Redes Neuronales Artificiales
|
|
|
- Blanca Torres Fidalgo
- hace 9 años
- Vistas:
Transcripción
1
2 Algoritmo de retropropagación Back propagation Es utilizado para entrenar redes neuronales multicapa. Exige que la función de activación de las neuronas sea derivable y creciente. Las funciones comúnmente escogidas son: sigmoide, logística, tangente hiperbólica. Pretende minimizar el error cuyo dominio es el espacio de los pesos de las conexiones, descrito por la siguiente ecuación: E =1/2 ( y - p d ) pk k pk 2 2
3 Algoritmo de retropropagación Back propagation El algoritmo trabaja de la siguiente forma: Presenta un patrón de entrada a la red. Propaga dichas entradas hasta la capa de salida. Calcula el error en la capa de salida. Propaga dicho error hacia las neuronas ocultas (hacia atrás). Cambia los pesos de las conexiones. 3
4 Algoritmo de retropropagación Back propagation El procedimiento se hace para todos los patrones iterativamente hasta que la red converja a un valor del error deseado. Error SE 4
5 Algoritmo de retropropagación Back propagation Pasos del algoritmo: Inicializar aleatoriamente los pesos. Escoger aletoriamente un patrón de entrada x. Propagar la señal hacia adelante. Calcular el error en la capa de salida δ i (t)=f (x i (t))*(d i -y i ) 5
6 Algoritmo de retropropagación Back propagation Propagar dicho error hacia las neuronas ocultas (hacia atrás). δ j (t)=f (x i (t))*(σw ij δ i (t)) i Actualizar los pesos utilizando: donde: w ji (t+1)= w ji (t)+ w ji (t+1) w ji (t+1) = [ηδ j y i (t)+α w ji (t)] Repetir desde el paso 2 hasta alcanzar el error deseado. 6
7 Algoritmo de aprendizaje La base de este algoritmo es simplemente el método de descenso de gradiente que se emplea para optimizar una función de calidad de la ejecución de la red. Según las expresiones de los cómputos que realizan las U. P. podemos escribir la siguiente relación para la salida producida: 7
8 Algoritmo de aprendizaje Paso 0: Inicializar los pesos W ij y w jk, incluyendo los umbrales de manera aleatoria. Paso 1: Ejecutar los pasos del 2 al 9 hasta que la condición de parada sea falsa Paso 2: por cada patrón de entrenamiento < x k, ζ k > realizar pasos del 3 al 8 Paso 3: Aplicar el vector x k a la capa de entrada /* feed-forward phase (cálculo de las salidas V j,o i )*/ Paso 4: Calcular la salida de cada una de las neuronas de la capa escondida V j 8
9 9 Algoritmo de aprendizaje Paso 5: Calcular la salida de cada una de las n neuronas de la capa de salida O i ) ( ) ( = = j j ij i m k k jk j W V f O x w f V 1 1 ) ( ó 1 1 ) ( con x x x e e x f e x f + = + =
10 Algoritmo de aprendizaje /* Error backpropagation phase */ Paso 6: Para cada unidad de salida O i : i = ( ζ i O i ) f '( j W V ij j ) W ij = η( i) V j 10
11 Algoritmos de aprendizaje Paso 7: Para cada unidad de la capa escondida V j : sum i = w jk n = η( j) x i ( i) W j = ( sum i) f '( k m k ij w jk x k ) 11
12 Algoritmo de aprendizaje Paso 8: actualizar los pesos sinápticos : w W jk ij = w = W ij jk + w + W ij jk Paso 9: Calcular la condición de parada: (por ejemplo) E( w) = 1 2 p patrones ( n µ = 1 i= 1 ( ζ µ i O µ i ) 2 ) 12
13 Algoritmo Backpropagation Se presentan ejemplos a la red Si hay un error, los pesos son ajustados para reducirlo Dividir el error entre los pesos contribuyentes Minimizar el cuadrado del error Si el error es Erri Ti - Oi en el nodo de salida, la regla para actualizar el peso del nodo j al nodo i es: W j,i W j,i + α x aj x Err x g (ini), g derivada de g Si i = Erri g (ini), la regla de actualización es: Wj,i Wj,i + α x aj x i 13
14 Algoritmo Backpropagation Para actualizar las conexiones entre las unidades de entrada y las unidades ocultas, propagamos el error hacia atrás el nodo j es responsable por una fracción del error i en cada uno d elos nodos de salida al que se conecta la regla de propagación para los valores es: j g (inj) i Wj,i i la regla para actualizar los pesos entre unidades de entrada y ocultas es: Wk,j Wk,j + α x Ik x j 14
15 Algoritmo Backpropagation Calcular los valores de para las unidades de salida usando el valor observado empezando con el nivel de salida, repetir los sguientes pasos para cada nivel en la red, hasta que se alcance el primer nivel oculto: propagar los valores hacia el nivel anterior actualizar los pesos entre los dos niveles 15
16 Algoritmo Backpropagation function BP(red,patrones,α) returns retornar red con pesos estables inputs: red, una red multinivel repeat patrones = {entradas,salidas} α, tasa de aprendizaje for each p in patrones do /* Calcular salida del patrón p */ O RUN-NETWORK(red, Ie) /* Calcular el error y D para las neuronas en el nivel de salida */ Erre Te - O /* Actualizar pesos primero en el nivel de salida */ W j,i W j,i + α x aj x Err x g (ini) for each nivel in red do /* Calcular el error en cada nodo */ j g (inj) i W j,i i /* Actualizar pesos primero en el nivel */ Wk,j Wk,j + α x Ik x j end end until network has converged return network 16
17 Redes de Hamming Cuando las entradas a una RNA son binarias, las redes de Hamming son fundamentales. Una red Hamming selecciona un patrón ganador entre los almacenados {b m, m=1 k}. Es decir, escoge aquel que posee la menor distancia hamming con los datos de entrada. <b m,x>= ϕ (b k -x k ) <b m,x>= ϕ (b k -x k ) 2 La distancia hamming es el número de bits que no concuerdan entre los vectores de entrada y el patrón seleccionado. 17
18 Redes de Hamming Sea la red de la figura siguiente que solo acepta entradas binarias: 18
19 Redes de Hamming Sea el conjunto de patrones: Y sea que la entrada dada es: 0110 por tanto la distancia hamming es: 19
20 Redes de Hamming Primer patrón: Dh = Sum { }= 3 Segundo patrón: Dh = Sum { }= 1 Tercer patrón: Dh = Sum { }= 1 Cuarto patrón: Dh = Sum { }= 3 20
21 Redes de Hamming En este caso, los mejores patrones son el segundo y el tercero. La distancia Hamming, también se define como: Numero total de bits que concuerdan - número de bits que no concuerdan. 21
22 Redes de Hamming Primer patrón: Dh = 1-3 = -2 Segundo patrón: Dh = 3-1 = 2 Tercer patrón: Dh = 3-1 = 2 Cuarto patrón: Dh = 1-3 = -2 22
23 Redes de Hamming Para el tipo de distancia anterior, siguen siendo el segundo y tercer patrón como los mejores. Considere la red siguiente, defina un conjunto de patrones (binarios) y determine la distancia de hamming. 23
24 Redes de Hamming 24
25 Considere la red siguiente, defina un conjunto de patrones (binarios) y determine la distancia de hamming. 25
26 26
Técnicas de inteligencia artificial. Aprendizaje: Perceptrón multi-capa
Técnicas de inteligencia artificial Aprendizaje: Perceptrón multi-capa Índice Regla delta Modelo computacional Neuronas e hiperplanos Entrenamiento como ajuste supervisado No-separabilidad lineal Backpropagation
Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani
Inteligencia Artificial Aprendizaje neuronal Ing. Sup. en Informática, 4º Curso académico: 20/202 Profesores: Ramón Hermoso y Matteo Vasirani Aprendizaje Resumen: 3. Aprendizaje automático 3. Introducción
Tema 8: Redes Neuronales
Tema 8: Redes Neuronales Pedro Larrañaga, Iñaki Inza, Abdelmalik Moujahid Intelligent Systems Group Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco http://www.sc.ehu.es/isg/
Redes Neuronales Artificiales
Neuronales Artificiales Eduardo Morales, Hugo Jair Escalante Coordinación de Ciencias Computacionales Instituto Nacional de Astrofísica, Óptica y Electrónica Septiembre, 2015 (INAOE) Septiembre, 2015 1
Redes de Neuronas de Base Radial
Redes de Neuronas de Base Radial 1 Introducción Redes multicapa con conexiones hacia delante Única capa oculta Las neuronas ocultas poseen carácter local Cada neurona oculta se activa en una región distinta
Redes de Neuronas Recurrentes Computación con Inspiración Biológica
Redes de Neuronas Recurrentes Computación con Inspiración Biológica Grupo de Computación Evolutiva y Redes Neuronales Departamento de Informática Universidad Carlos III de Madrid Redes Recurrentes Introducción
Estado civil: {casado/a, soltero/a, divorciado/a}
Universidad Rey Juan Carlos Curso 2011 2012 Inteligencia Artificial Ingeniería Informática Hoja de Problemas 9 1. Un banco quiere clasificar los clientes potenciales en fiables o no fiables. El banco tiene
Perceptrón multicapa. Diego Milone y Leonardo Rufiner Inteligencia Computacional Departamento de Informática FICH-UNL
Perceptrón multicapa Diego Milone y Leonardo Rufiner Inteligencia Computacional Departamento de Informática FICH-UNL Organización Un poco de historia... Cómo resolver el problema XOR? Métodos de gradiente
Análisis de Datos. Perceptrón multicapa. Profesor: Dr. Wilfrido Gómez Flores
Análisis de Datos Perceptrón multicapa Profesor: Dr. Wilfrido Gómez Flores 1 Introducción De acuerdo con el consejo de la IEEE Neural Networks de 1996, inteligencia artificial (IA) es el estudio de cómo
Tema: Aprendizaje Supervisado.
Sistemas Expertos e Inteligencia Artificial. Guía No. 9 1 Tema: Aprendizaje Supervisado. Facultad: Ingeniería Escuela: Computación Asignatura: Sistemas Expertos e Inteligencia Artificial Objetivos Específicos
Tema 7 Redes Neuronales Recurrentes
Universidad Carlos III de Madrid OpenCourseWare Redes de Neuronas Artificiales Inés M Galván -José Mª Valls Tema 7 Redes Neuronales Recurrentes REDES DE NEURONAS ARTIFICIALES INÉS M GALVÁN, JOSÉ Mª VALLS
Tema 9: Introducción a las redes neuronales
D. Balbontín Noval F. J. Martín Mateos J. L. Ruiz Reina Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Neuronas artificiales: inspiración biológica El aprendizaje en
Tema 2 Primeros Modelos Computacionales
Universidad Carlos III de Madrid OpenCourseWare Redes de Neuronas Artificiales Inés M. Galván - José Mª Valls Tema 2 Primeros Modelos Computacionales 1 Primeros Modelos Computacionales Perceptron simple
Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores
Análisis de Datos Regresión logística Profesor: Dr. Wilfrido Gómez Flores 1 Regresión logística Supóngase que se tiene una variable binaria de salida Y, y se desea modelar la probabilidad condicional P(Y=1
REDES NEURONALES ADAPTABLES
REDES NEURONALES ADAPTABLES Unidad 3: Redes neuronales artificiales y modelos de entrenamiento SubTemas 3.2 Perceptron simple Arquitectura Regla delta Multi Layer Perceptrón 3.3 Redes Neuronales Adaptables
Capítulo 3 REDES NEURONALES Y SU APLICACIÓN EN LA INGENIERÍA SÍSMICA III. REDES NEURONALES Y SU APLICACIÓN EN LA INGENIERÍA SÍSMICA
III. REDES NEURONALES Y SU APLICACIÓN EN LA INGENIERÍA SÍSMICA 32 III. REDES NEURONALES ARTIFICIALES Y SU APLICACIÓN EN LA INGENIERÍA SÍSMICA III.1 CONCEPTOS GENERALES En sus orígenes las Redes Neuronales
Redes neuronales en control de sistemas
Redes neuronales en control de sistemas Marco Teórico Las redes neuronales tratan de emular ciertas características propias de los humanos, una muy importante es la experiencia. El ser humano es capaz
Introducción a las Redes Neuronales. Tomás Arredondo Vidal Depto. Electronica UTFSM 4/5/12
Introducción a las Redes Neuronales Tomás Arredondo Vidal Depto. Electronica UTFSM 4/5/2 Introducción a las Redes Neuronales Contenidos Introducción a las neuronas Introducción a las redes neuronales artificiales
Reconocimiento automático de palabras en documentos históricos usando redes neuronales convolucionales
Reconocimiento automático de palabras en documentos históricos usando redes neuronales convolucionales Dra. Ma. de Guadalupe García Hernández Departamento de Ingeniería Electrónica Objetivo general Aplicar
ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES
ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES 1. Concepto de red neuronal artificial Una red neuronal artificial (RNA) es un modelo matemático que intenta reproducir el modo de funcionamiento y
Redes Neuronales Artificiales
Redes Neuronales Artificiales Alejandro Osses Vecchi 11 de julio de 2009 1. Introducción Comenzaremos con una definición simple y general de Red Neuronal para, en las próximas secciones, explicar y profundizar
OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Preguntas y Ejercicios para Evaluación: Tema 4
OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Preguntas y Eercicios para Evaluación: Tema 4 1. Indique características del aprendizae no supervisado que no aparezcan en el
Redes Neuronales. Parte II. Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán Mg. Ing. Gustavo E. Juárez
Redes Neuronales Parte II Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán Mg. Ing. Gustavo E. Juárez UNIDAD TEMÁTICA : REDES NEURONALES Introducción. De/iniciones. Topologías
Inteligencia Artificial. Redes Neurales Artificiales
Inteligencia Artificial Redes Neurales Artificiales Redes Neural Natural Estructura celular del del cerebro donde residen las las capacidades intelectuales del del hombre Neurona: Soma: Dendritas: Sinapsis:
Self Organizing Maps. Self Organizing Maps. SOM/KOHONEN Network Mapas Auto-organizativos. Estructura de la Red. Estructura de la Red
SOM/KOHONEN Network Mapas Auto-organizativos Capitulo 6 Análisis Inteligente de datos Self Organizing Maps La red SOM es creada por Teuvo Kohonen en la década de los 8, rápidamente paso a ser una de las
Simulación de Redes Neuronales Artificiales: Una Herramienta para la Docencia en Castellano
Simulación de Redes Neuronales Artificiales: Una Herramienta para la Docencia en Castellano Anita Alegre López 1, Sonia Mariño 1, David La Red 1 1 Dpto. Informática. Universidad Nacional del Nordeste.
Planeamiento de condensadores en sistemas de distribución radial usando entrenamiento neuronal
Planeamiento de condensadores en sistemas de distribución radial usando entrenamiento neuronal Planning of Condensers on Radial Distribution Sistem Using Neuronal Training MAURICIO GRANADA ECHEVERRI Ingeniero
Redes Multicapa. Compuerta XOR
Redes Multicapa LIMITACIÓN DEL PERCEPTRÓN El perceptrón puede resolver solamente problemas que sean linealmente separables, esto es problemas cuyas salidas estén clasificadas en dos categorías diferentes
Las Redes Neuronales Artificiales y su importancia como herramienta en la toma de decisiones. Villanueva Espinoza, María del Rosario CAPÍTULO III
herramienta en la toma de decisiones Villanueva Espinoza, María CAPÍTULO III III ELEMENTOS DE UNA RED NEURONAL ARTIFICIAL Las redes neuronales son modelos que intentan reproducir el comportamiento del
3. Estructuras iterativas. 1.2 Análisis: For. 1.1 Problemas iterativos. Fundamentos de Informática Dpto. Lenguajes y Sistemas Informáticos
3. Estructuras iterativas Índice Estructura iterativas Fundamentos de Informática Dpto. Lenguajes y Sistemas Informáticos Curso 2012 / 2013 1. Análisis de algoritmos iterativos 2. Ej11: 3. Ej12: 4. Ej13:
UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO CENTRO UNIVERSITARIO UAEM ATLACOMULCO REPORTE DE INVESTIGACION
UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO CENTRO UNIVERSITARIO UAEM ATLACOMULCO REPORTE DE INVESTIGACION Qué es el momento en una red backpropagation? U.A. REDES NEURONALES INTEGRANTES: JESUS BARRIOS CRESCENCIO
María Gabriela Vintimilla Sarmiento Darwin Alulema
Desarrollo e Implementación de una Aplicación que Traduzca el Abecedario y los Números del uno al diez del Lenguaje de Señas a Texto para Ayuda de Discapacitados Auditivos Mediante Dispositivos Móviles
Redes neuronales con funciones de base radial
Redes neuronales con funciones de base radial Diego Milone y Leonardo Rufiner Inteligencia Computacional Departamento de Informática FICH-UNL Organización: RBF-NN Motivación y orígenes RBF Arquitectura
Análisis de Datos. Validación de clasificadores. Profesor: Dr. Wilfrido Gómez Flores
Análisis de Datos Validación de clasificadores Profesor: Dr. Wilfrido Gómez Flores 1 Introducción La mayoría de los clasificadores que se han visto requieren de uno o más parámetros definidos libremente,
MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación)
Aprendiae Automático y Data Mining Bloque III MÉTODOS DE APRENDIZAJE INDUCTIVO (continuación) REDES NEURONALES 2 Redes neuronales (I) Red neuronal: método de aprendiae inductivo inspirado en la estructura
TUTORIAL SOBRE REDES NEURONALES APLICADAS EN INGENIERIA ELECTRICA Y SU IMPLEMENTACIÓN EN UN SITIO WEB
TUTORIAL SOBRE REDES NEURONALES APLICADAS EN INGENIERIA ELECTRICA Y SU IMPLEMENTACIÓN EN UN SITIO WEB MARIA ISABEL ACOSTA BUITRAGO CAMILO ALFONSO ZULUAGA MUÑOZ UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD
APRENDIZAJE Y ENTRENAMIENTO. (Neural Nets Capt. 8; Hilera Capt. 3)
Tema 2: Aprendizaje y Entrenamiento Sistemas Conexionistas 1 2.- Aprendizaje o Entrenamiento. 2.1.- Aprendizaje Automático. 2.2.- Tipos de aprendizaje. APRENDIZAJE Y ENTRENAMIENTO. (Neural Nets Capt. 8;
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE. Sesión 10: Redes Bayesianas Inferencia. 1era parte. [Neapolitan 90]
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 10: Redes Bayesianas Inferencia 1era parte [Neapolitan 90] Inferencia en Redes Bayesianas Introducción Clases de algoritmos 1era Parte Propagación
Introducción a las Redes Neuronales
Introducción a las Redes Neuronales Excepto en las tareas basadas en el cálculo aritmético simple, actualmente, el cerebro humano es superior a cualquier computador: Reconocimiento de imágenes, Interpretación
Aprendizaje Automatizado. Redes Neuronales Artificiales
Aprendizaje Automatizado Redes Neuronales Artificiales Introducción Una forma de emular características propias de los humanos: memorizar y asociar hechos. Se aprende de la experiencia. El cerebro humano
Primer Hackathon Reto de IA de Google en la UGR Redes neuronales. El perceptrón. Pedro A. Castillo Valdivieso
Primer Hackathon Reto de IA de Google en la UGR Redes neuronales. El perceptrón Pedro A. Castillo Valdivieso Depto. Arquitectura y Tecnología de Computadores Universidad de Granada http://atc.ugr.es/pedro/gaicm1
Tema: Red Neuronal Hopfield. Reconocimiento de Patrones.
Sistemas Expertos e Inteligencia Artificial. Guía No. 10 1 Facultad: Ingeniería Escuela: Computación Asignatura: Sistemas Expertos e Inteligencia Artificial Tema: Red Neuronal Hopfield. Reconocimiento
PROJECT GLASS : REALIDAD AUMENTADA, RECONOCIMIENTO DE IMÁGENES Y RECONOCIMIENTO DE VOZ.
PROJECT GLASS : REALIDAD AUMENTADA, RECONOCIMIENTO DE IMÁGENES Y RECONOCIMIENTO DE VOZ. Lucas García Cillanueva Paloma Jimeno Sánchez-Patón Leticia C. Manso Ruiz PROJECT GLASS Dentro de Google Labs Gafas
Introducción. Autoencoders. RBMs. Redes de Convolución. Deep Learning. Eduardo Morales INAOE (INAOE) 1 / 60
Deep Learning Eduardo Morales INAOE (INAOE) 1 / 60 Contenido 1 2 3 4 (INAOE) 2 / 60 Deep Learning El poder tener una computadora que modele el mundo lo suficientemente bien como para exhibir inteligencia
Clasificación de Datos de Olor de Café provenientes de una Nariz Electrónica Utilizando Redes Neuronales
Clasificación de Datos de Olor de Café provenientes de una Nariz Electrónica Utilizando Redes Neuronales Cruz Teresa Rosales Hernández 1 y Orion Fausto Reyes Galaviz 2 Universidad Autónoma de Tlaxcala-
Análisis de Datos. Combinación de clasificadores. Profesor: Dr. Wilfrido Gómez Flores
Análisis de Datos Combinación de clasificadores Profesor: Dr. Wilfrido Gómez Flores 1 Introducción Diversos algoritmos de clasificación están limitados a resolver problemas binarios, es decir, con dos
Reconocimiento de Patrones
Reconocimiento de Patrones Técnicas de validación (Clasificación Supervisada) Jesús Ariel Carrasco Ochoa Instituto Nacional de Astrofísica, Óptica y Electrónica Clasificación Supervisada Para qué evaluar
CONTROL PREDICTIVO CON REDES NEURONALES COMO MODELO, UTILIZANDO EL METODO DE NEWTON-RAPHSON PARA LOGRAR LA MINIMIZACION DE LA FUNCION DE COSTO
Scientia et Technica Año XV, No 41, Mayo de 2009. Universidad Tecnológica de Pereira. ISSN 0122-1701 203 CONTROL PREDICTIVO CON REDES NEURONALES COMO MODELO, UTILIZANDO EL METODO DE NEWTON-RAPHSON PARA
Inteligencia Artificial
Mayo 21 de 2008 El estudiante de la Pontificia Universidad Javeriana, como agente de su propia formación, es corresponsable de la Identidad Institucional, uno de cuyos cimientos es tener como hábito un
Ejercicio 1: [20 puntos: respuesta acertada = +1, respuesta incorrecta = 1]
Ejercicio 1: [20 puntos: respuesta acertada = +1, respuesta incorrecta = 1] Complete las frases que se muestran a continuación con las alternativas especificadas. En la siguiente tabla, indique "V" o "F"
PREDICCIÓN DE DEMANDA INSATISFECHA MEDIANTE EL USO DE REDES NEURONALES
PREDICCIÓN DE DEMANDA INSATISFECHA MEDIANTE EL USO DE REDES NEURONALES Guillermo MOLERO CASTILLO - [email protected] Maestría en Ingeniería de la Computación, Universidad Nacional Autónoma de México
Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco
Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales Elkin García, Germán Mancera, Jorge Pacheco Presentación Los autores han desarrollado un método de clasificación de música a
Fuzzification. M.C. Ana Cristina Palacios García
Fuzzification M.C. Ana Cristina Palacios García Introducción Es el proceso donde las cantidades clásicas se convierten a difusas. Requiere el identificar la incertidumbre presente en valores finitos o
3.7 IDENTIFICACION DE UN SISTEMA DINÁMICO NO LINEAL Descripción del Problema: La identificación de un sistema consiste en
301 3.7 IDENTIFICACION DE UN SISTEMA DINÁMICO NO LINEAL 3.7.1 Descripción del Problema: La identificación de un sistema consiste en determinar una función que relacione las variables de entrada con las
CRITERIOS DE SELECCIÓN DE MODELOS
Inteligencia artificial y reconocimiento de patrones CRITERIOS DE SELECCIÓN DE MODELOS 1 Criterios para elegir un modelo Dos decisiones fundamentales: El tipo de modelo (árboles de decisión, redes neuronales,
Teoría de grafos y optimización en redes
Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,
1. GRAFOS : CONCEPTOS BASICOS
1. GRAFOS : CONCEPTOS BASICOS Sea V un conjunto finito no vacio y sea E V x V. El par (V, E) es un grafo no dirigido, donde V es un conjunto de vértices o nodos y E es un conjunto de aristas. Denotaremos
APLICACIÓN DE REDES NEURONALES PARA LA PREDICCIÓN DE PROPIEDADES TERMODINÁMICAS
APLICACIÓN DE REDES NEURONALES PARA LA PREDICCIÓN DE PROPIEDADES TERMODINÁMICAS Micael Gerardo Bravo Sánchez Instituto Tecnológico de Celaya [email protected] Marco Carlo Guerrero Soto Instituto
Capítulo 2. Las Redes Neuronales Artificiales
Capítulo 2. Las Redes Neuronales Artificiales 13 Capitulo 2. Las Redes Neuronales Artificiales 2.1 Definición Redes Neuronales Artificiales El construir una computadora que sea capaz de aprender, y de
Estructuras de datos avanzadas
Lucas Tavolaro Ortiz (UBA) - [email protected] 4 de agosto de 2014 Contenidos Introducción STL de C++ Mínimo en intervalos (RMQ) caso estático: sparse tables caso dinámico: segment tree Suma en intervalos
CAPÍTULO 4: ALGORITMOS DE APRENDIZAJE
Capítulo 4 Algoritmos de Aprendizaje 26 CAPÍTULO 4: ALGORITMOS DE APRENDIZAJE En este capítulo se proporcionan las descripciones matemáticas de los principales algoritmos de aprendizaje para redes neuronales:
Extracción de Bordes
Visión por Computadora Unidad IV Extracción de Bordes Rogelio Ferreira Escutia Contenido 1) Conceptos sobre Bordes 2) Extracción de bordes por Derivadas 3) Operadores de Primera Derivada 1) Conceptos sobre
Introducción a las Redes de Neuronas
Introducción a las Redes de Neuronas Departamento de Informática Universidad Carlos III de Madrid Avda. de la Universidad, 30. 89 Leganés (Madrid) Introducción de Redes de Neuronas Introducción Fundamentos
Resolución de sistemas de ecuaciones lineales
Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular
UNIVERSIDAD NACIONAL DE INGENIERÍA
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE CONTROL BASADO EN REDES NEURONALES PARA EL PROCESO DE DESTILACIÓN DE ALCOHOLES
Aprendizaje Automatizado. Redes Neuronales Artificiales
Aprendizaje Automatizado Redes Neuronales Artificiales Introducción Una forma de emular características propias de los humanos: memorizar y asociar hechos. Se aprende de la experiencia. El cerebro humano
Tema 15: Combinación de clasificadores
Tema 15: Combinación de clasificadores p. 1/21 Tema 15: Combinación de clasificadores Abdelmalik Moujahid, Iñaki Inza, Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial
Reconocimiento de rostros con Redes Neuronales Convolucionales
Reconocimiento de rostros con Redes Neuronales Convolucionales Redes Neuronales (66.63) FIUBA Mario Azcueta Reconocimiento de rostros DETECTAR un rostro en una escena IDENTIFICAR un rostro en particular
Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones
Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos
Multiplicación de matrices simétricas
Multiplicación de matrices simétricas La traspuesta de una matriz A n n es definida como una matriz A T n n tal que A T [i, j] =A[j, i] paracadai, j 2{1,...,n} Además, una matriz A es simétrica si A =
Compresión de Imágenes para Diagnóstico Médico utilizando Redes Neuronales
Compresión de Imágenes para Diagnóstico Médico utilizando Redes Neuronales Lic. Lanzarini Laura 1 A.C. María Teresa Vargas Camacho 2 Dr. Amado Badrán 3 Ing. De Giusti Armando. 4 Laboratorio de Investigación
Procesos estocásticos Cadenas de Márkov
Procesos estocásticos Cadenas de Márkov Curso: Investigación de Operaciones Ing. Javier Villatoro PROCESOS ESTOCASTICOS Procesos estocásticos Es un proceso o sucesión de eventos que se desarrolla en el
Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d
Cálculo Numérico - CO32 Ejercicios Decida cuáles de las siguientes proposiciones son verdaderas y cuáles son falsas Si una proposición es verdadera, demuéstrela, y si es falsa dé un contraejemplo: a Sea
3. Estructuras iterativas
3. Estructuras iterativas Fundamentos de Informática Dpto. Lenguajes y Sistemas Informáticos Curso 2012 / 2013 Índice Estructura iterativas 1. Análisis de algoritmos iterativos 2. Ej11: While 3. Ej12:
Métodos de gradiente. Métodos de Krylov
Métodos de gradiente. Métodos de Krylov Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2012-2013 (UPV) Métodos de gradiente. Métodos de Krylov Curso
Análisis de imágenes digitales
Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en texturas INTRODUCCIÓN La textura provee información sobre la distribución espacio-local del color o niveles de intensidades
Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR
Tareas de la minería de datos: clasificación CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja
ESTUDIO DEL GRUPO SOBRE TÉCNICAS EMERGENTES (Año 2007)
ESTUDIO DEL GRUPO SOBRE TÉCNICAS EMERGENTES (Año 2007) Resumen Las redes neuronales y los sistemas basados en lógica borrosa son las nuevas herramientas de uso más difundido en la actualidad, encontrándose
Sistema de Detección de Intrusos para ataques Cross-Site Scripting
Sistema de Detección de Intrusos para ataques Cross-Site Scripting García Ramírez Israel & Fonseca Casao Sergio Israel Directores: M. en C. Ramírez Morales Mario Augusto & M. en C. Saucedo Delgado Rafael
Redes Neuronales Artificiales
Redes Neuronales Artificiales Claudio Javier Tablada Germán Ariel Torres Resumen. Una Red Neuronal Artificial es un modelo matemático inspirado en el comportamiento biológico de las neuronas y en la estructura
