Análisis de propiedades de desempeño de un ligante asfáltico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de propiedades de desempeño de un ligante asfáltico"

Transcripción

1 Análisis de propiedades de desempeño de un ligante asfáltico Claudia L. Pacheco Flores* Horacio Delgado Alamilla** Paul Garnica Anguas** * Asociación Mexicana del Asfalto (AMAAC). ** Instituto Mexicano del Transporte (IMT). RESUMEN. Con el incremento en los niveles e intensidad de tránsito en las carreteras, en general, es necesario utilizar materiales asfálticos modificados. En la actualidad se cuenta con la especificación AASHTO M320 que fue desarrollada durante el Programa Estratégico de Investigación de Carreteras (SHRP por sus siglas en inglés), dicha especificación está basada principalmente en el estudio de ligantes asfálticos con un comportamiento termo-reológicamente simple, por lo cual no está adaptada para ligantes asfálticos modificados. Para este tipo de materiales es necesarios realizar ensayos complementarios, los cuales permitan evaluar la susceptibilidad del asfalto a propiedades de desempeño como son la deformación permanente y la fatiga. En el presente estudio presenta dos metodologías de ensayo para la determinación de propiedades de desempeño del ligante asfaltico. Ambos ensayos son realizados en el Reómetro de Corte Dinámico (DSR). El primer ensayo es el Multiple Stress Creep Recovery (MSCR), el cual se realiza en muestras asfálticas envejecidas en el horno RTFO. Este ensayo permite estimar la susceptibilidad del ligante asfáltico a la deformación permanente (roderas). La prueba MSCR se realiza a dos niveles de esfuerzo a una temperatura especificada, el ensayo es tipo impulsión (ciclo de carga seguido de ciclo de reposo). El parámetro a determinar es el Jnr Compliance Creep No Recuperable. El segundo es un ensayo a carga cíclica repetida (RCL) el cual se realiza en muestras envejecidas en el horno RTFO. Este ensayo permite determinar la resistencia de un ligante asfáltico a la fatiga mediante una solicitación repetida que simula el tránsito. La prueba MSCR se puede realizar a dos niveles de solicitación a una temperatura especificada, el ensayo es tipo continuo. El análisis es realizado mediante la Relación de Energía Disipada (DER). En el presente estudio se ejemplifican estas dos metodologías utilizando un asfalto modificado y sin modificar y se discute la pertinencia de los ensayos. 1. INTRODUCCIÓN El asfalto es un material muy versátil que tiene muchas aplicaciones industriales. Aproximadamente 100 millones de toneladas métricas de asfalto son usadas anualmente a nivel mundial y aproximadamente el 85% de todo el asfalto es usado es usado en aplicaciones de pavimentación. En el continente Americano aproximadamente 34 toneladas métricas son las que se utilizan por año (3). De aquí la importancia de conocer el comportamiento que tiene el asfalto cuando es sometido a cambios climáticos y a niveles de tráfico. En este estudios se analiza un asfalto modificado y sin modificar por medio de la metodología del ensayo Multiple Stress Creep Recovery y la metodología Resistencia a la fatiga de un ligante asfáltico sometido a carga cíclica repetida usando un reómetro de corte dinámico, RCL por sus siglas en ingles. En los antecedentes se habla de la clasificación PG, de la modificación del asfalto, y lo que llevo a la investigación a realizar estas nuevas metodologías. En materiales y métodos se describe el objetivo de cada una de las metodologías y se explica las condiciones en las que se realiza cada ensayo, también se describe el procedimiento; para MSCR se explica de acuerdo a la especificación MP70 y MP19 de AASHTO y para RCL acuerdo a NCHRP 459. En los resultados exponen tablas y las gráficas de lo que se obtuvo en el ensayo de MSCR y en el ensayo de RCL. Al final de este estudio se mencionan las conclusiones. 2. ANTECEDENTES 2.1. Clasificación PG. Reconociendo las deficiencias en los sistemas de clasificación de viscosidad y penetración las agencias estatales de carreteras decidieron financiar un programa de investigación para desarrollar un nuevo sistema de la especificación del asfalto para pavimento. En 1987 el Programa Estratégico de Investigación de Carreteras (SHRP por sus siglas en inglés) comenzó a desarrollar nuevos ensayos relacionados con el desempeño para medir las propiedades físicas del de los ligantes asfálticos. Un resultado importante de este esfuerzo de investigación con una inversión de 50 millones de dólares fue la especificación para ligantes asfálticos con grado de desempeño. Ésta especificación fue diseñada tanto para asfaltos no modificados así como para modificados. El sistema de ligante asfáltico PG incluye los siguientes equipos de ensayos: viscosímetro rotacional (RV por sus siglas en inglés) para medir las propiedades a altas temperaturas, el reómetro de corte dinámico (DSR por sus siglas en inglés) para medir propiedades a altas e intermedias temperaturas, el reómetro de viga a flexión (BBR por sus siglas en ingles) y el ensayo de tensión directa (DTT por sus siglas en inglés) para medir propiedades a bajas temperaturas y los procedimientos de envejecimiento a corto y largo plazo. El Horno Giratorio de Película Delgada (RTFO por sus siglas en inglés) simula el endurecimiento durante la etapa constructiva, el contenedor de envejecimiento a presión (PAV por sus siglas en inglés) simula el envejecimiento durante su vida útil. La especificación de ligantes asfálticos grado PG y los métodos para caracterizar los ligantes asfálticos están

2 descritos en AASHTO M320 (1). En la Figura 1. Se muestran los equipos de ensayos mencionados anteriormente. Figura1. Ensayos de asfaltos grado PG con envejecimiento. 2.2 Modificación de asfalto Un material asfáltico sin modificar no tiene los requisitos de desempeño para la construcción de caminos, los cuáles son cada vez más sometidos a cargas pesadas, tráfico pesado y a varias condiciones climáticas. La modificación ha sido utilizada como una de las alternativas para mejorar las propiedades del ligante asfáltico (2). Generalmente se piensa que todos los ligantes asfálticos modificados son producidos de varias maneras, incluyendo polimerización y modificación química, o por medio de la incorporación de un material que cambie su comportamiento. Los polímeros pueden ser clasificados en función de sus propiedades físicas. Las encuestas realizadas durante la investigación NCHRP 9-10 (llamado Superpave Protocols for Modified Asphalt Binders ) en 1996 indican que los elastómeros, y más específicamente polímeros SBS, fueron los modificadores más comúnmente usados. En sus respuestas, la mayoría de los usuarios indicaron que ellos seleccionaban modificadores elastoméricos para ayudar a mitigar la deformación permanente o rutting de los pavimentos asfálticos. La mitigación de fatiga y el fisuramiento por baja temperatura fue también visto como un beneficio potencial. (3) Grado de Desempeño del ligante asfáltico usando el ensayo Multiple Stress Creep Recovery (MSCR). El objetivo de la especificación PG para ligantes asfálticos fue el uso de grados de desempeño específico para un deterioro y relacionados con el clima y las cargas de tráfico. Por lo tanto las mediciones de las pruebas deben ser hechas a temperaturas y velocidades de carga consistentes con las condiciones existentes del pavimento. Con este enfoque, los criterios alta temperatura quedan iguales para el módulo de corte dinámico (G*/seno δ, 1.00 kilopascal para ligantes sin envejecer y 2.20 kilopascal para ligantes envejecidos en RTFO) sin importar la ubicación del pavimento. Sin embargo, la temperatura de prueba en donde estos deben cumplirse se deriva de la temperatura actual del pavimento. Este concepto funcionaba muy bien para pavimentos con velocidades convencionales y volúmenes de tráfico moderado, la investigación indicó que se requería un ajuste para pavimentos velocidades bajas de carga y volúmenes altos de tráfico. No se hizo ningún cambio en los criterios y/o en las condiciones de prueba para reflejar un cambio el tiempo de carga y el volumen de tráfico, simplemente se hizo un ajuste en base a la velocidad y volumen de tráfico al hacer un grade-bumping o realizar los ensayos a una temperatura mayor que las indicadas por el clima (3) Incremento por intensidad de tránsito y velocidad de operación (Grado Bumping) Cuando el tráfico de camiones es muy pesado o la velocidad es muy lenta, tal como en intersecciones, carriles de ascenso, áreas de estacionamiento, entre otras, grados de ligante más rígidos pueden ser justificados. El incremento del grado PG generalmente se realiza cuando el tráfico de camiones es lento o pesado. La especificación superior o la temperatura de diseño del pavimento puede ser aumentada por uno o dos grados. Por ejemplo tráfico de camiones pesado y lento pueden justificar un incremento de 2 grados, desde un PG a un PG Note que la temperatura de especificación más baja sigue siendo la misma. Los típicos valores del incremento podrían incluir: 1. Un grado para tráfico lento e intersecciones. 2. Dos grados para tráfico detenido y zonas de peaje. 3. Un grado para tráfico de camiones moderado. 4. Dos grados para tráfico pesado de camiones. El incremento debe ser siempre limitado a no más de dos grados independientemente de las condiciones de tráfico (4). En la Tabla1. se muestra el ajuste del grado PG por intensidad de tránsito y velocidad de operación para mejorar la resistencia a la formación de roderas en AASHTO M323. Esto quiere decir que un ligante asfáltico más rígido sería usado en condiciones de alto volumen o baja velocidad de tráfico. Tabla 1. AASHTO M323 Tabla 1. Ajuste para el grado PG a Alta-Temp Velocidad de operación de la Carga de Tráfico ESALs (M) Detenido Lento Estándar < < < < El problema del incremento en el sistema PG es que un asfalto PG tendrá unas propiedades de

3 desempeño, determinadas a una temperatura que sería superior a la temperatura más alta que el pavimento experimentará. Esto ocasiona que los proveedores de asfaltos elaboren asfaltos que son fuertemente modificados y por lo tanto muy difíciles de manejar a temperaturas razonables. Otro objetivo del sistema PG era que las propiedades de desempeño que definen el grado PG de un ligante asfáltico no se verían afectadas por la modificación. En otras palabras, se esperaría que todos los ligantes asfálticos con el mismo grado de desempeño se comportaran de la misma manera bajo las mismas condiciones de tráfico y ambientales sin importar cómo son producidos. En teoría sería un sistema más general de clasificación ya que abarcaba diferentes tipos de modificador en una misma clasificación. El criterio de aceptación G*/seno δ captura los efectos viscosos y elástico del ligante asfáltico, sin embargo, no es capaz de determinar la influencia del modificador en el comportamiento mecánico. Uno de los grandes problemas de esta metodología es que sólo fue validada dentro del rango viscoelástico lineal. Estos problemas causaron que los investigadores continuaran buscando una mejora en el parámetro de alta temperatura, G*/seno δ, usado en AASHTO M 320. Sus esfuerzos provocaron el desarrollo de un nuevo procedimiento de prueba, la prueba Multiple Stress Creep Recovery (3). 2.4 Fenómeno de Fatiga en ligantes asfálticos La fatiga es considerada uno de los fenómenos de daño más complicados en pavimentos asfálticos. El daño por fatiga también es una de las formas de fisuramiento que resulta de la carga repetida de tráfico. Esto ocurre a temperatura baja y moderada en pavimentos envejecidos. Determinar cómo los modificadores afectan las propiedades del asfalto con respecto al daño por fatiga ha significado un reto, debido a los altos niveles de complejidad del material asfáltico modificado. Varios investigadores están de acuerdo con que las definiciones actuales de falla a la fatiga no son adecuadas y que el sistema de medición actual para las propiedades de ligantes, llamado Superpave grading system, está basado en suposiciones y simplificaciones que resultan en una importante falta de representación de las condiciones del pavimento, incluyendo la velocidad del tráfico, volumen del tráfico, estructura del pavimento y ciclos de enfriamiento térmico. El esfuerzo para desarrollar un nuevo ensayo se centró en simular el fenómeno de fatiga en un ensayo de fatiga al ligante-sólo tal que el comportamiento del daño podría ser directamente monitoreado. El DSR se utilizó para llevar a cabo este nuevo ensayo, el cual es llamado time-sweep test. El ensayo provee un método simple de aplicación de ciclos repetidos de carga de esfuerzo o deformación a temperaturas seleccionadas y frecuencias de cargas. Los efectos de las condiciones de frecuencia, temperatura, esfuerzo y deformación pueden ser medidos con este ensayo (5-8). 3. MATERIALES Y MÉTODOS 3.1 Ensayos para ligantes Grado PG. De acuerdo a AASHTO M320 los requerimientos para ligantes asfáltico de grado PG se mencionan brevemente a continuación: Punto de inflamación.- El ensayo más común para determinar el punto de inflamación de un ligante asfáltico es el ensayo de punto de inflación de la Copa Abierta de Cleveland (COC por sus siglas en inglés). El ensayo permite determinar la temperatura mínima a la cual un ligante asfáltico produce flamas instantáneas al estar en contacto con el fuego directo, así como aquella que inicia su combustión. Viscosidad rotacional.- El ensayo de viscosidad rotacional es usado para determinar las características de flujo de un ligante asfáltico a una temperatura alta para proporcionar una cierta garantía de que puede ser fácilmente bombeado y manejado en la planta de mezcla en caliente. El viscosímetro rotacional consiste en un cilindro que mide la viscosidad mediante un torque necesario para mantener la velocidad constante en un eje. Reómetro de Corte Dinámico (DSR).- Es usado para ensayar ligantes asfalticos y medir sus propiedades reológicas, incluyendo el módulo complejo de corte (G* pronunciado como G estrella ) y el ángulo de fase (δ letra griega delta ) en el amplio rango de temperaturas. Para el asfalto virgen y para el residuo obtenido por el horno rotatorio de la película delgada, se utilizan para ensayar dichos asfaltos los platos paralelos de 25mm y con una separación entre ellos de 1000 micras, para el asfalto obtenido después del envejecimiento en PAV se utilizan platos paralelos de 8mm y una separación entre ellos de 2.0mm. La deformación permanente se controla limitando el valor mínimo de (G*/seno δ) a 1.00 kpa (antes del envejecimiento) y a 2.2 kpa (luego de envejecido en RTFO). El agrietamiento por fatiga es controlado limitando el valor de (G* seno δ) del asfalto envejecido en PAV a un máximo de 5000 kpa. Envejecimiento en el horno rotatorio de la película delgada (RTFO por sus siglas en inglés).- Para comenzar el ensayo los vasos de muestra son colocados en un carrusel que gira verticalmente en un horno operando a alta temperatura. El RTFO es empleado para medir el efecto de calor y aire de una muestra virgen de asfalto, esto consiste en un envejecimiento por rotación de una película delgada de muestra de asfalto a través de inyección de aire y una temperatura de 163 C por un periodo de 85 min. Este procedimiento se realiza no sólo para producir para producir un asfalto oxidado que pueda emplearse para ensayos adicionales (DSR y material base para PAV).

4 Contenedor de envejecimiento a presión.- El contenedor de envejecimiento a presión (PAV por sus siglas en inglés). El PAV expone al ligante asfáltico al aire a alta presión y a temperatura por 20 horas para simular los efectos de envejecimiento a largo tiempo. Porque el asfalto que ha sido expuesto a envejecimiento a largo tiempo también ha pasado por el proceso de mezclado y construcción, el procedimiento PAV utiliza ligantes asfalticos que han sido previamente envejecidos en el RTFO. Por medio de aire presurizado a 2.1 MPa y una temperatura de 100 C por un periodo de 20 horas. La muestra obtenida se emplea para determinar la temperatura límite a la fatiga y la realización de las vigas empleadas en el reómetro de viga a flexión. El reómetro de la viga a flexión (BBR).- Es usado para determinar la rigidez o el compliance a la flexión por creep y el valor m. Es operado dentro del rango de temperatura de -36 C a 0 C. El objetivo de este método es identificar la presencia de la respuesta elástica en un ligante y el cambio en la respuesta elástica a dos diferentes niveles de esfuerzo mientras está sujeta a 10 ciclos de esfuerzo creep-recuperación. Se ha mostrado que la compliance creep no recuperable es un indicador de la resistencia de un ligante asfáltico a la deformación permanente bajo carga repetida. En la Figura 3.2 se muestra un ciclo del ensayo MSCR. 3.2 Multiple Stress Creep Recovery (MSCR) Parámetro de especificación. Una alternativa para evaluar la susceptibilidad del asfalto a la deformación permanente es un ensayo mecánico. Aunque varios modelos han sido utilizados para describir el comportamiento de los ligantes asfalticos, el modelo de Burgers de cuatro-elementos, el cual se muestra en la Figura 3.1, brinda una buena representación del comportamiento del ligante. Este modelo es la combinación de un modelo Kelvin en paralelo y un modelo Maxwell en serie (ver Figura 3.1). La siguiente ecuación representa el compliance creep J(t), en términos de su componente elástica J(e), componente elástica retardada (Jde), y su componente viscosa (Jv): Figura Modelo de Burgers y su respuesta. J(t) Je Jde (t) Jv (t) Basado en esta separación de la respuesta creep, la compliance puede ser usada como un indicador de la contribución de los ligantes a la resistencia a la formación de roderas. En lugar de usar la compliance (Jv), el cual tiene una unidad de (1/Pa), y para ser compatible con el concepto de rigidez introducido durante SHRP, se puede utilizar el inverso del compliance, Gv (1/Jv). Gv es definido como la parte viscosa de la rigidez creep (creep stiffness. La respuesta creep-recovery medida con el DSR puede ser usada para estimar el valor de Gv y la deformación permanente acumulada para cualquier combinación seleccionada de tiempo de carga y descarga (6) Procedimiento del ensayo MSCR. El siguiente procedimiento está referenciado a MP70, que es el ensayo de MSCR usando un reómetro de corte dinámico (DSR). Figura. 3.2 Ciclo 1, ensayo de MSCR. Como primer paso del procedimiento de la prueba es acondicionar la muestra de asfalto a ensayar en el RTFO. La muestra para MSCR es preparada para usarse en los platos de 25 mm. La prueba es realizada a la temperatura seleccionada usando un esfuerzo creep constante (1.0 s) seguido por una recuperación a esfuerzo cero de 9.0 s de duración. La prueba es realizada a dos niveles de esfuerzo, 0.1 kpa y 3.2 kpa. Los 10 ciclos se corren a cada uno de los niveles de esfuerzo por un total de 20 ciclos.

5 Análisis y registros de datos de la prueba MSCR. Se analizan y registran el creep y el porcentaje de deformación recuperada para los niveles de esfuerzo creep de 0.1 kpa y 3.2 kpa Se deberá registrar para cada uno de los 10 ciclos lo siguiente: 1. El valor inicial de deformación al inicio de la porción creep de cada ciclo. Esta deformación debe ser denotada como ε El valor de deformación al final de la porción creep (después de 1.0 s) de cada ciclo. Esta deformación se expresa como ε c. 3.- El valor de deformación ajustado al final de la porción creep (es decir, después de 1.0 s) de cada ciclo (ε 1 ), el cálculo se hace de la siguiente manera: 1= c- 0 (1) 4.-El valor de la deformación al final de la porción de recuperación (es decir, después de 10.0 s) de cada ciclo. Esta deformación será denotada como ε r. 5.-El valor de deformación ajustado al final de la porción de recuperación (es decir, después de 10.0 s) de cada ciclo (ε 10 ), el cual se calcula como sigue: 10= r- 0 (2) Para cada uno de los diez ciclos, calcule lo siguiente al nivel de esfuerzo creep de 0.1 kpa. 1. Porcentaje de recuperación r. para N=1 a 10 (5) 2. Calcule el promedio del porcentaje de recuperación a 3.2 kpa de la siguiente forma: para N=1 a 10 (6) 3. Calcule la diferencia del porcentaje en recuperación entre 0.1 kpa y 3.2 kpa como sigue: Usando los datos obtenidos con las ecuaciones (3) y (4) determine el Compliance en Creep No Recuperable entre 0.1 kpa y 3.2 kpa como se indica en las siguientes ecuaciones: Para cada uno de los 10 ciclos a un esfuerzo creep de 0.1 kpa. 1. Calcule el compliance creep no recuperable J nr (0.1, N) kpa -1 como deformación/esfuerzo. (7) (10) Para cada uno de los 10 ciclos a un esfuerzo creep de 3.2 kpa. 1. Calcule el compliance creep no recuperable J nr (3.2, N) kpa -1 como deformación/esfuerzo. (3) (11) Para cada uno de los diez ciclos, calcule lo siguiente al nivel de esfuerzo creep de 3.2 kpa: Calcule el promedio del compliance creep no recuperable a 0.1 kpa, J nr0.1, kpa Porcentaje de Recuperación r. (12) Cálculos de la prueba MSCR. Utilizando los resultados obtenidos con las ecuaciones (3) y (4), determine el promedio del porcentaje de recuperación para el ligante asfáltico en los niveles de esfuerzo creep a 0.1 kpa a 3.2 kpa como se muestra en las siguientes ecuaciones: 1. Calcule el promedio del porcentaje de recuperación a 0.1 kpa de la siguiente manera: (4) Calcule el promedio del compliance creep no recuperable a 3.2 kpa, J nr3.2, kpa -1. (13) Calcule la diferencia del porcentaje en el compliance creep no recuperable entre 0.1 kpa y 3.2 kpa. J nrdiff : (14)

6 3.2.3 Especificación MP19. Performance- Graded del ligante asfáltico usando el ensayo de Multiple Stress Creep Recovery Los grados de los ligantes asfálticos ambientales requeridos pueden ser seleccionados siguiendo los procedimientos descritos en M323 y R35. Para este ensayo no aplica el incremento del grado PG por criterios de intensidad de tránsito y velocidad de operación (M323). Seleccione los grados de temperaturas altas y bajas ambientalmente apropiados y el apropiado grado S, H, V o E para el nivel de tráfico esperado y la velocidad de carga de tráfico. A continuación, en la Tabla 3.1 se muestra la designación de tráfico de los grados S, H, V o E de acuerdo a MP19. Tabla. 3.1 Niveles de tráfico y velocidad de la carga de tráfico para los grados S, H, V o E de acuerdo a MP19. Grado S Grado estándar (standard grade) H Grado Alto (high grade) V Grado muy alto (very high grade) E Grado extremadamente alto (extremely high grade) Nivel de Tráfico ESAL <10 millones millones >30 millones >30millones Velocidad de carga de tráfico. Estándar, >70km/h En Tabla 3.2, se muestran los criterios de especificación de ligantes asfalticos de grado de desempeño de acuerdo a MP19. En dicha tabla sólo se muestra la temperatura del grado de desempeño 64, se recomienda consultar MP19 para ver los demás grados desempeño. En la misma tabla también se puede observar que para los ensayos después de RTFO para todos los grados Jnrdiff debe ser menor al 75%, este parámetro se conoce como Parámetro de Sensibilidad al Esfuerzo. En la especificación MP19 se indica que el incremento se logra usando los grados H, V ó E y no incrementando el grado PG al alta temperatura como se recomienda en M323. Tabla Para un asfalto PGXX-YY, Grado V, necesitamos cumplir con los siguientes requisitos para poder clasificar nuestro asfalto de acuerdo a MP19: En el asfalto original. 1. Punto de inflamación, mín. 230 C 2. Viscosidad rotacional@135 C, máx. 3.0 Pa s. 3. DSR, G*/seno δ mín XX. En el asfalto después de RTFO. 1. Cambio de masa, máx. 1.00% 2. kpa esfuerzo de corte, máx.1.00 kpa 3. Sensibilidad al esfuerzo, máx. 75%. En el asfalto después de PAV. DSR, G* seno δ máx Temp. Intermedia de ese grado de desempeño. BBR, S máx. 300 MPa; m-value mínimo de Tabla 3.2 AASHTO MP19, C. 64 DSR. rad/s Tráfico lento, 20-70km/h ó tráfico detenido, <20 km/h y (<20 km/h) Plazas de peaje ó instalaciones portuarias. MSCR(TP70)- Temp. Todos los grados Jnrdiff 75% Grado S : Jnr kPa -1 Grado H : Jnr kPa -1 Grado V : Jnr kPa -1 Grado E : Jnr kPa -1 DSR - rad/s Grado S G*seno δ: Máx.5000kPa Grado H G*seno δ: Máx.6000kPa Grado V G*seno δ: Máx.6000kPa Grado E G*seno δ: Máx.6000kPa BBR Todos los grados Stiffness: Máx. 300Mpa m-value: Mín Asfalto Original 64 Asfalto Envejecido-RTFO Asfalto Envejecido-PAV@100 C

7 3.3 Ensayo de Fatiga de ligantes asfalticos. La falla por fatiga de los asfaltos puede ser definida por tres fases principales de daño separadas por dos puntos de transición que ocurren como resultado de la acumulación de daño. La primera es la fase sin daño (no-damage), durante la cual la relación esfuerzo deformación permanece constante con las aplicaciones de carga cíclica hasta el ciclo N 1. Durante esta primera fase, aunque hay energía de disipación, ésta es constante para cada ciclo y es disipada completamente en amortiguamiento viscoelástico y no en daño. La siguiente fase es el inicio de la grieta, la cual es típicamente caracterizada por un cambio gradual en la respuesta del material por la aplicación controlada de esfuerzo o deformación hasta el ciclo N 2. En esta segunda fase, la rigidez (módulo) del asfalto se reduce, lo cual resulta en más daño por ciclo bajo un esfuerzo dado, o un menor esfuerzo requerido para lograr una deformación constante. La última fase es la de propagación de la grieta, durante la cual la respuesta del material varía rápidamente bajo esfuerzo o deformación constante hasta que se alcanza la fractura completa al ciclo N 3 (7-9). Ha habido diversos enfoques para representar las transiciones entre las fases sin daño hasta el inicio de la grieta. Se ha visto que la manera más adecuada para evaluar el efecto de los modificadores en la respuesta en fatiga de los ligantes asfálticos es usando el concepto de relación de energía de energía disipado acumulada (DER) propuesto por Ghuzlan y Carpenter en 2000 (10) y Pronk en 1995(11): (1) n Donde W i = energía disipada por ciclo W n = energía disipada en el ciclo n, y = suma total de energía disipada hasta el ciclo La investigación ha mostrado que este método permite la estimación de la vida a la fatiga de mezclas asfálticas y también de ligantes asfálticos bajo modos de esfuerzo constante y deformación constante. Np representa la vida a la fatiga del ligante, el cual es el número de ciclos de aplicación de carga para alcanzar la fase de propagación de la grieta. Ya sea a esfuerzo constante o bajo un modo de carga a deformación controlada. (6,11). La selección de niveles representativos de deformación y esfuerzo es, sin embargo, un reto porque en la mayoría de los casos la estructura del pavimento y las propiedades volumétricas de la mezcla no se conocen por completo cuando el ligante asfáltico es ensayado. En estudios previos, hubo una aproximación considerable al determinar niveles de deformación y de esfuerzo, los cuales incluyeron el análisis de elementos finitos de imágenes de mezclas asfálticas (12) Procedimiento del ensayo de fatiga (Time Sweep). De acuerdo a NCHRP 459 (6) el ensayo de fatiga es llamado Resistencia a la fatiga de un ligante asfáltico sometido a carga cíclica repetida usando un reómetro de corte dinámico, RCL por sus siglas en ingles, las condiciones del ensayo son las se muestran en la Tabla 3.3. Una frecuencia de 10 rad/s, representa el movimiento del tráfico a 60 km/h. Tabla.3.3 Condiciones del ensayo RCL. La temperatura de prueba es la Temperatura temperatura intermedia de diseño del pavimento. Frecuencia de oscilación es Frecuencia seleccionada para se 10rad/s o 100 rad/s. Nivel de esfuerzo en corte o deformación en corte Ensayo a esfuerzo constante Ensayo de deformación constante Número de ciclos de carga Tiempo de ensayo 4. RESULTADOS. Los esfuerzos cortantes son seleccionados para estar a: 500 kpa a 10 rad/s y 1000 kpa a 100 rad /s Las deformaciones en corte son seleccionadas para estar a: 10% a 10 rad/s 5% a 100 rad/s. El número total de las repeticiones de los ciclos de carga es seleccionado para no exceder: 4500 para 10 rad/s para 100 rad/s Debe ser aproximadamente 3000 segundos o 50 minutos. Se realizaron los ensayos de MSCR y RCL a un asfalto modificado y sin modificar. 4.1 Resultados del ensayo MSCR Para el ensayo de MSCR: Las muestras de asfalto original PG64-16, y modificado PG76-16 fueron envejecidas en el RTFO. Los primeros 10 ciclos a un esfuerzo creep de 0.1 kpa y los siguientes 10 ciclos a 3.2 kpa. Cada ciclo con una duración de 1 s en esfuerzo creep seguido de una recuperación a esfuerzo cero de 9 s. En la Tabla 4.1 se muestras los resultados de la prueba Multiple Stress Creep Recovery del asfalto original PG y del asfalto modificado PG El valor del compliance creep no recuperable Jnr del asfalto modificado y del asfalto original son parecidos al

8 nivel de esfuerzo 3.2 kpa -1, pero la recuperación de un asfalto modificado es mucho mayor que la del asfalto original en el mismo nivel de esfuerzo. El parámetro de sensibilidad al esfuerzo J nrdiff del ligante modificado y del no modificado es menor al 75%. Tabla 4.1. Resultados del ensayo MSCR en un asfalto AC C y un asfalto C (después de RTFO). Grado PG Temperatura del ensayo C Promedio del porcentaje de recuperación a 0.1 kpa, kpa R 0.1 Promedio del porcentaje de recuperación a 3.2 kpa, kpa R 3.2 Diferencia del porcentaje entre promedio del porcentaje de recuperación a 0.1 kpa y 3.2 kpa, R diff. Compliance creep no recuperable a 0.1 kpa, J nr0.1. Compliance creep no recuperable a 0.1 kpa, J nr3.2. Diferencia del porcentaje entre el Compliance creep no recuperable a 0.1 kpa y 3.2 kpa, J nrdiff Relación Compliance creep no recuperable kpa kpa kpa % En las Figura 4.1 y Figura 4.2 se muestran típicos 10 ciclos de Creep-Recuperación a los esfuerzos creep de 0.1 kpa y 3.2 kpa respectivamente del asfalto original. En las Figura 4.3 y Figura 4.4 se muestran típicos 10 ciclos de Creep-Recuperación a los esfuerzos creep de 0.1 kpa y 3.2 kpa respectivamente del asfalto modificado. La Figura 4.5 teniendo en el eje vertical el porcentaje promedio de recuperación a 3.2 kpa y el eje horizontal el compliance creep no recuperable a 3.2 kpa de acuerdo a MP 70 puede ser usada como un indicador de la presencia de un polímero elastomérico. En la misma gráfica sí el punto cae por encima de la línea la indicación es que el ligante asfáltico esta con un polímero elastomérico aceptable, si el punto cae por debajo de la línea la indicación de que el ligante asfáltico no está modificado con un polímero elastomérico. De acuerdo a la Figura 5 se puede observar que el ligante asfaltico no modificado tiene baja elasticidad y el asfalto modificado alta elasticidad. Figura4.1 Típicos 10 ciclos creep-recuperación a 0.1 kpa del asfalto no modificado. Figura4.2 Típicos 10 ciclos creep-recuperación a 3.2 kpa del asfalto no modificado. Figura4.3 Típicos 10 ciclos creep-recuperación a 0.1 kpa del asfalto modificado. Figura4.3 Típicos 10 ciclos creep-recuperación a 0.1 kpa del asfalto modificado.

9 Figura 4.5 Indicador de polímero elastomérico de acuerdo a MP 70 de AASHTO. El asfalto no modificado PG el cual no tiene presencia de polímero elastomérico, también muestra poca recuperación elástica en los dos niveles de esfuerzo (0.1 y 3.2 kpa) y con el valor del compliance creep no recuperable J nr3.2 de 0.94 kpa -1, de acuerdo a MP19 cumple como un asfalto PG 64-16, Grado V. El asfalto modificado PG el cual tiene presencia de polímero elastomérico, también muestra alta recuperación elástica en los dos niveles de esfuerzo (0.1 y 3.2 kpa) y con el valor del compliance creep no recuperable J nr3.2 de 0.80 kpa -1, de acuerdo a MP19 cumple como un asfalto PG 76-16, Grado V. Figura. 4.6 Modulo de corte (G*) y ángulo de fase (δ) del asfalto no modificado. Figura. 4.7 Modulo de corte (G*) y ángulo de fase (δ) del asfalto modificado. 4.2 Resultados del ensayo RCL. Para el ensayo RCL: El ensayo se realizó a deformación controlada. La deformación fue de 10 % para la frecuencia de 10 rad/s. Las muestras de asfalto original PG64-16 y asfalto modificado PG76-16 fueron envejecidas en el RTFO. La temperatura del ensayo para el asfalto original fue de 28 C, y para el asfalto modificado de 34 C. En la Figura 4.6 y en la Figura 4.7 se muestran los valores del módulo de corte (G*) y del ángulo de fase (δ) del asfalto original y del modificado, respectivamente. En la Figura 4.8 y en la Figura 4.9 se muestra la Relación de Energía Disipada (DER por sus siglas en inglés) versus el número de ciclos del ensayo del fatiga a deformación controlada del asfalto no modificado y del asfalto modificado, respectivamente. En las mimas graficas se indica el valor de la vida a la fatiga (Np) dando los siguientes resultados: Para el asfalto no modificado PG se obtuvo un Np igual a 3035 ciclos y para el asfalto modificado PG un Np igual a 7300 ciclos. Se puede ver que la propagación de la grieta en un asfalto no modificado se presenta al aplicar menos ciclos de carga que en un asfalto modificado. Esto indica que la influencia del modificador ayuda a que el asfalto modificado sea más duradero. Figura. 4.8 Relación de energía disipada (DER) versus número de ciclo del asfalto no modificado. Figura. 4.9 Relación de energía disipada (DER) versus número de ciclo del asfalto modificado.

10 CONCLUSIONES 1. Un nuevo ensayo, Multiple Stress Creep Recovery (MSCR), realizado con un reómetro de corte dinámico (DSR), fue desarrollado para capturar la respuesta no lineal del ligante asfáltico y para relacionar esa respuesta a la formación de roderas en mezclas asfálticas. 2. Con ensayo MSCR, las propiedades relativas al desempeño de un ligante asfaltico son determinadas a la temperatura más alta, la cuál es la que el pavimento experimenta, es decir, no se usa el incremento del grado PG. 3. El compliance creep no recuperable Jnr está mejor correlacionado con la formación de roderas del pavimento que G*/seno δ. 4. El ensayo MSCR puede ser utilizado para identificar la modificación elastomérica. 5. Es importante conocer el Jnr y la Recuperación del ligante asfáltico modificado para saber si este tiene propiedades elásticas significativas. 6. El uso de los datos del ensayo de la Rueda de Hamburgo se pueden utilizar para validar el uso de Jnr como un parámetro de desempeño para la deformación a alta temperatura. 7. La falla a la fatiga puede ser definida usando la Relación de Energía Disipada (DER). 8. Para validar el ensayo de fatiga se recomienda que se realice lo siguiente: El ensayo deberá realizarse a esfuerzo controlado y deformación controlada a diferentes velocidades de carga (frecuencias) para cada condición y se deberá analizarse el asfalto base y el asfalto modificado con diferentes modificadores para ver el efecto que tienen los modificadores sobre el ligante en el desempeño a la fatiga dependiendo de las condiciones del ensayo. University of Wisconsin Madison, National Center for Asphalt Technology, Asphalt Institute. 7. Dijk, V (1975). Practical Fatigue Characterization of Bituminous Mixes. Journal of the Association of Asphalt Paving Technologists, Vol. 44, pp Zhai, H (1999). Guidelines for Developing a Protocol to Account for Damage Behavior of Binders Under Cyclic Loading Conditions. University of Wisconsin Madison, Asphalt Research Group, Bahia, H. U., H. Zhai, M. Zeng, Y. Hu y P. Turner (2001). Development of Binder Specification Parameters Based on Characterization of Damage Behavior. Journal of the Association of Asphalt Paving Technologists, Vol. 70, pp Ghuzlan, K. A. y Carpenter, S.H. (2000). Energy- Derived, Damage-Based Failure Criterion for Fatigue Testing. In Transportation Research Record: Journal of the Transportation Research Board, No. 1723, TRB, National Research Council, Washington, D.C., pp Pronk, A. C (1995). Evaluation of the Dissipated Energy Concept for the Interpretation of Fatigue Measurements in the Crack Initiation Phase. P- DWW Road and Hydraulic Engineering Division (DWW), Delft, Netherlands. 12. Bahia, H. U., H. Zhai, S. Kose y K. Bonnetti (1999). Non-linear Viscoelastic and Fatigue Properties of Asphalt Binders. Journal of the Association of Asphalt Paving Technologists, Vol. 68, pp AASHTO: M323, M320, T315, TP 70-12, MP REFERENCIAS 1. Asphalt Institute (MS-4). The Asphalt Handbook. Manual Series No 4. 7th Edition. 2. Moalla Hamed, F.K. (2010). Evaluation of Fatigue Resistance for Modified Asphalt Concrete Mixtures Based on Dissipated Energy Concept. Technische Universität Darmstadt. 3. Asphalt Institute (MS-26). The Asphalt Binder Handbook. Manual Series No 26. 1st Edition. 4. Asphalt Institute (MS-25). Asphalt Binder Testing. Manual Series No 25. 3rd Edition. 5. Reese, R. E. (1997). Properties of Aged Asphalt Binder Related to Asphalt Concrete Fatigue Life. Journal of the Association of Asphalt Paving Technologists, Vol. 66, 1997, pp Bahia, H. U., Hanson, D.I., Zeng, M., Zhai, H., Khatri, M.A. y Anderson, R.M. (2001). Project NCHRP Report 459 Characterization of Modified Asphalt Binders in Superpave Mix Design.

CMT. CARACTERÍSTICAS DE LOS MATERIALES

CMT. CARACTERÍSTICAS DE LOS MATERIALES LIBRO: PARTE: TÍTULO: CAPÍTULO: CMT. CARACTERÍSTICAS DE LOS MATERIALES 4. MATERIALES PARA PAVIMENTOS 05. Materiales Asfálticos, Aditivos y Mezclas 004. Calidad de Materiales Asfálticos Grado PG A. CONTENIDO

Más detalles

ESTUDIOS DE INNOVACIÓN TECNOLÓGICA DETERMINACIÓN DE GRADO DE DESEMPEÑO PG EN CEMENTOS ASFÁLTICOS

ESTUDIOS DE INNOVACIÓN TECNOLÓGICA DETERMINACIÓN DE GRADO DE DESEMPEÑO PG EN CEMENTOS ASFÁLTICOS ESTUDIOS DE INNOVACIÓN TECNOLÓGICA DETERMINACIÓN DE GRADO DE DESEMPEÑO PG EN CEMENTOS ASFÁLTICOS JORGE SILVA FRIDERICHSEN LABORATORIO NACIONAL DE VIALIDAD SUPERPAVE El programa de investigación SHRP (Programa

Más detalles

DETERMINACIÓN DEL GRADO DE DESEMPEÑO, PG EN CEMENTOS ASFÁLTICOS JORGE SILVA FRIDERICHSEN LABORATORIO NACIONAL DE VIALIDAD

DETERMINACIÓN DEL GRADO DE DESEMPEÑO, PG EN CEMENTOS ASFÁLTICOS JORGE SILVA FRIDERICHSEN LABORATORIO NACIONAL DE VIALIDAD DETERMINACIÓN DEL GRADO DE DESEMPEÑO, PG EN CEMENTOS ASFÁLTICOS JORGE SILVA FRIDERICHSEN LABORATORIO NACIONAL DE VIALIDAD SUPERPAVE El Grado de Desempeño de un cemento asfáltico forma parte de un sistema

Más detalles

ALTERNATIVA PARA OBTENCIÓN DE ASFALTOS PG A. GUTIERREZ Departamento de Asfaltos de QUIMIKAO, México

ALTERNATIVA PARA OBTENCIÓN DE ASFALTOS PG A. GUTIERREZ Departamento de Asfaltos de QUIMIKAO, México ALTERNATIVA PARA OBTENCIÓN DE ASFALTOS PG 70-22 A. GUTIERREZ Departamento de Asfaltos de QUIMIKAO, México AGUTIERREZ@QUIMIKAO.COM.MX RESUMEN El asfalto es un material muy atractivo para los constructores

Más detalles

EVOLUCIÓN DEL GRADO PG EN LA CARACTERIZACIÓN DE ASFALTOS.

EVOLUCIÓN DEL GRADO PG EN LA CARACTERIZACIÓN DE ASFALTOS. EVOLUCIÓN DEL GRADO PG EN LA CARACTERIZACIÓN DE ASFALTOS. Ing. Israel Sandoval Navarro LASFALTO S. de R.L. de C.V. Ing. Ignacio Cremades Ibáñez Lic. Fernando Mazin Cristo SURFAX S.A. de C.V. Ing. Edgar

Más detalles

Proyecto N UI Copia N 1. Análisis reológico de ASFALTOS MODIFICADOS. Informe final. Preparado por Unidad de Investigación (UI)

Proyecto N UI Copia N 1. Análisis reológico de ASFALTOS MODIFICADOS. Informe final. Preparado por Unidad de Investigación (UI) Proyecto N UI-01-09 Copia N 1 Análisis reológico de ASFALTOS MODIFICADOS Informe final Preparado por Unidad de Investigación (UI) Ing. Fabián Elizondo Arrieta Laboratorio Nacional de Materiales y Modelos

Más detalles

Análisis de fatiga en mezclas asfálticas

Análisis de fatiga en mezclas asfálticas REPORTE DE INVESTIGACIÓN LM- PI - PV- IN- XX - 02 Análisis de fatiga en mezclas asfálticas INFORME PARCIAL FASE 1 Investigador principal Ing. Guillermo Loría Investigador asociado Ing. Mario Arce Noviembre

Más detalles

ANÁLISIS REOLÓGICO DE ASFALTOS MODIFICADOS

ANÁLISIS REOLÓGICO DE ASFALTOS MODIFICADOS Resumen ANÁLISIS REOLÓGICO DE ASFALTOS MODIFICADOS Fabián Elizondo Arrita Laboratorio Nacional de Materiales y Modelos Estructurales Universidad de Costa Rica fabian.elizondo@ucr.ac.cr Jorge Salazar Delgado

Más detalles

Diseño de Asfaltos Modificados con GCR por desempeño, para su uso en obras de pavimentación

Diseño de Asfaltos Modificados con GCR por desempeño, para su uso en obras de pavimentación Diseño de Asfaltos Modificados con GCR por desempeño, para su uso en obras de pavimentación LA INFORMACION CONTENIDA EN ESTE DOCUMENTO ES PROPIEDAD INTELECTUAL RESERVADA POR HUMBERTO QUINTERO Y CIA SCA

Más detalles

Análisis reológico de asfaltos modificados mediante el protocolo NCHRP 9-10

Análisis reológico de asfaltos modificados mediante el protocolo NCHRP 9-10 REPORTE DE INVESTIGACIÓN LM- PI - PV- IN- 18 02 B Análisis reológico de asfaltos modificados mediante el protocolo NCHRP 9-10 INFORME PARCIAL FASE 2 Investigador principal Ing. Guillermo Loría Investigador

Más detalles

Principales causas del ahuellamiento Alcance del diseño de mezclas resistentes. Ing. Rosana G. Marcozzi Comisión Permanente del Asfalto

Principales causas del ahuellamiento Alcance del diseño de mezclas resistentes. Ing. Rosana G. Marcozzi Comisión Permanente del Asfalto Principales causas del ahuellamiento Alcance del diseño de mezclas resistentes Ing. Rosana G. Marcozzi Comisión Permanente del Asfalto Temario Introducción: definición de ahuellamiento Causas principales

Más detalles

Efecto de la Temperatura en la Evaluación de la Fatiga en Ligantes Asfálticos

Efecto de la Temperatura en la Evaluación de la Fatiga en Ligantes Asfálticos Revista Infraestructura Vial / LanammeUCR / ISSN: 49-445 - ISSN electrónico: 225-375 / Volumen 8 / Número 3 / Julio, 26 / p.p. 5-3 Efecto de la Temperatura en la Evaluación de la Fatiga en Ligantes Asfálticos

Más detalles

Determinación de las temperaturas de mezclado y compactación mediante la viscosidad a corte cero. Ponente Ing. Israel Sandoval Navarro

Determinación de las temperaturas de mezclado y compactación mediante la viscosidad a corte cero. Ponente Ing. Israel Sandoval Navarro Determinación de las temperaturas de mezclado y compactación mediante la viscosidad a corte cero Ponente Ing. Israel Sandoval Navarro Determinación de las temperaturas de mezclado y compactación mediante

Más detalles

EVALUACION DE CEMENTOS ASFALTICOS DE REFINERÍA CONCHAN ENSAYOS DE ESPECIFICACIONES CONVENCIONAL Y SUPERPAVE"

EVALUACION DE CEMENTOS ASFALTICOS DE REFINERÍA CONCHAN ENSAYOS DE ESPECIFICACIONES CONVENCIONAL Y SUPERPAVE Asfaltos PETROPERU Categorizados como: Asfaltos Convencionales Asfaltos Modificados Asfaltos SUPERPAVE EVALUACION DE CEMENTOS ASFALTICOS DE REFINERÍA CONCHAN ENSAYOS DE ESPECIFICACIONES CONVENCIONAL Y

Más detalles

Diseño Volumétrico de Mezclas Asfálticas Recicladas en caliente utilizando la herramienta del Polígono de Vacíos

Diseño Volumétrico de Mezclas Asfálticas Recicladas en caliente utilizando la herramienta del Polígono de Vacíos Diseño Volumétrico de Mezclas Asfálticas Recicladas en caliente utilizando la herramienta del Polígono de Vacíos Ing. Orlando Fabrizio Ramos Villanueva Introducción La principal finalidad del diseño volumétrico

Más detalles

PRUEBAS ESPECIALES EN MEZCLAS ASFÁLTICAS. Dr. Pedro Limón Covarrubias 10 de Abril de 2015 Gobierno del Estado de México

PRUEBAS ESPECIALES EN MEZCLAS ASFÁLTICAS. Dr. Pedro Limón Covarrubias 10 de Abril de 2015 Gobierno del Estado de México PRUEBAS ESPECIALES EN MEZCLAS ASFÁLTICAS Dr. Pedro Limón Covarrubias 10 de Abril de 2015 Gobierno del Estado de México ÍNDICE 1. Introducción 2. Pruebas específicas de acuerdo al tipo de mezcla 3. Pruebas

Más detalles

BENEFICIOS DE LOS CEMENTOS ASFALTICOS PG CON POLIMERO

BENEFICIOS DE LOS CEMENTOS ASFALTICOS PG CON POLIMERO BENEFICIOS DE LOS CEMENTOS ASFALTICOS PG CON POLIMERO Victor M. Cincire Romero: Ingeniero Civil con Especialidad en Vías terrestres. Gerente de Proyectos en SemMaterials México. ANTECEDENTES A través de

Más detalles

EVALUACIÓN DEL EFECTO DE LA PÉRDIDA DE MASA

EVALUACIÓN DEL EFECTO DE LA PÉRDIDA DE MASA Reporte de Investigación LM- PI - PV- IN- 07e - 04 EVALUACIÓN DEL EFECTO DE LA PÉRDIDA DE MASA POR CALENTAMIENTO SOBRE LAS PROPIEDADES DE LIGANTES Y MEZCLAS ASFÁLTICAS INFORME DE AVANCE Investigador principal

Más detalles

FUNDAMENTOS DEL RECICLADO DE MEZCLAS ASFÁLTICAS. Dr. Pedro Limón Covarrubias 10 DE ABRIL DE 2015 GOBIERNO DEL ESTADO DE MÉXICO

FUNDAMENTOS DEL RECICLADO DE MEZCLAS ASFÁLTICAS. Dr. Pedro Limón Covarrubias 10 DE ABRIL DE 2015 GOBIERNO DEL ESTADO DE MÉXICO FUNDAMENTOS DEL RECICLADO DE MEZCLAS ASFÁLTICAS Dr. Pedro Limón Covarrubias 10 DE ABRIL DE 2015 GOBIERNO DEL ESTADO DE MÉXICO INDICE 1. Generalidades 2. Historia 3. Estudios del proyecto 4. Ventajas del

Más detalles

EXPERIENCIA NICARAGÜENSE EN LA IMPLEMENTACIÓN DE ENSAYOS PARA LA DETERMINACIÓN DEL TIPO DE CEMENTO ASFÁLTICO POR GRADO DE DESEMPEÑO (PG)- SUPERPAVE

EXPERIENCIA NICARAGÜENSE EN LA IMPLEMENTACIÓN DE ENSAYOS PARA LA DETERMINACIÓN DEL TIPO DE CEMENTO ASFÁLTICO POR GRADO DE DESEMPEÑO (PG)- SUPERPAVE EXPERIENCIA NICARAGÜENSE EN LA IMPLEMENTACIÓN DE ENSAYOS PARA LA DETERMINACIÓN DEL TIPO DE CEMENTO ASFÁLTICO POR GRADO DE DESEMPEÑO (PG)- SUPERPAVE Fecha de recepción: 16/05/13 Fecha de aprobación: 01/07/13

Más detalles

EVALUACIÓN DE LA OXIDACIÓN DEL ASFALTO MEXICANO RAÚL TERÁN OROZCO Departamento de Asfaltos de QUIMIKAO, México

EVALUACIÓN DE LA OXIDACIÓN DEL ASFALTO MEXICANO RAÚL TERÁN OROZCO Departamento de Asfaltos de QUIMIKAO, México EVALUACIÓN DE LA OXIDACIÓN DEL ASFALTO MEXICANO RAÚL TERÁN OROZCO Departamento de Asfaltos de QUIMIKAO, México RTERAN@QKNET.QUIMIKAO.COM.MX RESUMEN El endurecimiento, también conocido como fenómeno de

Más detalles

Caracterización de asfaltos modificados con diferentes aditivos

Caracterización de asfaltos modificados con diferentes aditivos Ingeniería 20 (1 y 2): 81-92, ISSN: 1409-2441; 2010. San José, Costa Rica Caracterización de asfaltos modificados con diferentes aditivos Fabián Elizondo Arrieta Jorge Salazar Delgado Ernesto Villegas

Más detalles

ANÁLISIS DE MÉTODOS PARA LA OBTENCIÓN DEL RESIDUO DE EMULSIONES ASFÁLTICAS. Ponente Ing. Israel Sandoval Navarro

ANÁLISIS DE MÉTODOS PARA LA OBTENCIÓN DEL RESIDUO DE EMULSIONES ASFÁLTICAS. Ponente Ing. Israel Sandoval Navarro ANÁLISIS DE MÉTODOS PARA LA OBTENCIÓN DEL RESIDUO DE EMULSIONES ASFÁLTICAS Ponente Ing. Israel Sandoval Navarro Análisis de métodos para la obtención del residuo de emulsiones asfálticas Introducción.

Más detalles

USO RACIONAL DE RAP EN MEZCLAS ASFALTICAS. ING. VICTOR CINCIRE SEMMATERIALS MEXICO

USO RACIONAL DE RAP EN MEZCLAS ASFALTICAS. ING. VICTOR CINCIRE SEMMATERIALS MEXICO USO RACIONAL DE RAP EN MEZCLAS ASFALTICAS ING. VICTOR CINCIRE SEMMATERIALS MEXICO vcincire@semgroupcorp.com USO RACIONAL Presenta ventajas económicas. Seresponsable.com Selección adecuada de la técnica

Más detalles

EVALUACIÓN DEL DESEMPEÑO DE UNA MEZCLA ASFÁLTICA EN CALIENTE, NIVEL III CON ADITIVOS MEJORADORES DE ADHERENCIA Y ASFALTO MODIFICADO TIPO SBS

EVALUACIÓN DEL DESEMPEÑO DE UNA MEZCLA ASFÁLTICA EN CALIENTE, NIVEL III CON ADITIVOS MEJORADORES DE ADHERENCIA Y ASFALTO MODIFICADO TIPO SBS EVALUACIÓN DEL DESEMPEÑO DE UNA MEZCLA ASFÁLTICA EN CALIENTE, NIVEL III CON ADITIVOS MEJORADORES DE ADHERENCIA Y ASFALTO MODIFICADO TIPO SBS Aldo Salazar, Horacio Delgado, Paul Garnica, Mayra Flores, Raúl

Más detalles

MODULO DINAMICO DE MEZCLAS ASFALTICAS

MODULO DINAMICO DE MEZCLAS ASFALTICAS LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES MODULO DINAMICO DE MEZCLAS ASFALTICAS Investigador: Fabricio Leiva Septiembre 2004 MODULO DINAMICO DE MEZCLAS ASFALTICAS Módulo dinámico. Es el

Más detalles

DEFINICIÓN DE VISCOELASTICIDAD

DEFINICIÓN DE VISCOELASTICIDAD DEFINICIÓN DE VISCOELASTICIDAD Rango de comportamiento Líquido ideal mayoría de materiales Sólido Ideal Agua Acero Viscoso Puro Viscoelástico Elástico Puro Fluido Pierde Forma Disipa Energía FLUJO Módulo

Más detalles

SUMINISTRO DE CEMENTO ASFÁLTICO MODIFICADO CON GRANO DE CAUCHO RECICLADO ARTÍCULO

SUMINISTRO DE CEMENTO ASFÁLTICO MODIFICADO CON GRANO DE CAUCHO RECICLADO ARTÍCULO SUMINISTRO DE CEMENTO ASFÁLTICO MODIFICADO CON GRANO DE CAUCHO RECICLADO ARTÍCULO 413 13 413.1 DESCRIPCIÓN Esta especificación se refiere al suministro de cemento asfáltico modificado con grano de caucho

Más detalles

DESARROLLO DE MATERIALES PARA RECAPADOS ASFÁLTICOS UTILIZADOS EN REHABILITACIÓN DE PAVIMENTOS DETERIORADOS

DESARROLLO DE MATERIALES PARA RECAPADOS ASFÁLTICOS UTILIZADOS EN REHABILITACIÓN DE PAVIMENTOS DETERIORADOS DESARROLLO DE MATERIALES PARA RECAPADOS ASFÁLTICOS UTILIZADOS EN REHABILITACIÓN DE PAVIMENTOS DETERIORADOS Antecedentes La Universidad Técnica Federico Santa María están participando en el II Concurso

Más detalles

METODO DE ENSAYO Método de prueba estándar para determinar el porcentaje de partículas fracturadas en agregado grueso

METODO DE ENSAYO Método de prueba estándar para determinar el porcentaje de partículas fracturadas en agregado grueso Prologo El presente método de ensayo es una traducción de la norma extranjera Standard Test Method for Determining the Porcentaje of Fractured Particles in Coarse Aggregate emitida por la American Society

Más detalles

Ligantes asfálticos Evaluación de asfaltos modificados en laboratorio con distintos polímeros

Ligantes asfálticos Evaluación de asfaltos modificados en laboratorio con distintos polímeros Ligantes asfálticos Evaluación de asfaltos modificados en laboratorio con distintos polímeros Ing. Luis Guillermo Loría Salazar Laboratorio Nacional de Materiales y Modelos Estructurales (LanammeUCR) Resumen

Más detalles

Mezclas bituminosas. Parte 24: Resistencia a la fatiga EXTRACTO DEL DOCUMENTO UNE-EN : A1

Mezclas bituminosas. Parte 24: Resistencia a la fatiga EXTRACTO DEL DOCUMENTO UNE-EN : A1 norma española UNE-EN 12697-24:2006+A1 Diciembre 2007 TÍTULO Mezclas bituminosas Métodos de ensayo para mezclas bituminosas en caliente Parte 24: Resistencia a la fatiga Bituminous mixtures. Test methods

Más detalles

Residuos de construcción y demolición (RCD),

Residuos de construcción y demolición (RCD), Residuos de construcción y demolición (RCD), Alexandra Ossa y José Luis García INTRODUCCIÓN La producción de residuos de construcción y demolición (RCD) a nivel mundial ha aumentado considerablemente durante

Más detalles

T C E N C O N L O O L G O I G A I A A. A R.

T C E N C O N L O O L G O I G A I A A. A R. TECNOLOGIA A.R. CARACTERISTICAS DEL PRODUCTO Disminución de la susceptibilidad térmica del pavimento a altas y bajas temperaturas Aumento de la vida útil del pavimento por un aumento de la resistencia

Más detalles

Laboratorio Nacional de Vialidad Tecnologías Equipamiento

Laboratorio Nacional de Vialidad Tecnologías Equipamiento Subdirección de Obras Tecnologías Equipamiento El tiene como función principal la Supervisión general del sistema de control de calidad de las Obras Viales. Asesora a las comisiones de recepción de los

Más detalles

EVALUACIÓN DE MÉTODOS DE DISEÑO DE SOBRECAPAS ASFÁLTICAS CONTRA REFLEJO DE GRIETAS

EVALUACIÓN DE MÉTODOS DE DISEÑO DE SOBRECAPAS ASFÁLTICAS CONTRA REFLEJO DE GRIETAS EVALUACIÓN DE MÉTODOS DE DISEÑO DE SOBRECAPAS ASFÁLTICAS CONTRA REFLEJO DE GRIETAS Resumen Luis Loria, MsC, autor correspondiente Centro Superpave para el Oeste de Estados Unidos Universidad de Nevada

Más detalles

Diseño estructural de pavimentos para condiciones de alto tránsito vehicular

Diseño estructural de pavimentos para condiciones de alto tránsito vehicular Diseño estructural de pavimentos para condiciones de alto tránsito vehicular Dr. Paul Garnica Anguas pgarnica@imt.mx M. I. Roberto Hernández Domínguez rihernan@imt.mx Laboratorio de Infraestructura - Instituto

Más detalles

ESTUDIO DEL MÓDULO DINÁMICO COMPLEJO DE MEZCLAS ASFÁLTICAS. DESARROLLO DE CURVAS MAESTRAS.1 RA PARTE.

ESTUDIO DEL MÓDULO DINÁMICO COMPLEJO DE MEZCLAS ASFÁLTICAS. DESARROLLO DE CURVAS MAESTRAS.1 RA PARTE. ESTUDIO DEL MÓDULO DINÁMICO COMPLEJO DE MEZCLAS ASFÁLTICAS. DESARROLLO DE CURVAS MAESTRAS.1 RA PARTE. Autor: Ing. Fabricio Leiva Villacorta Universidad de Costa Rica. Laboratorio Nacional de Materiales

Más detalles

CALIDAD DE MATERIALES ASFALTICOS MODIFICADOS

CALIDAD DE MATERIALES ASFALTICOS MODIFICADOS CALIDAD DE MATERIALES ASFALTICOS MODIFICADOS DEFINICIÓN Y CLASIFICACIÓN Los materiales asfálticos modificados, son el producto de la disolución o incorporación en el asfalto, de un polímetro o de hule

Más detalles

INFLUENCIA DE LA VARIACIÓN DE PARÁMETROS DE DISEÑO EN LA DEFORMACIÓN PERMANENTE DE MEZCLAS ASFÁLTICAS DE ALTO DESEMPEÑO

INFLUENCIA DE LA VARIACIÓN DE PARÁMETROS DE DISEÑO EN LA DEFORMACIÓN PERMANENTE DE MEZCLAS ASFÁLTICAS DE ALTO DESEMPEÑO INFLUENCIA DE LA VARIACIÓN DE PARÁMETROS DE DISEÑO EN LA DEFORMACIÓN PERMANENTE DE MEZCLAS ASFÁLTICAS DE ALTO DESEMPEÑO Francisco Romero Lozano 1, 2, Horacio Delgado Alamilla 3, Yelitza Ayala del Toro

Más detalles

Tema 2: Propiedades de los Materiales Metálicos.

Tema 2: Propiedades de los Materiales Metálicos. Tema 2: Propiedades de los Materiales Metálicos. 1. Propiedades mecánicas. 2. Mecanismos de deformación (Defectos). 3. Comportamiento elasto-plástico. 4. Comportamiento viscoso (fluencia y relajación).

Más detalles

DISEÑO MEZCLA ASFALTICA EN CALIENTE TIPO I CON ASFALTO MODIFICADO CON GRANO DE CAUCHO RECICLADO DE LLANTAS (GCR) MARCA INCOASFALTOS

DISEÑO MEZCLA ASFALTICA EN CALIENTE TIPO I CON ASFALTO MODIFICADO CON GRANO DE CAUCHO RECICLADO DE LLANTAS (GCR) MARCA INCOASFALTOS DISEÑO MEZCLA ASFALTICA EN CALIENTE TIPO I CON ASFALTO MODIFICADO CON GRANO DE CAUCHO RECICLADO DE LLANTAS (GCR) MARCA INCOASFALTOS DROMOS PAVIMENTOS S.A. NORMA IDU SECCION 560-11 TRANSITO NT3, ASFALTO

Más detalles

COMPARACIÓN DEL ENVEJECIMIENTO DE UNA MEZCLA BITUMINOSA FABRICADA CON BETUNES MODIFICADOS, CON POLÍMERO Y CON CAUCHO DE NFU

COMPARACIÓN DEL ENVEJECIMIENTO DE UNA MEZCLA BITUMINOSA FABRICADA CON BETUNES MODIFICADOS, CON POLÍMERO Y CON CAUCHO DE NFU COMPARACIÓN DEL ENVEJECIMIENTO DE UNA MEZCLA BITUMINOSA FABRICADA CON BETUNES MODIFICADOS, CON POLÍMERO Y CON CAUCHO DE NFU José Orencio Marrón (1), Julián García Carretero (1), Baltasar Rubio (1), Rafael

Más detalles

CA-MOD MD FICHA TECNICA

CA-MOD MD FICHA TECNICA 1.- Descripción: CA-MOD 60-80 MD FICHA TECNICA El cemento asfaltico modificado 60/80 es fabricado incorporando polímeros termoplásticos elastómeros y aditivos especiales a un cemento asfaltico tradicional.

Más detalles

FORTALEZAS PARA LA PRODUCCIÓN DE ASFALTOS PG EN REFINERÍAS MEXICANAS

FORTALEZAS PARA LA PRODUCCIÓN DE ASFALTOS PG EN REFINERÍAS MEXICANAS FORTALEZAS PARA LA PRODUCCIÓN DE ASFALTOS PG EN REFINERÍAS MEXICANAS Ing. Leonardo Manríquez Olmos Ing. Edmundo Reyes Tenorio Lara M en C Enrique Aguilar Rodríguez Instituto Mexicano del Petróleo Resumen

Más detalles

BETUNES HÍBRIDOS. 29ª Semana de la Carretera Octubre 2016 Úbeda-Baeza

BETUNES HÍBRIDOS. 29ª Semana de la Carretera Octubre 2016 Úbeda-Baeza BETUNES HÍBRIDOS Francisco Javier Suárez Jefe de Laboratorio (Calidad e I+D) fjsuarez.ditecpesa@ferrovial.com Javier Torroja Fungairiño Gerente Andalucía Ferrovial Agroman jtorroja@ferrovial.com Santiago

Más detalles

Conceptos básicos sobre betunes modificados y ligantes fabricados con PNFU. Proyecto #PolyMIX. Francisco Lucas Madrid, 12 de Febrero 2014

Conceptos básicos sobre betunes modificados y ligantes fabricados con PNFU. Proyecto #PolyMIX. Francisco Lucas Madrid, 12 de Febrero 2014 Conceptos básicos sobre betunes modificados y ligantes fabricados con PNFU. Proyecto #PolyMIX Francisco Lucas Madrid, 12 de Febrero 2014 Conceptos Básicos de Modificación de Betunes Betunes normales :

Más detalles

Protección y rehabilitación de estructuras existentes en zona sísmica. Dr. Ing. Gustavo Palazzo

Protección y rehabilitación de estructuras existentes en zona sísmica. Dr. Ing. Gustavo Palazzo Protección y rehabilitación de estructuras existentes en zona sísmica. Sistemas de disipación pasiva de energía Dr. Ing. Gustavo Palazzo Temáticas a desarrollar 1. Problemática en estructuras existentes

Más detalles

SUMINISTRO DE CEMENTO ASFÁLTICO ARTÍCULO

SUMINISTRO DE CEMENTO ASFÁLTICO ARTÍCULO SUMINISTRO DE CEMENTO ASFÁLTICO ARTÍCULO 410 13 410.1 DESCRIPCIÓN Esta especificación se refiere al suministro de cemento asfáltico para la fabricación de mezclas asfálticas que se elaboren de conformidad

Más detalles

4. Procedimientos técnicos generales para la realización de auditorías de desempeño para sistemas de medición de la calidad del aire

4. Procedimientos técnicos generales para la realización de auditorías de desempeño para sistemas de medición de la calidad del aire 4. Procedimientos técnicos generales para la realización de auditorías de desempeño para sistemas de medición de la calidad del aire Una auditoría de funcionamiento comprende diversos procedimientos técnicos

Más detalles

FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL SILABO

FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL SILABO SILABO 1. INFORMACIÓN GENERAL. 1.1. ASIGNATURA : PAVIMENTOS 1.2. CÓDIGO DEL CURSO : 0802-08411 1.3. CARÁCTER DE LA SIGNATURA : OBLIGATORIO 1.4. PRE-REQUISITO : 0802-08406 CAMINOS II 1.5. DURACIÓN : 17

Más detalles

CAPÍTULO 3: DISEÑO DE LOSAS

CAPÍTULO 3: DISEÑO DE LOSAS CAPÍTULO 3: DISEÑO DE LOSAS 3.1 Predimensionamiento 3.1.1 Longitud del volado de losa AASHTO, limita la longitud del volado a 1.80 m ó 0.5 S (separación de las vigas) como se muestra en la fig. 3.1. Asimismo,

Más detalles

SECCIÓN A4 VISCOSIDAD DE SALMUERAS DE FORMIATO

SECCIÓN A4 VISCOSIDAD DE SALMUERAS DE FORMIATO MANUAL TÉCNICO DEL FORMIATO C A B O T PROPIEDADES QUÍMICAS Y FÍSICAS SECCIÓN A4 VISCOSIDAD DE SALMUERAS DE FORMIATO A4.1 Introducción...2 A4.2 Viscosidad de salmueras de formiato de sal única en función

Más detalles

Nuevos Ensayos de Verificación de Medidores de Agua. Abed Morales Laboratorio de Volumen y Densidad

Nuevos Ensayos de Verificación de Medidores de Agua. Abed Morales Laboratorio de Volumen y Densidad Nuevos Ensayos de Verificación de Medidores de Agua Abed Morales Laboratorio de Volumen y Densidad 2013-05-20 La Escasez de Agua Mundial «Una de cada tres personas vive en un país con escasez de agua entre

Más detalles

Mezclas SMA Sostenibles y Medioambientalmente Amigables

Mezclas SMA Sostenibles y Medioambientalmente Amigables Mezclas SMA Sostenibles y Medioambientalmente Amigables Comportamiento mecánico de las mezclas bituminosas SMA y de las mezclas X-SMA Félix E. Pérez Jiménez Universitat Politècnica de Catalunya BarcelonaTech

Más detalles

INTENSIDAD HORARIA SEMANAL Nombre: CONCRETOS ASFÁLTICOS Teóricas: 4 Código: 6290 Laboratorio o práctica: 2

INTENSIDAD HORARIA SEMANAL Nombre: CONCRETOS ASFÁLTICOS Teóricas: 4 Código: 6290 Laboratorio o práctica: 2 Página 1 de 8 1. IDENTIFICACIÓN DE LA ASIGNATURA. DESCRIPCIÓN INTENSIDAD HORARIA SEMANAL Nombre: CONCRETOS ASFÁLTICOS Teóricas: 4 Código: 6290 Laboratorio o práctica: 2 Créditos: 5 Área: Ciencias Básicas

Más detalles

CONCLUSIONES Y RECOMENDACIONES.

CONCLUSIONES Y RECOMENDACIONES. CAPÍTULO 7. CONCLUSIONES Y RECOMENDACIONES. Alejandro Padilla Rodríguez. 158 7. CONCLUSIONES Y RECOMENDACIONES. 7.1 Conclusiones. En la formación de las roderas o deformaciones plásticas permanentes, intervienen

Más detalles

RESUMEN ANALÍTICO EN EDUCACIÓN - RAE FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA CIVIL BOGOTÁ D.C.

RESUMEN ANALÍTICO EN EDUCACIÓN - RAE FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA CIVIL BOGOTÁ D.C. AÑO DE ELABORACIÓN: 2013 FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA CIVIL BOGOTÁ D.C. TÍTULO: ESTUDIO EN EL COMPORTAMIENTO DE UNA MEZCLA DENSA EN CALIENTE DE TIPO MDC-2, SOMETIENDO EL ASFALTO A CAMBIOS

Más detalles

Estructura conformada por un número de capas (multicapa)

Estructura conformada por un número de capas (multicapa) PAVIMENTOS Concepto y Tipos de pavimentos Estructura de los pavimentos Diseño de pavimentos Métodos de diseño de pavimentos CBR Módulo Resiliente Métodos y Pruebas de campo Concepto de Pavimento Estructura

Más detalles

PAVIMENTOS FLEXIBLES

PAVIMENTOS FLEXIBLES Universidad Tecnológica Nacional Departamento de Ingeniería Civil VÍAS AS DE COMUNICACIÓN N I DISEÑO O DE PAVIMENTOS FLEXIBLES Facultad Regional Buenos Aires Julio 2010 PAVIMENTOS FLEXIBLES Comportamiento

Más detalles

LIGANTES BITUMINOSOS: PROCEDENCIA, COMPOSICION, CARACTERISTICAS Y COMPORTAMIENTO.

LIGANTES BITUMINOSOS: PROCEDENCIA, COMPOSICION, CARACTERISTICAS Y COMPORTAMIENTO. LIGANTES BITUMINOSOS: PROCEDENCIA, COMPOSICION, CARACTERISTICAS Y COMPORTAMIENTO. PEREZ JIMENEZ, F.; MIRO RECASENS, R. Universidad Politécnica de Catalunya. España MARTIN, T.; DES CROIX, PH. ESSO S.A.F.

Más detalles

Objetivo de la modificación

Objetivo de la modificación Objetivo de la modificación Conseguir ligantes CON PROPIEDADES REOLÓGICAS que no pueden ser alcanzadas de por sí cuando son obtenidos a partir de las técnicas convencionales de refinación. POLÍMEROS TIPO

Más detalles

COMO PUEDE EL LATEX DE SBR MEJORAR LA CALIDAD Y DURABILIDAD DE LAS VIAS EN MÉXICO?

COMO PUEDE EL LATEX DE SBR MEJORAR LA CALIDAD Y DURABILIDAD DE LAS VIAS EN MÉXICO? COMO PUEDE EL LATEX DE SBR MEJORAR LA CALIDAD Y DURABILIDAD DE LAS VIAS EN MÉXICO? Resumen José M. Torres Llosa V. / Dr. Koichi Takamura Basf Corporation El presente trabajo pretende mostrar la manera

Más detalles

RESUMEN ANALÍTICO EN EDUCACIÓN - RAE FACULTAD INGENIERÍA PROGRAMA DE INGENIERÍA CIVIL BOGOTÁ D.C.

RESUMEN ANALÍTICO EN EDUCACIÓN - RAE FACULTAD INGENIERÍA PROGRAMA DE INGENIERÍA CIVIL BOGOTÁ D.C. AÑO DE ELABORACIÓN: 2014 FACULTAD INGENIERÍA PROGRAMA DE INGENIERÍA CIVIL BOGOTÁ D.C. TÍTULO: VERIFICACIÓN RACIONAL DE ESTRUCTURAS DIMENSIONADAS CON AASHTO MEDIANTE EL MODELO DE SHELL Y CURVAS DE FATIGA

Más detalles

Evaluación del módulo dinámico en mezclas asfálticas elaboradas con material de Residuos de Concreto y Demolición (RCD)

Evaluación del módulo dinámico en mezclas asfálticas elaboradas con material de Residuos de Concreto y Demolición (RCD) Evaluación del módulo dinámico en mezclas asfálticas elaboradas con material de Residuos de Concreto y Demolición (RCD) M.I Luis Antonio Esparza, Dra. Alexandra Ossa López Actualmente a nivel mundial existe

Más detalles

1.1. ANTECEDENTES GENERALES.

1.1. ANTECEDENTES GENERALES. 1. INTRODUCCIÓN. 1 CAPÍTULO 1: INTRODUCCIÓN. 1.1. ANTECEDENTES GENERALES. Hoy en día el pavimento asfáltico es la alternativa de uso mayoritario en la infraestructura vial chilena, razón por la cual es

Más detalles

U N I V E R S I D A D A L A S P E R U A N A S Escuela Profesional de Ingeniería Civil SILABO

U N I V E R S I D A D A L A S P E R U A N A S Escuela Profesional de Ingeniería Civil SILABO SILABO 1.0 INFORMACIÓN GENERAL 1.1 ASIGNATURA : DISEÑO MODERNO DE PAVIMENTOS 1.2 CÓDIGO DEL CURSO : 08 503 1.3 CARÁCTER DE LA SIGNATURA : OBLIGATORIO 1.4 PRE - REQUISITO : 08 402 CAMINOS II 1.5 DURACIÓN

Más detalles

PRÁCTICA 4: Ensayo triaxial CD

PRÁCTICA 4: Ensayo triaxial CD PRÁCTICA 4: Ensayo triaxial CD 1. OBJETO DE LA PRACTICA La práctica consiste en la realización de un ensayo triaxial con consolidación previa y rotura drenada sobre una probeta de arena arcillosa. El ensayo

Más detalles

Adendo. al manual de diseño de pavimentos Shell

Adendo. al manual de diseño de pavimentos Shell Adendo al manual de diseño de pavimentos Shell Adendo Al manual de diseño de pavimentos shell Se ha tenido el cuidado necesario en la preparación de este Adendo; sin embargo, no se puede aceptar responsabilidad

Más detalles

MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES

MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES LIBRO: PARTE: TÍTULO: CAPÍTULO: MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES 4. MATERIALES PARA PAVIMENTOS 05. Materiales Asfálticos Aditivos y Mezclas 025. Módulo Reológico de Corte Dinámico A. CONTENIDO

Más detalles

PRUEBA DE DESEMPEÑO EN DIFERENTES MEZCLAS ASFÁLTICAS

PRUEBA DE DESEMPEÑO EN DIFERENTES MEZCLAS ASFÁLTICAS ISSN: 2007-5316 8 24 Entretextos diciembre 2016 - marzo 2017 PRUEBA DE DESEMPEÑO EN DIFERENTES MEZCLAS ASFÁLTICAS TESTING PERFORMANCE IN DIFFERENT ASPHALT MIXTURES Ricardo Torres Velázquez* Hendrick Hernández

Más detalles

Método Universal de Caracterización de Ligantes (UCL)

Método Universal de Caracterización de Ligantes (UCL) Reporte de Investigación LM- PI - PV- IN- 36-05 Método Universal de Caracterización de Ligantes (UCL) INFORME DE AVANCE Investigador principal Ing. José Pablo Aguiar Moya Investigador asociado... Julio

Más detalles

REFUERZO DE MUROS Y TABIQUES DE ALBAÑILERÍA CON MALLAS DE POLÍMERO

REFUERZO DE MUROS Y TABIQUES DE ALBAÑILERÍA CON MALLAS DE POLÍMERO REFUERZO DE MUROS Y TABIQUES DE ALBAÑILERÍA CON MALLAS DE POLÍMERO Daniel Torrealva Dávila 1 Introducción. El refuerzo de tabiques de albañilería con mallas de polímero embebidas en el tarrajeo puede ser

Más detalles

ANÁLISIS DEL EFECTO DE DAÑO POR HUMEDAD EN MEZCLAS ASFÁLTICAS MEDIANTE EL MÓDULO DINÁMICO.

ANÁLISIS DEL EFECTO DE DAÑO POR HUMEDAD EN MEZCLAS ASFÁLTICAS MEDIANTE EL MÓDULO DINÁMICO. ANÁLISIS DEL EFECTO DE DAÑO POR HUMEDAD EN MEZCLAS ASFÁLTICAS MEDIANTE EL MÓDULO DINÁMICO. Presenta: M. I. Rey Omar Adame Hernández Pedro Limón Covarrubias Israel Sandoval Navarro Ignacio Cremades Ibáñez

Más detalles

MITOS Y REALIDADES DE LAS MEZCLAS DENSAS DE ALTO DESEMPEÑO

MITOS Y REALIDADES DE LAS MEZCLAS DENSAS DE ALTO DESEMPEÑO MITOS Y REALIDADES DE LAS MEZCLAS DENSAS DE ALTO DESEMPEÑO Ing. Víctor Cincire M.I. Eymard Avila Objetivo General Destacar la importancia del uso de las mezclas de alto desempeño, y las principales similitudes

Más detalles

DEL EMPIRISMO A LA CARACTERIZACIÓN AVANZADA DE LIGANTES ASFALTICOS

DEL EMPIRISMO A LA CARACTERIZACIÓN AVANZADA DE LIGANTES ASFALTICOS DEL EMPIRISMO A LA CARACTERIZACIÓN AVANZADA DE LIGANTES ASFALTICOS José Pablo Aguiar Moya, Ph.D. jose.aguiar@ucr.ac.cr Ernesto Villegas Villegas rafael.villegas@ucr.ac.cr Fabricio Leiva Villacorta, Ph.D.

Más detalles

División 6. Análisis de la mecánica de fractura Esquemas simples

División 6. Análisis de la mecánica de fractura Esquemas simples CAPITULO 3 TENSIONES Y DEFORMACIONES. REVISIÓN DE PRINCIPIOS FÍSICOS División 6 Análisis de la mecánica de fractura Esquemas simples 1. Introducción En esta división del capítulo se analizarán someramente

Más detalles

ESTUDIO DEL COMPORTAMIENTO A FATIGA DE MEZCLAS ASFÁLTICAS MEDIANTE EL ENSAYO BTD

ESTUDIO DEL COMPORTAMIENTO A FATIGA DE MEZCLAS ASFÁLTICAS MEDIANTE EL ENSAYO BTD ESTUDIO DEL COMPORTAMIENTO A FATIGA DE MEZCLAS ASFÁLTICAS MEDIANTE EL ENSAYO BTD GABRIEL PALMA, Ingeniero Civil. Laboratorio Nacional de Vialidad, Chile. gabriel.palma@hotmail.com CARLOS WAHR DANIEL, Ingeniero

Más detalles

2.2 SISTEMAS TERMODINÁMICOS

2.2 SISTEMAS TERMODINÁMICOS 2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser

Más detalles

ENSAYOS DE LABORATORIO.

ENSAYOS DE LABORATORIO. CAPÍTULO 5. ENSAYOS DE LABORATORIO. Alejandro Padilla Rodríguez. 111 5. ENSAYOS DE LABORATORIO. Con base en la Normativa de la Secretaría de Comunicaciones y Transportes de México, para pavimentos flexibles,

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL PAVIMENTOS. CARÁCTER: Obligatorio DENSIDAD HORARIA HT HP HS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL PAVIMENTOS. CARÁCTER: Obligatorio DENSIDAD HORARIA HT HP HS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL PAVIMENTOS CARÁCTER: Obligatorio PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Vial CODIGO SEMESTRE DENSIDAD HORARIA HT

Más detalles

ANÁLISIS DE ASFALTO MODIFICADO CON POLVO DE NEUMÁTICO RECICLADO (NFU)

ANÁLISIS DE ASFALTO MODIFICADO CON POLVO DE NEUMÁTICO RECICLADO (NFU) ANÁLISIS DE ASFALTO MODIFICADO CON POLVO DE NEUMÁTICO RECICLADO (NFU) "... el problema que generan los neumáticos en desuso (grandes extensiones de superficie ocupadas, vertederos incontrolados donde además

Más detalles

MATERIALES ASFÁLTICOS

MATERIALES ASFÁLTICOS CAPITULO 4: MATERIALES ASFÁLTICOS 4.1 Antecedentes El asfalto es uno de los materiales más antiguos utilizados como aglutinante o impermeabilizante. Las primeras carreteras pavimentadas en los EE.UU. fueron

Más detalles

ASIGNATURA: TECNOLOGÍA DE FABRICACIÓN Y TECNOLOGÍA DE MÁQUINAS

ASIGNATURA: TECNOLOGÍA DE FABRICACIÓN Y TECNOLOGÍA DE MÁQUINAS ASIGNATURA: TECNOLOGÍA DE FABRICACIÓN Y TECNOLOGÍA DE MÁQUINAS Código: 141214010 Titulación: INGENIERO INDUSTRIAL Curso: 4º Profesor(es) responsable(s): - CARLOS GARCÍA MASIÁ - Departamento: INGENIERÍA

Más detalles

CARACTERIZACION DE ASFALTOS CONVENCIONALES, MODIFICADOS Y SELLADORES

CARACTERIZACION DE ASFALTOS CONVENCIONALES, MODIFICADOS Y SELLADORES CARACTERIZACION DE ASFALTOS CONVENCIONALES, MODIFICADOS Y SELLADORES Becario: Gisela Alejandra Catriel (1) Director: Ing. Oscar Raul Rebollo (2) Proyecto de I+D+i de pertenencia: Estudio de los factores

Más detalles

METODOLOGIA PARA LA CARACTERIZACION DE LIGANTES ASFALTICOS MEDIANTE EL EMPLEO DEL ENSAYO CANTABRO

METODOLOGIA PARA LA CARACTERIZACION DE LIGANTES ASFALTICOS MEDIANTE EL EMPLEO DEL ENSAYO CANTABRO ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS METODOLOGIA PARA LA CARACTERIZACION DE LIGANTES ASFALTICOS MEDIANTE EL EMPLEO DEL ENSAYO CANTABRO Autor: Jorge-Rodrigo Miro Recasens

Más detalles

IDENTIFICACIÓN CÓDIGO: IC 5167 T. P. L. U.: 3, 0, 3, 4. DEPARTAMENTO: Vías JUSTIFICACIÓN

IDENTIFICACIÓN CÓDIGO: IC 5167 T. P. L. U.: 3, 0, 3, 4. DEPARTAMENTO: Vías JUSTIFICACIÓN IDENTIFICACIÓN MATERIA: PAVIMENTOS CÓDIGO: IC 5167 PRELACIÓN: UBICACIÓN: Vías II Noveno semestre T. P. L. U.: 3, 0, 3, 4 DEPARTAMENTO: Vías JUSTIFICACIÓN REQUERIMIENTOS OBJETIVOS GENERALES ESPECÍFICOS

Más detalles

Influencia de los betunes modificados en el comportamiento mecánico de mezclas Bituminosas G-GI3000/IDIR METODOLOGÍA PARA LA REALIZACIÓN DE

Influencia de los betunes modificados en el comportamiento mecánico de mezclas Bituminosas G-GI3000/IDIR METODOLOGÍA PARA LA REALIZACIÓN DE Instrucción Técnica 01.2012 Contrato de servicios de proyectos de I+D+i relativos al ámbito competencial de la Consejería de Obras Públicas y Vivienda para los años 2012 y 2013 Influencia de los betunes

Más detalles

FICHA PÚBLICA DEL PROYECTO

FICHA PÚBLICA DEL PROYECTO NUMERO DE PROYECTO: 217728 EMPRESA BENEFICIADA: QUIMI KAO S.A. DE C.V TÍTULO DEL PROYECTO: TECNOLOGIA CON NUEVOS ADITIVOS PARA EL RECICLADO DE PAVIMENTOS OBJETIVO DEL PROYECTO: Desarrollar una nueva tecnología

Más detalles

MÉTODO PARA MEDIR EL AHUELLAMIENTO EN SUPERFICIES PAVIMENTADAS I.N.V. E

MÉTODO PARA MEDIR EL AHUELLAMIENTO EN SUPERFICIES PAVIMENTADAS I.N.V. E MÉTODO PARA MEDIR EL AHUELLAMIENTO EN SUPERFICIES PAVIMENTADAS I.N.V. E 789 07 1. OBJETO 1.1 Esta norma describe el método de ensayo para medir la profundidad del ahuellamiento en la superficie de pavimentos

Más detalles

PRÁCTICA Nº 17 ACEROS PARA HORMIGONES II. Contenido: 17.1 Aptitud al doblado 17.2 Características mecánicas 17.3 Control del acero

PRÁCTICA Nº 17 ACEROS PARA HORMIGONES II. Contenido: 17.1 Aptitud al doblado 17.2 Características mecánicas 17.3 Control del acero Prácticas de Materiales de Construcción I.T. Obras Públicas PRÁCTICA Nº 17 ACEROS PARA HORMIGONES II Contenido: 17.1 Aptitud al doblado 17.2 Características mecánicas 17.3 Control del acero ANEJO 1: Instrumental

Más detalles

BETUNES DE BAJA TEMPERATURA

BETUNES DE BAJA TEMPERATURA BETUNES DE BAJA TEMPERATURA Qué son los BETUNES DE BAJA TEMPERATURA? La disminución en el consumo energético, fundamentalmente el derivado del uso de los denominados combustibles fósiles, y la consiguiente

Más detalles

MEZCLAS EN FRÍO BAJO PROTOCOLO AMAAC CASO EN ESTUDIO. ING. JOSE JORGE LÓPEZ

MEZCLAS EN FRÍO BAJO PROTOCOLO AMAAC CASO EN ESTUDIO. ING. JOSE JORGE LÓPEZ MEZCLAS EN FRÍO BAJO PROTOCOLO AMAAC CASO EN ESTUDIO ING. JOSE JORGE LÓPEZ URTUSUÁSTEGUI ingeniería@trasenda.com.mx @jjlopezu MEZCLA FRIA Se define como mezcla asfáltica en frío a la combinación de agregados

Más detalles

DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103

DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103 DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103 DEFINICIÓN Método de diseño para estructuras sometidas a la acción sísmica. En el diseño de estructuras por capacidad, los elementos estructurales que resistirán

Más detalles

EFECTO DE LA RELACIÓN AROMÁTICO/ASFALTENO EN LA COMPOSICIÓN DEL ASFALTO MODIFICADO CON COPOLÍMERO SB EN PROPIEDADES DE ADHERENCIA Y FLUJO.

EFECTO DE LA RELACIÓN AROMÁTICO/ASFALTENO EN LA COMPOSICIÓN DEL ASFALTO MODIFICADO CON COPOLÍMERO SB EN PROPIEDADES DE ADHERENCIA Y FLUJO. EFECTO DE LA RELACIÓN AROMÁTICO/ASFALTENO EN LA COMPOSICIÓN DEL ASFALTO MODIFICADO CON COPOLÍMERO SB EN PROPIEDADES DE ADHERENCIA Y FLUJO. Gabriel Hernández Zamora. Dynasol. Km. 28.5 Carretera Tampico-Mante,

Más detalles

Diplomado Pavimentos Asfálticos

Diplomado Pavimentos Asfálticos Diplomado Pavimentos Asfálticos Duración 100 horas Objetivo general: Estudiar las propiedades mecánicas y reológicas de los cementos asfálticos modificados en su estado original y posterior a los procesos

Más detalles

NORMA VENEZOLANA COVENIN 78 (R) EDIFICACIONES. PINTURAS DE TRÁFICO Y PARA DEMARCACIÓN DE PAVIMENTOS. REQUISITOS. (4 ta. REVISIÓN)

NORMA VENEZOLANA COVENIN 78 (R) EDIFICACIONES. PINTURAS DE TRÁFICO Y PARA DEMARCACIÓN DE PAVIMENTOS. REQUISITOS. (4 ta. REVISIÓN) NORMA VENEZOLANA COVENIN 78 (R) EDIFICACIONES. PINTURAS DE TRÁFICO Y PARA DEMARCACIÓN DE PAVIMENTOS. REQUISITOS. (4 ta. REVISIÓN) I.C.S. 87.040 NORMA VENEZOLANA PINTURAS DE TRÁFICO Y PARA DEMARCACIÓN DE

Más detalles

RESISTENCIA A LA FLEXIÓN DEL CONCRETO MÉTODO DE LA VIGA SIMPLE CARGADA EN LOS TERCIOS DE LA LUZ MTC E

RESISTENCIA A LA FLEXIÓN DEL CONCRETO MÉTODO DE LA VIGA SIMPLE CARGADA EN LOS TERCIOS DE LA LUZ MTC E RESISTENCIA A LA FLEXIÓN DEL CONCRETO MÉTODO DE LA VIGA SIMPLE CARGADA EN LOS TERCIOS DE LA LUZ MTC E 709-2000 Este Modo Operativo está basado en las Normas ASTM C 78 y AASHTO T 97, las mismas que se han

Más detalles

INFLUENCIA DEL ASFALTO MODIFICADO EN MEZCLAS CON DIFERENTES GRANULOMETRÍAS, EVALUADAS CON LOS ENSAYOS A TRACCIÓN INDIRECTA Y RESISTENCIA AL DESGASTE

INFLUENCIA DEL ASFALTO MODIFICADO EN MEZCLAS CON DIFERENTES GRANULOMETRÍAS, EVALUADAS CON LOS ENSAYOS A TRACCIÓN INDIRECTA Y RESISTENCIA AL DESGASTE INFLUENCIA DEL ASFALTO MODIFICADO EN MEZCLAS CON DIFERENTES GRANULOMETRÍAS, EVALUADAS CON LOS ENSAYOS A TRACCIÓN INDIRECTA Y RESISTENCIA AL DESGASTE Autor correspondiente Dr. Saúl Castillo Aguilar Universidad

Más detalles

EMPLEO DEL MÉTODO UCL EN LA CARACTERIZACIÓN DE CEMENTOS ASFÁLTICOS EN MÉXICO

EMPLEO DEL MÉTODO UCL EN LA CARACTERIZACIÓN DE CEMENTOS ASFÁLTICOS EN MÉXICO EMPLEO DEL MÉTODO UCL EN LA CARACTERIZACIÓN DE CEMENTOS ASFÁLTICOS EN MÉXICO 1. Antecedentes Dr. Carlos Fonseca Rodríguez Departamento de Ingeniería Civil ITESM, Campus Monterrey Ing. Vinicio Serment Guerrero

Más detalles