello tenemos que observar las curvas de disolvente puro y disolución en el diagrama presión de vapor temperatura, en las cercanías del punto de congelación. Sobre el diagrama se observa que el sólido, cuya presión de vapor no esta afectada por la presencia del soluto en la disolución, está en equilibrio con la disolución a una temperatura más baja que la que corresponde al equilibrio con el disolvente puro.
18 La relación cuantitativa entre la fracción molar de soluto añadido dxb y el descenso del punto de congelación, dt fus,se puede obtener calculando el descenso de la presión de vapor del equilibrio sólido disolvente, situado en A, a la del equilibrio sólido-disolución, situado en B. Este descenso puede evaluarse como se indica en la Fig. 2, bien por el descenso de la presión de vapor del sólido como resultado del descenso de la temperatura, o por el efecto combinado de la adición del soluto y del descenso de la temperatura de la disolución.
19 d ln P H RT sub 2 dt d d ln P dx B Hvap ln P dt RT 2 Figura 2
20 H RT sub 2 fus dt fus H RT vap 2 fus dt fus dx B El calor de fusión se puede combinar con el calor de vaporización: Hfus Hsub Hvap, así la ecuación (10) queda: 2 RTfus dtfus dx B Hfus de nuevo al relacionarse con la molalidad dt fus 2 RT nah fus fus m dt fus K fus m (10) (11)
21 donde K fus se conoce como constante de descenso del punto de congelación o constante crioscópica, que depende de la naturaleza del disolvente
22 Presión osmótica El fenómeno de la ósmosis depende de la existencia de membranas semipermeables. Estas membranas son de formas variadas, pero todas de ellas se caracterizan por el hecho de permitir que un componente de la disolución pase a través de las mismas, mientras impiden el paso del otro componente. El celofán y ciertas membranas de origen animal o membranas proteínicas, por ejemplo son permeables al agua pero no a sustancias de elevado peso molecular. Un dispositivo que se ha utilizado para estudiar cuantitativamente la ósmosis esta representado en la Fig. 3.
23 Figura 3
24 Todo aparato osmótico consta de una membrana permeable al disolvente e impermeable al soluto por medio de la cual se separa una disolución de su disolvente puro. Cuando estos equipos están preparados se comprueba que exista una tendencia natural a que el disolvente fluya, a través de la membrana, desde el recipiente donde se encuentra el disolvente puro al recipiente interior, que contiene la disolución. A esta tendencia se opone la sobrepresión que se aplica en la cámara donde está la disolución. En el aparato de Fuoss y Mead la presión de equilibrio se establece como resultado de la presión hidrostática, debida a la altura alcanzada por el líquido.
25 Este exceso de presión que actúa sobre la disolución y que produce el equilibrio, se llama presión osmótica, y se representa por la letra. Mediante esta magnitud es posible estudiar los aspectos cuantitativos de la ósmosis. La presión osmótica desarrollada entre cualquier disolución diluida y su disolvente se manifiesta como una propiedad coligativa. La interpretación termodinámica de la presión osmótica: la energía libre del disolvente en la disolución es menor que la energía libre del disolvente cuando está puro. Por lo tanto se deduce que hay una tendencia espontánea del disolvente a pasar del estado relativamente alto de energía libre que es el disolvente puro, al estado de menor energía libre, que es la disolución.
26 La disminución de energía libre, por mol de disolvente, que resulta de la adición de soluto, viene medida por la disminución de presión de vapor en equilibrio, desde P 0 en el disolvente puro a P en la disolución : g RT ln P 0 P (12) Esta disminución de energía libre es la que equilibra con el efecto de la presión aplicada. La dependencia de la energía libre con la presión ya se vio que es: G P (13) T V
27 Puesto que los líquidos son prácticamente incompresibles, el volumen del disolvente en la disolución se puede suponer que es independiente de la presión. Si se designa el volumen de un mol de disolvente en la disolución por v, el cual seria el volumen molar parcial del disolvente, y si se designa la sobrepresión, necesaria para compensar la disminución de energía libre, a causa de la adición del soluto, por el símbolo, el incremento de energía libre por mol de disolvente, debido al exceso de presión será: g v (14)
28 Cuando se establece el equilibrio, la disminución de energía libre de la disolución, debido a la presencia del soluto, queda equilibrada por el incremento debido a la presión aplicada, así: v RT ln (15) P P0 Para disoluciones diluidas, puedo aplicarse la Ley de Raoult, que obedece el disolvente: x A P 0 P v RT ln (16) x A
29 Este resultado termodinámico demuestra que la presión osmótica es una función del volumen molar del disolvente, de la temperatura y de la concentración de la disolución, por lo tanto es una propiedad coligativa. De aquí en más pueden deducirse otras expresiones, aunque menos exactas por las aproximaciones a tenerse en cuenta y que serian las siguientes: x B 1 xa v RT ln(1 xb ) (17) además si ln(1-x B )=-x B v RTx (18) B
30 Ley de Vant Hoff Demostró que la presión osmótica es inversamente proporcional al volumen ocupado por la materia disuelta 1 V Y crece proporcionalmente a la temperatura también llegó a la conclusión de que a 1T 0
31 Igualdad de temperatura, las soluciones verdaderas que poseen la misma presión osmótica, contienen, en volumenes iguales, el mismo número de moléculas de soluto, o dicho de otro modo todas las soluciones molares tienen la misma presión osmótica. RT V Donde V es el volumen ocupado por una molécula gramo, R la constante de los gases y T la temperatura absoluta.
32 Si reordeno la ecuación anterior V RT Esta ecuación recuerda la que rige el comportamiento de los gases ideales y permite a Van t Hoff enunciar, la ley que lleva su nombre: la presión osmótica de una solución es igual a la que ejercería la sustancia disuelta si a la temperatura del experimento, estuviera en estado gaseoso y ocupando el mismo volumen que la solución.
33 Ecuación de Morse Morse demostró que cuando la concentración se expresa en molalidad y no en molaridad los resultados se aproximan más a los encontrados experimentalmente y por lo tanto la ecuación quedará mrt Donde m es la molalidad, esta ecuación es válida para disoluciones diluidas.
34 Flujo del agua a través de membranas Potencial hídrico permite explicar la circulación del agua en las plantas Es el potencial químico del agua en un sistema o parte de un sistema, expresado en unidades de presión y comparado con el potencial químico del agua pura, a la presión atmosférica y a la misma temperatura y altura, con el potencial químico del agua tomado como referencia e igual a cero. Matemáticamente se puede expresar de la siguiente forma
35 Donde: =potencial hídrico =potencial químico del agua en el sistema estudiado = potencial químico del agua pura a la presión atmosférica y a la misma temperatura que el sistema estudiado V w = volumen molar parcial del agua ( 18 cm 3. Mol -1. ).
36 La importancia del potencial hídrico es que indica la dirección de la ósmosis. Se puede expresar también de la siguiente manera, en una celula : Donde: = + P p = potencial osmótico P p = presión parietal
37 La ósmosis se realiza siempre de una región de potencial hídrico alto a una región de bajo potencial por ejemplo, la ósmosis ocurrirá desde una célula A con un valor = - 3 atm. a una célula B con un valor =-4atm Cuando una solución se encuentra a presión atmosférica P p = 0 y = El potencial hídrico es siempre negativo y alcanza un valor máximo de cero para el agua pura: agua pura = 0.
38 Cuando se ponen en contacto dos células que tienen el mismo potencial hídrico, no se produce un movimiento neto de agua, ni hacia dentro ni hacia fuera, por lo que las células se mantienen en equilibrio. La unidad en que se expresa el potencial hídrico es: 1 atm. = 1,01 bar o 0,1 MPa (Mega Pascal).
39 Vamos a analizar el siguiente ejemplo teórico, de dos células en contacto que tengan los valores que se muestran en la figura
40 Célula A = - 20 bars P p = + 6 bars Célula B = - 16bars P p = + 12 bars Cual es el potencial hídrico de las células A y B? En que dirección ocurre la ósmosis.
41 El potencial hídrico de la célula A es = - 14 bars y el de la célula B es = - 4 bars. La ósmosis ocurre de la célula B hacia la A. Qué le sucede a una célula que se coloca en una solución hipertónica? Esta tiene una mayor concentración de solutos que el citoplasma celular, por lo que tiene un potencial hídrico menor que el del contenido celular. La célula pierde agua, la membrana se retrae separándose de la pared y la célula se vuelve flácida, se ha plasmolizado.
42 Qué le ocurre a una célula cuando se coloca en un medio hipotónico? Tiene una concentración de soluto menor que el citoplasma celular por lo que la célula absorbe agua y se hincha, aumentando la presión de turgencia. Qué le ocurre a una célula que se coloca en un medio isotónico. El contenido celular se mantiene en equilibrio con el medio.
43 Conclusión: El flujo de agua es un proceso pasivo. Esto quiere decir que el agua se mueve como una respuesta a fuerzas físicas, hacia regiones de potencial hídrico bajo o de baja energía libre. En otras palabras no se requiere de una bomba operada por energía metabólica movida por la hidrólisis de ATP, que empuje el agua de un sitio a otro.
44 Figura 12
45 La membrana plasmática de la célula puede considerarse como semipermeable, y por ello las células deben permanecer en equilibrio osmótico con los líquidos que las bañan. Cuando las concentraciones de los fluidos extracelulares e intracelulares es igual, ambas disoluciones son isotónicas. Si los líquidos extracelulares aumentan su concentración de solutos se hacer hipertónicos respecto a la célula, y ésta pierde agua, se deshidrata y mueren (plasmólisis).
46 Y si por el contrario los medios extracelulares se diluyen, se hacen hipotónicos respecto a la célula, el agua tiende a entrar y las células se hinchan, se vuelven turgentes (turgencia ), llegando incluso a estallar
PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES
PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES Los estudios teóricos y experimentales han permitido establecer, que los líquidos poseen propiedades físicas características. Entre ellas cabe mencionar: la densidad,
DISOLUCIONES DILUIDAS IDEALES. LEY DE HENRY. MODELO DE LA DISOLUCIÓN DILUIDA IDEAL
DISOLUCIONES DILUIDAS IDEALES. LEY DE HENRY. Muchas disoluciones se desvían bastante del modelo de disolución ideal. or ello resulta útil definir otro modelo: MODELO DE LA DISOLUCIÓN DILUIDA IDEAL 1) Descripción
A continuación se detallan cada una de las propiedades coligativas:
PREGUNTA (Técnico Profesional) Se prepara una solución con 2 mol de agua y 0,5 mol de un electrolito no volátil. Al respecto, cuál es la presión de vapor a 25 ºC de esta solución, si la presión del agua
DISOLUCIONES. Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables.
DISOLUCIONES Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables. Soluto es la sustancia que se encuentra en menor proporción. Disolvente es la sustancia
Fundamentos de Química. Horario de Tutorías
Fundamentos de Química Segundo Cuatrimestre Horario de Tutorías Martes 12:00-14:00 16:00-19:00 Edificio 24B.Tercera Planta 14/02/2006 Tema 11: Propiedades de las disoluciones 11.1 Definición de disolución
CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS Nº6
CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS Nº6 TEMA: PROPIEDADES COLIGATIVAS OBJETIVOS: Aplicar las propiedades coligativas para el cálculo de masas molares de solutos y de las propiedades físicas de las soluciones.
10. Porque no es posible cocer un huevo en el Everest? A) No hay suficiente presión atmosférica. B) No hay suficiente oxígeno. C) Hace mucho frío
DISOLUCIONES ---------------------------------------------------------------------------------------------------------------- -- 1. De las siguientes propiedades Cuál es una propiedad coligativa? A) Presión
MECANISMOS DISIPATIVOS Y SUS FUERZAS IMPULSORAS
MECANISMOS DISIPATIVOS Y SUS FUERZAS IMPULSORAS Temas de Biofísica Mario Parisi Bibliografía Capítulo 3: Los Grandes Mecanismos Disipativos y sus Fuerzas Impulsoras Gradiente Variación de una cierta cantidad
2. Disoluciones. Química (1S, Grado Biología) UAM
2. Disoluciones Química (1S, Grado Biología) UAM 2. Disoluciones Contenidos Tipos de disoluciones Expresiones de la concentración Dilución ropiedades coligativas de las disoluciones resión de vapor [de
PROPIEDADES COLIGATIVAS DE LAS. Las propiedades de las soluciones se clasifican en dos grandes grupos:
PROPIEDADES COLIGATIVAS DE LAS I.- Introducción. 1 SOLUCIONES Los estudios teóricos y experimentales han permitido establecer, que los líquidos poseen propiedades físicas características. Entre ellas cabe
HOJA DE PROBLEMAS 1: ENUNCIADOS
Tema: DISOLUCIONES HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) Una disolución acuosa de AgNO 3 con una composición del 12 % en peso tiene una densidad de 1.1080 g/cm 3 a 20 C y 1 atm. Calcule la fracción molar,
PRÁCTICA # 01 PREPARACIÓN DE DISOLUCIONES
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA AVIACIÓN MILITAR VENEZOLANA U.E.A.M LIBERTADOR ASIGNATURA: QUÍMICA PROF(A): ANGÉLICA RODRÍGUEZ MARBELIS MELENDEZ CURSO: 4to
Tema 6: Disoluciones. Propiedades coligativas
Tema 6: Disoluciones. Propiedades coligativas 1-Una solución saturada A) Contiene más soluto que solvente. B) Contiene más solvente que soluto. C) Contiene el mismo número de moles de soluto que de solvente.
Transferencia de masa en la interfase
INSTITUTO TECNOLÓGICO DE DURANGO Transferencia de masa en la interfase Dr. Carlos Francisco Cruz Fierro Revisión 2 65259.63 10-dic-11 6.1 EQUILIBRIO QUÍMICO 2 Sistema en Equilibrio Un sistema está en equilibrio
Tema 8: Disoluciones y sus propiedades
Tema 8: Disoluciones y sus propiedades Francisco G. Calvo-Flores Contenidos 8-1 Disoluciones y tipos 8-2 Unidades de concentración 8-3 Disoluciones ideales y no ideales 8-4 Formación de disoluciones: equilibrio
DEPARTAMENTO DE INGENIERIA QUÍMICA CÁTEDRA DE FISICOQUÍMICA TRABAJO PRÁCTICO DE LABORATORIO Nº 4
Universidad Tecnológica Nacional Facultad Regional La Plata DEPARTAMENTO DE INGENIERIA QUÍMICA CÁTEDRA DE FISICOQUÍMICA TRABAJO PRÁCTICO DE LABORATORIO Nº 4 Descenso crioscópico Objeto de la experiencia:
EJERCIOS DE CONCENTRACIÓN DE SOLUCIONES
Preuniversitario Liceo de Aplicación Química 4º 2010 Profesora Paola Lizama V. GUÍA 4: DISOLUCIONES EJERCIOS DE CONCENTRACIÓN DE SOLUCIONES 01.- Calcular la cantidad de sosa cáustica (NaOH) y de agua que
Los átomos no se crean ni se destruyen en una reacción química, solo se redistribuyen.
LEYES PONDERALES 1. Ley de conservación de la masa o de Lavoisier En cualquier reacción química que ocurra en un sistema cerrado, la masa total de las sustancias existentes se conserva. O lo que es lo
TEMA 6 MEZCLAS Y DISOLUCIONES
TEMA 6 MEZCLAS Y DISOLUCIONES 1 Contenidos: 1. Tipos de disoluciones 2. El proceso de disolución 3. Formas de expresar la concentración. 4. Solubilidad. Factores que afectan a la solubilidad 5. Propiedades
QUÉ SON LAS DISOLUCIONES?
LICEO FEMENINO MERCEDES NARIÑO IED ÁREA CIENCIAS NATURALES Y ED. AMBIENTAL- QUÍMICA GRADO 11 DISOLUCIONES Prof. Juan Gabriel Perilla Jiménez Propósito General: Reconocer la presencia, comportamiento, importancia
DETERMINACION DEL PM. DE LA FRUCTOSA
1. INTRODUCCIÓN Las propiedades coligativas de las soluciones son aquellas que dependen del número (cantidad) pero no del tipo de partículas de soluto en una cantidad dada de disolvente, las principales
LABORATORIO DE FISISCOQUIMICA. GUIA 3 Propiedades coligativas I. Aumento ebulloscópico y descenso crioscópico
LABORATORIO DE FISISCOQUIMICA GUIA 3 Propiedades coligativas I. Aumento ebulloscópico y descenso crioscópico I. El Problema: Como determinar la temperatura de equilibrio del estado líquido-sólido para
PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERMINACIÓN DE LA MASA MOLECULAR DE UN SOLUTO PROBLEMA POR CRIOSCOPIA
PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERINACIÓN DE LA ASA OLECULAR DE UN SOLUTO PROBLEA POR CRIOSCOPIA OBJETIVOS: El objetivo de la práctica es el estudio del efecto que produce la adición de un soluto
EQUILIBRIO LÍQUIDO-VAPOR PRESIÓN DE VAPOR Y ENTALPÍA DE VAPORIZACIÓN DEL AGUA
EQUILIBRIO LÍQUIDO-VAPOR PRESIÓN DE VAPOR Y ENTALPÍA DE VAPORIZACIÓN DEL AGUA I. OBJETIVO GENERAL Comprender e interpretar el significado de las variables termodinámicas involucradas en la ecuación de
Apuntes Disoluciones. Fórmula empírica y molecular. Propiedades coligativas Física y Química. 1º bachiller
Apuntes Disoluciones. Fórmula empírica y molecular. Propiedades coligativas Física y Química. 1º bachiller 27-10-2016 DISOLUCIONES CONCEPTO DE DISOLUCIÓN Una disolución es una mezcla homogénea de sustancias
Propiedades de las disoluciones
Tema 1: Disoluciones Propiedades de las disoluciones Factor de van t Hoff (i) El factor de van t Hoff (i) indica la medida del grado de disociación o de ionización de un soluto en agua. El factor de van
Consecuencias de la disminución de la presión de vapor de una solución Disminuye la presión de vapor 2. Aumento del punto de ebullición de la solución
Algunas propiedades físicas de las soluciones dependen de la cantidad de soluto no volátil disuelto, aunque no de su naturaleza A atm de presión, el agua pura congela a C y ebulle a C pero una disolución
EQUILIBRIO ENTRE FASES
UNCUYO FCULTD DE CIENCIS GRRIS Cát. de Química General e Inorgánica EQUILIRIO ENTRE FSES S I S T E M S D E D O S C O M O N E N T E S 2 da RTE INTRODUCCIÓN Efecto de las condiciones externas (,T) sobre
CONTENIDO Y ESTADO ENERGÉTICO DEL AGUA EN LA PLANTA. -Propiedades del agua y concepto de potencial hídrico. - Métodos de medición
CONTENIDO Y ESTADO ENERGÉTICO DEL AGUA EN LA PLANTA -Propiedades del agua y concepto de potencial hídrico. - Métodos de medición Herman Silva Robledo Laboratorio Relación Suelo- Agua Planta Facultad de
BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA
BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría
FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 8. Equilibrio de fases en sistemas multicomponentes II
María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 8 Equilibrio de fases en sistemas multicomponentes II Esquema Tema 8. Equilibrios de fases en sistemas multicomponentes
GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA.
GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA. La relación entre las cantidades de portadores de ambas fases será: L kg de portador L La relación entre portadores
Bioquímica Tema 2: Soluciones. Unidades Año: 2013
TEMA 2: SOLUCIONES Al estudio de las soluciones se le asigna gran importancia, teniendo en cuenta que la mayoría de las reacciones químicas ocurren entre soluciones, particularmente en medios acuosos.
EL AGUA Y LAS SALES MINERALES
EL AGUA Y LAS SALES MINERALES 1. EL AGUA DE LA MATERIA VIVA El agua es la molécula más abundante de la materia viva La cantidad de agua en los seres vivos es variable Según el tipo de tejido: más agua
POTENCIAL QUIMICO Y POTENCIAL AGUA A NIVEL CELULAR
Espacio curricular FISIOLOGIA VEGETAL POTENCIAL QUIMICO Y POTENCIAL AGUA A NIVEL CELULAR UNIDAD TEMATICA 4 Absorción y movimiento del agua en la planta: Potencial químico y potencial agua. Componentes
SOLUCIONARIO Guía Estándar Anual
SOLUCIONARIO Guía Estándar Anual Disoluciones II: unidades químicas de concentración y dilución SGUICES044CB33-A16V1 Ítem Alternativa Habilidad 1 C Aplicación 2 B Aplicación 3 B Aplicación 4 C Comprensión
Elaboraron: De Anda, Corona, Saitz y Velásquez REGULACIÓN CELULAR
Elaboraron: De Anda, Corona, Saitz y Velásquez REGULACIÓN CELULAR 1. Este es un modelo de membrana, descríbanlo utilizando sus propias palabras 2. Para ustedes cuál será la función de una proteína de reconocimiento,
LA MATERIA: ESTADOS DE AGREGACIÓN
LA MATERIA: ESTADOS DE AGREGACIÓN 1. PROPIEDADES DE LA MATERIA Materia: es todo aquello que existe, tiene masa y ocupa un volumen, los distintos tipos de materia se llaman sustancias. El sistema material
Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.
Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen
Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales
Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla ASPECTOS CUANTITATIVOS DE LA QUÍMICA UNIDAD 2: Los gases ideales ÍNDICE 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA
Área Académica de: Química
Área Académica de: Química Línea de Investigación: Química-física teórica de soluciones y superficies: Síntesis, caracterización y evaluación de catalizadores de hidrotratamiento de petróleo y abatimiento
Equilibrio de fases en sistemas multicomponentes
Equilibrio de fases en sistemas multicomponentes Fase; zona de un sistema en el que la composición y estado físico es igual. Se representa por la letra P, una mezcla de liquidos inmiscibles son dos fases
So S l o u l c u i c o i n o e n s e
Soluciones SOLUCIONES mezclas homogéneas de dos sustancias: SOLUTO SOLVENTE SEGÚN EL ESTADO FISICO DEL SOLVENTE SOLIDA LIQUIDA GASEOSA Cuando un sólido se disuelve en un líquido las partículas que lo
Algunos ejercicios resueltos de FISICOQUIMICA - I (curso , Grupo C) Hoja nº 2 (Modulo 1, Disoluciones: temas 4 a 7) 1000g. 360g 917.
Hoja nº 2 1 Algunos ejercicios resueltos de FISICOQUIMICA - I (curso 2008-09, Grupo C) Hoja nº 2 (Modulo 1, Disoluciones: temas 4 a 7) 2) Una disolución de glicerol (C 3 H 8 O 3 ) en agua al 36 % (w/w)
LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO
LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto
HOJA DE PROBLEMAS 1: ENUNCIADOS
Tema: EQUILIBRIO QUÍMICO HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) En un experimento se miden los puntos de ebullición del tolueno a diversas presiones obteniendose los siguientes resultados P (mm Hg) T (
FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 2. El Primer Principio de la Termodinámica
María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 2 El Primer Principio de la Termodinámica Esquema Tema 2. Primer Principio de la Termodinámica 2.1 Primer Principio
Tema 3: Ecuaciones químicas y concentraciones
Tema 3: Ecuaciones químicas y concentraciones Definición de disolución. Clases de disoluciones. Formas de expresar la concentración de una disolución. Proceso de dilución. Solubilidad. Diagramas de fases
CLASIFICACIÓN DE LA MATERIA
1. Clasificación de la materia por su aspecto CLASIFICACIÓN DE LA MATERIA La materia homogénea es la que presenta un aspecto uniforme, en la cual no se pueden distinguir a simple vista sus componentes.
S O L U C IO N E S. Tabla. Tamaño de las Partículas
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: QUIMICA DOCENTE: OSCAR GIRALDO HERNANDEZ TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO
P/T = k V y n ctes. P y T ctes. P y n ctes. T y n ctes. presión. temperatura. escala. absoluta. empírica. absoluta atmosférica manométrica
presión volumen mol temperatura escala absoluta atmosférica manométrica absoluta empírica Boyle Charles Gay Lussac Avogadro PV = k T y n ctes V/T = k P y n ctes P/T = k V y n ctes V/n = Vm P y T ctes PV
Diagrama de fases de una sustancia pura: el agua
Diagrama de fases de una sustancia pura: el agua Apellidos, nombre Departamento Centro Lorena Atarés Huerta ([email protected]) Tecnología de Alimentos Escuela Técnica Superior de Ingeniería Agronómica
Tema 6. Líquidos, sólidos y disoluciones
Tema 6. Líquidos, sólidos y disoluciones Cuáles son las diferencias entre sólido, líquido y gas? Forma Gases Líquidos Sólidos Volumen Capacidad de movimiento Las moléculas que constituyen una sustancia
CRITERIOS DE ESPONTANEIDAD
CRITERIOS DE ESPONTANEIDAD Con ayuda de la Primera Ley de la Termodinámica podemos considerar el equilibrio de la energía y con La Segunda Ley podemos decidir que procesos pueden ocurrir de manera espontanea,
Tema VI: Transporte Celular
República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación U.E. Colegio Santo Tomás de Villanueva Departamento de Ciencias Cátedra: Ciencias Biológicas 3 Año Tema VI: Transporte
TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA
1. SUSTANCIAS PURAS Y MEZCLAS 2. LEYES PONDERALES DE LAS COMBINACIONES QUÍMICAS 2.1. LEY DE CONSERVACIÓN DE LA MATERIA Enunciada en 1783 por Lavoisier: La materia ni se crea ni se destruye, únicamente
Biología General V TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR
Biología General V TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR 81 Libardo Ariel Blandón Londoño Biología General TEMA V TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR Como habíamos dicho antes, toda célula
Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales
Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla LA CANTIDAD DE SUSTANCIA EN QUÍMICA UNIDAD 6: Los gases ideales 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA DE LA
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: QUIMICA DOCENTE: OSCAR GIRALDO HERNANDEZ TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO
UNIVERSIDAD DE CÓRDOBA FACULTAD DE EDUCACIÓN Y CIENCIAS HUMANAS LICENCIATURA EN CIENCIAS NATURALES Y EDUCACION AMBIENTAL V SEMESTRE
Química Analítica UNIVERSIDAD DE CÓRDOBA FACULTAD DE EDUCACIÓN Y CIENCIAS HUMANAS LICENCIATURA EN CIENCIAS NATURALES Y EDUCACION AMBIENTAL V SEMESTRE 2015 Una solución es una mezcla homogénea de dos o
UNIDAD III. ESTADO LIQUIDO.
REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD EXPERIMENTAL SUR DEL LAGO Jesús María Semprúm PROGRAMA DE INGENIERÌA DE ALIMENTOS UNIDAD CURRICULAR: QUIMICA GENERAL UNIDAD III. ESTADO LIQUIDO. Prof. David
Equilibrio físico. Prof. Jesús Hernández Trujillo. Facultad de Química, UNAM. Equilibrio físico/j. Hdez. T p.
Equilibrio físico/j. Hdez. T p. 1/34 Equilibrio físico Prof. Jesús Hernández Trujillo [email protected] Facultad de Química, UNAM Equilibrio físico/j. Hdez. T p. 2/34 Interacciones intermoleculares
Tema 18. Tema 18 (II) Disoluciones Tipos de disoluciones Tipos de disoluciones Propiedades físicas de las disoluciones
Tema 18 (II) 18.1 Tipos de disoluciones 18.2 Propiedades físicas de las disoluciones Disoluciones 18.3 Macromoléculas y coloides 1 2 18.1 Tipos de disoluciones Una DISOLUCIÓN es una mezcla homogénea de
UNIDAD EDUCATIVA COLEGIO SAN ANTONIO DEL TUY OCUMARE DEL TUY, ESTADO MIRANDA
UNIDAD EDUCATIVA COLEGIO SAN ANTONIO DEL TUY OCUMARE DEL TUY, ESTADO MIRANDA CURSO: 4 TO AÑO PROFESOR: CARLOS M. LANDAETA H. GUÍA N 2: SOLUCIONES. UNIDADES DE CONCENTRACIÓN. LEY DE RAOULT Y PROPIEDADES
EJERCICIOS RESUELTOS DISOLUCIONES
EJERIIOS RESUELTOS DISOLUIONES 1.- Se disuelven 20 g de NaOH en 560 g de agua. alcula a) la concentración de la en % en masa y b) su molalidad. Ar(Na) 2. Ar(O)16. Ar(H)1. NaOH 20 a) % NaOH.100 % NaOH.100
Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro
Práctica No 12 Determinación experimental de la Presión de vapor de un líquido puro 1. Objetivo general: Evaluar la entalpía de vaporización mediante el modelo de Clausius y Clapeyron. 2. Marco teórico:
PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO 1)
PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO 1) Un gas es sometido a tres procesos identificados con las letras X, Y y Z. Estos procesos son esquematizados en los gráficos que se presentan
La presión y sus efectos Presión en sólidos Actividad:
La presión y sus efectos Presión en sólidos Por ejemplo, si una persona desea clavar sobre una viga de madera, le resultará mucho más fácil utilizar un clavo cuya punta es fina que otro cuya punta se encuentra
Nombre completo: Fecha: Clave:
Instituto Evangélico América Latina EDUCACIÓN A DISTANCIA PROCESO DE MEJORAMIENTO DEL APRENDIZAJE PRIMER SEMESTRE Físico-Química Bachillerato por Madurez Punteo Nombre completo: Fecha: Clave: Instrucciones
GASES IDEALES. P. V = n. R. T
GASES IDEALES Lic. Lidia Iñigo A esta altura de tus estudios seguramente ya sabés que hay muchas sustancias formadas por moléculas, qué es una molécula, y que una sustancia determinada puede presentarse
5. Equilibrio químico. 5. Equilibrio químico
5. Equilibrio químico uímica (1S, Grado Biología) UAM 5. Equilibrio químico Contenidos Equilibrio químico Concepto Condición de uilibro químico Energía libre de Gibbs de reacción Cociente de reacción Constante
CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED
http://louyauns.blogspot.com/ E-mail: [email protected] [email protected] CONDICIONES DE FRONTERA DIFUSION ESTACIONARIA DE MASA A TRAVES DE UNA PARED CONDICIONES DE FRONTERA Distribución de la concentración
Las funciones de los seres vivos. Fisiología celular
Las funciones de los seres vivos Fisiología celular La célula, como unidad funcional de los seres vivos, está capacitada para llevar a cabo las funciones características de éstos: nutrición, reproducción
A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3) 4. (4)
POTENCIAL QUÍMICO Y CAMBIO DE FASES I. Potencial químico: gas ideal y su estado patrón. A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3)
PREPARACIÓN DE SOLUCIONES
PRÁCTICA 4 PREPARACIÓN DE SOLUCIONES OBJETIVOS: Determinar las concentraciones físicas y químicas de las soluciones Preparar soluciones a partir de reactivos sólidos y líquidos I. FUNDAMENTO TEÓRICO. Las
Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1
Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 100 100 180 Mg. José Castillo Ventura 1 Kelvin Grado Celcius Grado Farenheit Kelvin K = K K = C + 273,15 K = (F + 459,67)5/9 Grado Celcius
El agua posee una serie de propiedades características, derivadas de su estructura:
1.2.- El Agua Es la sustancia más abundante en los seres vivos, ya que supone un 70% de su masa, ya sea en forma de agua intracelular o extracelular: espacios intersticiales, sangre o savia vegetal. La
DISOLUCIONES UNIDAD IV. Licda. Miriam Marroquín Leiva
DISOLUCIONES UNIDAD IV 1 DISOLUCIÓN Es una mezcla homogénea de dos o más sustancias; el soluto y el disolvente. Es un término utilizado para describir un sistema en el cual una o más sustancias están mezcladas
Movimiento de las Moléculas a través de las membranas celulares. Dr. Ricardo Curcó
Movimiento de las Moléculas a través de las membranas celulares Dr. Ricardo Curcó Membrana celular Estructura que rodea la célula, y está compuesta principalmente por fosfolípidos (bicapa). Bicapa de Fosfolípidos:
Determinación de entalpías de vaporización
Prácticas de Química. Determinación de entalpías de vaporización I. Introducción teórica y objetivos........................................ 2 II. Desarrollo experimental...............................................
Membranas biológicas y transporte
Membranas biológicas y transporte Todas las células están rodeadas de una membrana que sirve de borde externo y separa el citoplasma del ambiente que le rodea Las membranas permite a la célula tomar retener,
MEZCLAS Y DISOLUCIONES - CUESTIONES Y EJERCICIOS
MEZCLAS Y DISOLUCIONES - CUESTIONES Y EJERCICIOS Concentración de una disolución 1º.- Calcula la masa de nitrato de hierro (II), Fe(NO 3 ) 2, existente en 100 ml de disolución acuosa al 6 % en masa. Dato:
2.2 SISTEMAS TERMODINÁMICOS
2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser
Tema: Equilibrio de fases en sistemas de multicomponentes B. Quintero /M.C. Cabeza. Diagrama de fases para un sistema de dos componentes
Diagrama de fases para un sistema de dos componentes En un tema anterior se describieron los diagramas de fases para compuestos puros y, en particular, el diagrama de fases del agua. Esos diagramas permitían
Química Disoluciones. open green road
Química Disoluciones s 2013 Has notado la diferencia que hay cuando tomamos un té con una cucharada de azúcar y cuando lo tomamos con tres cucharadas de azúcar? La diferencia radica en la concentración.
Teoría Cinético-Molecular. Fuerzas Intermoleculares y Líquidos y Sólidos. Fase. Fuerzas 18/08/2011
Fuerzas Intermoleculares y Líquidos y Sólidos Teoría Cinético-Molecular Gases (moleculas bien separadas) Líquidos y Sólidos (moléculas bien cercanas) Qué es una fase? Basado en Capítulo 11 de Química (Chang,
Contenido de Física y Química de la Primera Evaluación
Contenido de Física y Química de la Primera Evaluación Concepto Teoría Práctica Óxidos básicos (M+O) Nomenclatura. Tablas de formulación. Óxidos ácidos (NM+O) Nomenclatura. En tradicional se denominan
PROPIEDADES COLIGATIVAS DE LAS. Las propiedades de las soluciones se clasifican en dos grandes grupos:
PROPIEDADES COLIGATIVAS DE LAS I.- Introducción. 1 SOLUCIONES Los estudios teóricos y experimentales han permitido establecer, que los líquidos poseen propiedades físicas características. Entre ellas cabe
5. Equilibrio químico
5. Equilibrio químico Química (1S, Grado Biología) UAM 5. Equilibrio químico Contenidos Equilibrio químico Concepto Condición de uilibro químico Energía libre de Gibbs de reacción Cociente de reacción
GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289
GASES IDEALES PROBLEMA 10 Mezclas de los gases ciclopropano (C 3H 8) y oxígeno se utilizan mucho como anestésicos. a) Cuántos moles de cada gas están presentes en un recipiente de 1 litro a 23 C, si la
TEMA 7: Problemas de Química
TEMA 7: Problemas de Química Tema 7: Problemas de Química 1 1.- REACCIONES QUÍMICAS Una reacción química es un proceso en el que se unen varias sustancias llamadas reactivos y se transforman en otras sustancias
LA NUTRICIÓN EN LAS PLANTAS
LA NUTRICIÓN EN LAS PLANTAS LOS SERES VIVOS COMO SISTEMAS LA NUTRICIÓN COMO INTERCAMBIO DE MATERIA Y ENERGÍA LOS ORGANISMOS SEGÚN LA FORMA DE OBTENER LA ENERGÍA PROCESOS EN LA NUTRICIÓN EN LAS PLANTAS
SOLUCIONES SOLIDA LIQUIDA GASEOSA. mezclas homogéneas de dos sustancias: SEGÚN EL ESTADO FISICO DEL SOLVENTE
Soluciones SOLUCIONES mezclas homogéneas de dos sustancias: SOLUTO SOLVENTE SEGÚN EL ESTADO FISICO DEL SOLVENTE SOLIDA LIQUIDA GASEOSA Cuando un sólido se disuelve en un líquido las partículas que lo
Contenidos mínimos Física y Química 3º ESO
Contenidos mínimos Física y Química 3º ESO EL TRABAJO CIENTÍFICO Etapas del método científico. Magnitudes y unidades. Cambio de unidades. Sistema Internacional de Unidades (SI). Representación de gráficas
UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO
UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO 1. LOS ESTADOS DE AGREGACIÓN DE LA MATERIA. CAMBIOS DE ESTADO Una misma sustancia
UNIDADES DE ESTUDIO Y SUS CONTENIDOS Unidad 1: PROPIEDADES DE LOS FLUIDOS PUROS.
1. DATOS INFORMATIVOS ASIGNATURA: QUÌMICA-FÌSICA DEPARTAMENTO: CIENCIAS EXACTAS ELEMENTO DE COMPETENCIA: CÓDIGO: EXCT-22318 CARRERAS: PETROQUÌMICA NRC 4548 NIVEL: QUINTO ÁREA DEL CONOCIMIENTO: QUÌMICA
SOLUCIONES QUÍMICAS. Concentración:
SOLUCIONES QUÍMICAS Las soluciones son sistemas homogéneos formados básicamente por dos componentes. Solvente y Soluto. El segundo se encuentra en menor proporción. La masa total de la solución es la suma
LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas.
LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. Química 1º bachillerato La materia 1 1. TEORÍA ATÓMICA DE DALTON
