Serie 1 Fundamentos de Espectroscopia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Serie 1 Fundamentos de Espectroscopia"

Transcripción

1 Serie 1 Fundamentos de Espectroscopia 1) Un resorte se estira 3 cm cuando se le cuelga una masa de 10 kg. A continuación se hace oscilar la masa con una amplitud de 5 cm. Determinar: (a) la constante de rigidez del resorte; (b) la energía de la masa oscilando; (c) la posición de la masa cuando pasa por el punto de equilibrio y (d) la frecuencia natural del oscilador. ) Una ciruela de masa m = 00 g que se mueve en un medio viscoso atado al etremo de una fibra elàstica con una constante de fuerza de 30 N/m, tiene un desplazamiento inicial de 30 cm. La fuerza viscosa de amortiguamiento dada por F = -bv (donde b es una constante de amortiguamiento y v la velocidad de la ciruela) actúa sobre la ciruela, de modo que la amplitud de su movimiento decrece 10 cm en 5 seg. Calcule la magnitud de la constante de amortiguamiento. 3) Una liana se estira 9.81 cm cuando un animal estando en reposo, se cuelga de ella. El animal, al darse un impulso, efectúa oscilaciones libres siguiendo la epresión y = sen(ω. (a) cuál es la constante de rigidez de la liana? (b) cuál es la frecuencia de oscilación si la masa del animal es de un kg? (c) cuál es la velocidad máima que alcanza el animal en su movimiento oscilatorio? (d) cuál es la aceleración máima? (e) cuál es la energía cinética máima? 4) Un cuerpo de masa M = 4 kg etiende un resorte 16 cm cuando se cuelga de él. Si se agrega una masa adicional m = 0.5 kg y se suelta, cuál es el periodo de oscilación? 5) (a) Demuestre que la ecuación diferencial: d d m F0 cos( (1) dt dt resulta de considerar la parte real de la ecuación diferencial: d z m dt dz dt i t z F0 e () donde z iy (sustituya el valor de z y separe la parte real y la parte imaginaria). Todas las demás constantes que figuran en las ecuaciones diferenciales anteriores tienen valores que son números reales. i t (b) Demuestre que z Ae, es solución de la ecuación diferencial (), donde el valor de A (número complejo) está dado por: F0 A m i (c) Demuestre que la solución de la ecuación (1) está dada por la parte real de z i t Ae.

2 6) Una partícula de masa m se encuentra bajo la acción de un potencial V() = V o cosh(/a) donde a y V o son constantes. (a) Encuentre la posición del punto de equilibrio (estable). (b) Mediante un desarrollo en serie de Taylor alrededor del punto de equilibrio, demuestre que se puede llegar a la siguiente epresión cuadrática para oscilaciones suficientemente pequeñas de m en torno al punto de equilibrio: 1 V V ( ) V o o a (c) Considerando que la epresión cuadrática es tipo oscilador armónico (i.e. V() = ½ β( - o ) donde o es el punto de equilibrio y β la constante de rigidez del resorte asociado al oscilador armónico), encuentre una epresión para la rigidez del resorte y muestre que para oscilaciones pequeñas, la frecuencia natural de oscilación está dada por: o 1 a Vo m 7) Para las siguientes ecuaciones diferenciales, separe primero, aquellas que podrían corresponder a un oscilador armónico con movimiento amortiguado. Para las ecuaciones seleccionadas cuáles se podrían asignar la movimiento del oscilador dentro de un líquido: (i) poco viscoso, (ii) muy viscoso? Considere su respuesta en términos de la solución de la ecuación diferencial (si hay términos oscilatorios, o si sólo se tienen términos que son funciones eponenciales con eponentes reales). Justifique sus respuestas. (a) (b) (c) (d) (e) ) Una liga se estira mm cuando se le cuelga una masa de 4 g. A continuación se hace oscilar a la masa con una amplitud de 3 mm. Determinar: (a) la constante de rigidez de la liga; (b) la energía de la masa oscilando y (c) la posición de la masa cuando pasa por la posición de equilibrio. 9) De las constantes de fuerza (constantes de rigidez) para los enlaces C H (460 N/m), C C (440 N/m), y C=O (1300 N/m), calcular las correspondientes frecuencias armónicas y periodos (en femtosegundos) usando el modelo del oscilador armónico. 10) Si f 1 (, y f (, son soluciones de la ecuación de onda en una dimensión: f 1 v f t donde v es una constante igual a la velocidad de propagación de la perturbación, muestre que la función f(, = α f 1 (, + β f (, también es solución (α y β son constantes reales).

3 11) Cuáles de las siguientes funciones satisfacen la ecuación de onda? (a) f (, 3cos( 6 (b) f (, 5cos(3 4 (c) f (, sen(5 3t ) (d) f (, 4sen( 3 / ) 1) Una onda está descrita por la epresión y = A sen(4 t + /). Cuando t = 0 y = 0 el valor de la perturbación es y = 10 m. Calcular: (a) la velocidad y sentido de la propagación, (b) la frecuencia y periodo de vibración, (c) la longitud de onda y número de onda, y (d) la amplitud y la constante de fase. 13) Una onda de presión está descrita por la epresión p = p 0 cos( + ωt + /). Cuando t = 0 y = 0 dp 1 dp se tiene que 1MPa m, Pa / seg. Calcular: (a) la velocidad y sentido de la d dt propagación, (b) la frecuencia y periodo de vibración, (c) la longitud de onda y número de onda, y (d) la amplitud y la constante de fase. 14) La pata de una cucaracha puede considerarse como una fibra elástica de aproimadamente 0.1 mm de diámetro. Esta pata se estira un 3% de su longitud inicial cuando se aplica una fuerza de 1 gramo fuerza. Con esta información, calcúlese el módulo de Young de la fibra elástica. 15) La velocidad del sonido en el agua dulce, en función de la temperatura (para presiones que oscilan entre 0 y 00 atm; y temperaturas entre 0 y 100 C), está dada por: 3 15,900 8T 0.4T v T 0.048T T p 10,000 Donde : T = temperatura en C 0 T 100 C p = presión en atmósferas 0 p 00 atm. (1 atm = 760 mmhg = Pa = MPa) La epresión anterior da buenos resultados y es eacta dentro de un 0.05% para los intervalos mencionados. (a) Calcule el valor de la velocidad del sonido en el agua dulce para T = 0 C y la presión igual a 1 atm. Si la densidad del agua dulce a 0 C es de 1 g/cm 3, calcule el módulo volumétrico adiabático del agua a esa temperatura (el módulo volumétrico adiabático B se relaciona con la B velocidad del sonido v mediante la epresión: v =, donde ρ es la densidad del agua). (b) Grafique la velocidad del sonido del agua dulce vs. T, dentro del intervalo 0 T 100 C, con p = 1 atm. (c) Grafique la velocidad del sonido del agua dulce vs. p, dentro del intervalo 0 p 00 atm., con T = 0 C.

4 16) Calcule la velocidad del sonido en el aire (donde: γ = c p /c v 1.401, ρ Kg/m 3, p 0 = 1 atm). 17) La corteza terrestre puede considerarse como compuesta principalmente por silicatos y metales, con una densidad aproimada de 4 g/cm 3. Los dos tipos principales de ondas sísmicas que se propagan por la corteza terrestre tienen velocidades dadas por: v p (onda P) v s (onda S) Donde λ y μ son los parámetros de Lamé y ρ es la densidad. Para la corteza terrestre, λ = 45 GPa y μ = 36 GPa. (a) cuáles son las velocidades de las ondas P y S? cuál onda llega primero? (b) Si se produce un temblor y llega a una región que se encuentra a 00 km del epicentro, cuál es la diferencia de tiempo en que llegan la onda P y la S? 18) En los años 30, Charles F. Richter desarrolló una escala de magnitud para terremotos, a fin de representar adecuadamente las diferencias entre los terremotos pequeños y medianos que él observó en el sur de California, y los terremotos grandes que registró alrededor del mundo. El decidió cuál sería la pequeña cantidad de energía a la que se le asignaría la magnitud cero, y escribió una ecuación semejante a la siguiente: M W log( M 0 ) 3 16 Donde se utiliza el logaritmo en base diez de la energía M 0 (en dinas-cm) estimada para el terremoto con escala Richter M W (sin unidades). (a) cuál es la energía correspondiente a una escala Richter de cero? (b) Si la magnitud Richter correspondiente al terremoto de Double Spring Flat fue de M W = 6.1, cuál es la energía M 0 determinada en dinas-cm? (c) Calcular las energías anteriores en joules. 19) En un sismómetro Wood-Anderson, se puede medir la amplitud A de una onda sísmica (en mm) directamente del registro en papel, y el tiempo transcurrido entre la llegada de la onda P y la onda S (en segundos), como se muestra en la siguiente gráfica:

5 La magnitud Richter M W (sin unidades) se calcula mediante la epresión: M W log( A) 3log(8.9 Donde A es la amplitud (en mm) y Δt es el tiempo transcurrido entre la llegada de la onda P y la onda S (en segundos). El 19 de febrero del 007 se registró un terremoto de 5.5 en la escala Richter en la estación IU.DAV en Davao, Filipinas, ubicada a 190 km del epicentro, en Mindanao, Filipinas. Si se pueden considerar los valores de 3 y 5.4 km/seg para la velocidad de la ondas S y P respectivamente, cuál hubiera sido la amplitud A (en mm) registrada por un sismómetro Wood- Anderson? 0) La velocidad de propagación de un tsunami, depende principalmente de la profundidad del mar por donde se propaga. La fórmula está dada aproimadamente por: v gh donde v es la velocidad de propagación, g es la aceleración de la gravedad, y H es la profundidad del mar. Calcule las profundidades para que la velocidad sea: (a) la de un avión de pasajeros (800 km/h); (b) la de un tren de alta velocidad (350 km/h); (c) la de un automóvil en carretera (110 km/h). 1) La velocidad de las olas del mar, se puede representar por medio de la fórmula: g v tanh( H ) donde g es la aceleración de la gravedad, λ la longitud de onda de las olas, y H la profundidad del mar. La epresión tanh( ) es la tangente hiperbólica de la epresión encerrada entre paréntesis. Calcule la velocidad para olas que se propagan por la superficie de mar con una profundidad de 3 m, y una longitud de onda de 5 m. ) Una flauta se debe considerar como un tubo con los dos etremos abiertos (antinodos). Si la frecuencia fundamental es la nota C4 (61.63 Hz) cuando todos los agujeros de la flauta están tapados, cuál debe ser la longitud del tubo? (considerar la velocidad del sonido en el aire dentro de la flauta como v = 335 m/seg debido a una mayor temperatura proporcionada porque el aire sale de la boca del flautista). Cuáles son las frecuencias posibles para los armónicos? 3) Una cuerda de nylon para guitarra tiene 65 cm de longitud. Cada metro de esta cuerda tiene una masa de 0.83 g. Al colocarse en la guitarra, la cuerda se tensa con una fuerza de 56 N, cuál es la frecuencia del armónico fundamental? 4) La trompa de un elefante es un tubo de aproimadamente L = 1.5 m. Si se transmiten ondas acústicas dentro de la trompa, calcule la frecuencia del armónico fundamental, así como de los dos siguientes armónicos. Cuál es la epresión general para todas las frecuencias posibles?

6 5) Un clarinete se debe considerar como un tubo con un etremo cerrado y otro abierto (donde se tiene un nodo y un antinodo respectivamente). Si la frecuencia fundamental es la nota E3 ( Hz) cuando todos los agujeros del clarinete están tapados, cuál debe ser la longitud del tubo? (considerar la velocidad del sonido en el aire dentro del clarinete como v = 350 m/seg debido a una mayor temperatura proporcionada porque el aire sale de la boca del clarinetista). Cuáles son las frecuencias posibles para los armónicos? 6) Un tubo largo, vertical, abierto; está parcialmente sumergido en una palangana con agua (la porción de tubo no sumergida en el agua es L). Si se hace sonar un diapasón y se acerca al etremo del tubo (que no está sumergido), y luego se mueve el tubo hasta que la intensidad el sonido del diapasón se refuerza notablemente (efecto de resonancia) cuál es el valor más pequeño de L para el cual ocurrirá la resonancia si la frecuencia de las ondas acústicas emitidas por el diapasón es 440 Hz? La velocidad del sonido dentro del tubo (con aire), es de 335 m/seg (ver figura). diapasón L 7) Considere que el oído eterno de un ser humano, es un canal (tubo) cilíndrico de 3 cm de largo, cerrado en un etremo por la membrana timpánica. Calcule la frecuencia fundamental de resonancia para este tubito (ver figura).

7 8) Calcular las tres primeras frecuencias de resonancia para un tubo de 11 cm de largo (la longitud aproimada para el tracto vocal de un niño). El tubo se puede considerar abierto por un lado (donde se ubican los labios de la boca) y cerrado por el otro (la glotis). Compare estos valores con las frecuencias resonantes importantes (llamadas formantes) del aparato vocal (ver la tabla siguiente). 9) Una onda esta descrita por la formula: y ( t ) cos( 5 t ) 4 cos( 75 t ) cos( 15 t ) cos( 175 t ) 3 cos( 00 t ) a) Cuáles son las frecuencias de los armónicos y sus respectivas amplitudes? b) Cuál es la frecuencia del armónico fundamental? c) Si la onda se propaga en el aire (donde la velocidad del sonido es de 334 m/seg) Cuál es la longitud de onda correspondiente al armónico fundamental? 30) Obtener la serie de Fourier de la función periódica dada por f( 8 6 t 31) Obtener la serie de Fourier de la función periódica dada por f( 8 6 t

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

, (1) = 344 (3) (2) sonido

, (1) = 344 (3) (2) sonido !"" # # " $% " %& % % ' %& (% ) $ *!+& ' 1. INTRODUCCIÓN: En esta práctica estudiaremos la propagación de ondas sonoras (ondas armónicas producidas por un diapasón*) en el interior de un tubo semiabierto,

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs 1) EL PÉNDULO BALÍSTICO Se muestra un péndulo balístico,

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

TEMA I.13. Ondas Estacionarias Longitudinales. Dr. Juan Pablo Torres-Papaqui

TEMA I.13. Ondas Estacionarias Longitudinales. Dr. Juan Pablo Torres-Papaqui TEMA I.13 Ondas Estacionarias Longitudinales Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

CAPITULO VI ONDAS ELASTICAS

CAPITULO VI ONDAS ELASTICAS CAPITULO VI ONDAS ELASTICAS - 140 - 6. ONDAS ELASTICAS La onda elástica es la perturbación efectuada sobre un medio material y que se propaga con movimiento uniforme a través de este mismo medio. La rapidez

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio Movimiento Ondulatorio 1 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Ondas I: ondas y sus características Nº Ejercicios PSU 1. Dentro de las características de las ondas mecánicas se afirma que MC I) en su propagación existe transmisión

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS.

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. En nuestro quehacer cotidiano nos encontramos con diversos cuerpos u objetos, elementos que suelen vibrar u oscilar como por ejemplo un péndulo, un diapasón, el

Más detalles

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Ondas Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Este documento contiene material multimedia. Requiere Adobe Reader 7.1 o superior para poder ejecutarlo. Las animaciones fueron realizadas por

Más detalles

Ondas : Características de las ondas

Ondas : Características de las ondas Ondas : Características de las ondas CONTENIDOS Características de las Ondas Qué tienen en común las imágenes que vemos en televisión, el sonido emitido por una orquesta y una llamada realizada desde un

Más detalles

Problemas Resueltos de Física 2. Alumno. Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés

Problemas Resueltos de Física 2. Alumno. Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés Problemas Resueltos de Física 2 Alumno Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés 25 de Abril de 2013 Índice general 1. Movimientos Periódicos 2 1.1. Superposición de Movimientos

Más detalles

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura.

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura. VIBRACIÓN Y ONDAS DEFINICIÓN DE ONDA Una partícula realiza un movimiento vibratorio cuando realiza una oscilación alrededor del punto de equilibrio. Un ejemplo de movimiento vibratorio lo constituye la

Más detalles

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23 Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SGUICES001CB32-A16V1 Ítem Alternativa Habilidad 1 B Reconocimiento 2 D Reconocimiento 3 E Comprensión 4 C Comprensión 5 A Aplicación

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 EL MOVIMIENTO ONDULATORIO 1 Cuando a un muelle se le aplica una fuerza de 20 N, sufre una deformación de 5 cm. Cuál es el valor de la constante de recuperación? Cuáles serán sus unidades?

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Ondas. A) la misma longitud de onda. B) una longitud de onda menor. C) una longitud de onda mayor. D) un período mayor. E) un período menor.

Ondas. A) la misma longitud de onda. B) una longitud de onda menor. C) una longitud de onda mayor. D) un período mayor. E) un período menor. Ondas 1. En ciertas ondas transversales la velocidad de propagación es inversamente proporcional a la densidad del medio elástico en que se propagan. Si en el fenómeno de refracción su frecuencia permanece

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE 1.- La ecuación del movimiento de un móvil viene expresada por: x = 4 sen(8t + 2) Halla la amplitud, el período, la frecuencia y la fase. Sol.: 4 ; π/4 seg; 4/ π s -1 ; n = 2

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

TEMA 2. ONDAS. 1. Definición de onda.

TEMA 2. ONDAS. 1. Definición de onda. TEMA 2. ONDAS ÍNDICE 1. Definición de onda. 2. Tipos de ondas. 2.1. Según el medio de propagación. 2.2. Según la forma de propagación. 2.3. Número de dimensiones de propagación. 3. Ondas armónicas. 3.1.

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANTABRIA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las dos opciones de problemas CUESTIONES ( puntos cada una) A. Se considera

Más detalles

Módulo 4: Sonido. Origen del sonido. El sonido es una onda producida por las vibraciones de la materia. Diapasón. tambor. Cuerda de guitarra

Módulo 4: Sonido. Origen del sonido. El sonido es una onda producida por las vibraciones de la materia. Diapasón. tambor. Cuerda de guitarra Módulo 4: Sonido 1 Origen del sonido El sonido es una onda producida por las vibraciones de la materia tambor Cuerda de guitarra Diapasón 2 1 Ondas en tres dimensiones Ondas bidimensionales sobre la superficie

Más detalles

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO:

INSTITUTO NACIONAL DPTO. DE FISICA COORDINACION G.R.R. NOMBRE: CURSO: 1 EJERCICIOS DE ONDA NOMBRE: CURSO: 1. investiga las siguientes definiciones: a. pulso b. onda c. fuente de propagación d. medio de propagación 2. confecciona un diagrama conceptual que describa la clasificación

Más detalles

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta

Más detalles

Clase Práctica 2: Localización y magnitudes de terremotos.

Clase Práctica 2: Localización y magnitudes de terremotos. 513430 - Sismología Apl. y de Explor. 1 Clase Práctica 2: Localización y magnitudes de terremotos. Localización 1. En figura 2 están las componentes verticales y horizontales de sismogramas de cuatro estaciones

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

= 1,0 m/s la velocidad de propagación de la onda en la cuerda (2), determine la distancia

= 1,0 m/s la velocidad de propagación de la onda en la cuerda (2), determine la distancia TALLER DE CIENCIAS PARTE FÍSICA COMÚN Figura para el ejercicio 1 al 4 1. Si sabemos que en la cuerda (1) la velocidad de propagación de la onda es v = 1,5 m/s, y que la longitud de onda vale λ = 30 cm,

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

Bloque IV Naturaleza y Geografía Parte IV. La geosfera como sistema

Bloque IV Naturaleza y Geografía Parte IV. La geosfera como sistema Bloque IV Naturaleza y Geografía Parte IV La geosfera como sistema Dinámica interna Están estáticas? Veamos el Modelo de Cinta Transportadora Dinámica interna Dinámica interna 1 divergente 2 convergente

Más detalles

LAS ONDAS. T v = v = λf. 1. Determinar que factores tienen un efecto sobre la amplitud y longitud de una onda.

LAS ONDAS. T v = v = λf. 1. Determinar que factores tienen un efecto sobre la amplitud y longitud de una onda. LAS ONDAS INTRODUCCIÓN En esta práctica se va a estudiar la propagación de ondas transversales en una cuerda. La velocidad de propagación de cualquier onda transversal en una cuerda tensa está dada por

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

Guía n 2 de Geofísica SISMOLOGÍA

Guía n 2 de Geofísica SISMOLOGÍA Guía n 2 de Geofísica Profesor Jorge Reyes / Escrito por Christian Castro Sismología / Escalas / Tipos de Ondas / Rapidez de las ondas / Coeficientes elásticos / Prospección Sísmica / Ley de Gutenberg

Más detalles

PROBLEMAS ONDAS ESTACIONARIAS. Autor: José Antonio Diego Vives

PROBLEMAS ONDAS ESTACIONARIAS. Autor: José Antonio Diego Vives PROBLEMAS DE ONDAS ESACIONARIAS Autor: José Antonio Diego Vives Problema 1 Una cuerda de violín de L = 31,6 cm de longitud y = 0,065 g/m de densidad lineal, se coloca próxima a un altavoz alimentado por

Más detalles

DOCUMENTO 02 CLASIFICACION DE LAS ONDAS

DOCUMENTO 02 CLASIFICACION DE LAS ONDAS DOCUMENTO 02 CLASIFICACION DE LAS ONDAS RESUMEN CONCEPTOS DE LA CLASE ANTERIOR Relaciones importantes f = 1 T v = λ.f la longitud de onda y la frecuencia varían en forma inversamente proporcional para

Más detalles

1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial

1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial . Simplificar las siguientes epresiones. 7 ( ) ( 8) b. + + 79 ( ) ( ) c. ( )( )( ) d. ( ) ( ) e. + f. 8 + 8 + 7 6 g. y ( + y ) ( + y ) ( y ) 0 y 8 h.. Simplificar y escribir como un producto de potencias:

Más detalles

El sonido: Una onda mecánica longitudinal Cómo se produce el sonido? Velocidad de propagación Propiedades del sonido Efecto Doppler Viene o va?

El sonido: Una onda mecánica longitudinal Cómo se produce el sonido? Velocidad de propagación Propiedades del sonido Efecto Doppler Viene o va? EL SONIDO El sonido: Una onda mecánica longitudinal Cómo se produce el sonido? Velocidad de propagación Propiedades del sonido Efecto Doppler Viene o va? Contaminación acústica Aplicaciones de ondas sonoras:

Más detalles

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS 1.* Cuál es el periodo de la onda si la frecuencia es de 65,4 Hz? 2.** Relacionen los conceptos con sus definiciones correspondientes. a) Amplitud b) Longitud

Más detalles

Problemario de Oscilaciones, Ondas y Sonido

Problemario de Oscilaciones, Ondas y Sonido Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Problemario de Oscilaciones, Ondas y Sonido Física General III Prof. Anamaría Font Febrero 2009 Índice 1. Oscilaciones 3 1.1. Oscilador

Más detalles

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE INSTITUTO TECNOLÓGICO DE MATAMOROS SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE PROYECTO SEMESTRAL MATERIA HORARIO ASESOR EQUIPO 2 Análisis de vibraciones Lunes a Viernes, 17:00-18:00hrs.

Más detalles

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras 0 3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras En los sonidos del habla no existen ondas sonoras simples. Las ondas sonoras simples son siempre periódicas. También reciben el

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción Problemas de Practica: Fluidos AP Física B de PSI Nombre Preguntas de Multiopción 1. Dos sustancias; mercurio con una densidad de 13600 kg/m 3 y alcohol con una densidad de 0,8kg/m 3 son seleccionados

Más detalles

PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS

PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS 1. Justifica si las siguientes cuestiones son verdaderas o falsas: a) La amplitud de un movimiento vibratorio es igual a la elongación de la partícula.

Más detalles

Geología. Terremotos. Introducción / El epicentro / Intensidades / Richter / El sismógrafo / Terremotos en el mundo

Geología. Terremotos. Introducción / El epicentro / Intensidades / Richter / El sismógrafo / Terremotos en el mundo Geología Terremotos Introducción / El epicentro / Intensidades / Richter / El sismógrafo / Terremotos en el mundo 1. Introducción: Las fuerzas tectónicas en la corteza terrestre producen algunas veces

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles