CORRECCIÓN DEL FACTOR DE POTENCIA CON REGULADOR DE ENERGÍA REACTIVA RTR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CORRECCIÓN DEL FACTOR DE POTENCIA CON REGULADOR DE ENERGÍA REACTIVA RTR"

Transcripción

1 INGENIERIA ELECTRONICA EN CONTROL Y AUTOMATISMO CONTROL DE MOVIMIENTO I CORRECCIÓN DEL FACTOR DE POTENCIA CON REGULADOR DE ENERGÍA REACTIVA RTR MSc. Orlando Philco A.

2 CONCEPTOS GENERALES Las cargas generan perturbaciones CARGA Armónicas Potencia Reactiva Cargas Asimétricas Flicker RED Corrección del Factor de Potencia

3 Diferentes aspectos de la calidad de energía eléctrica Perturbaciones Potencia Reactiva Armónicas Commutación Caídas de tensión Redes asimétricas Radio frecuencias Interrupción de tensión Causadas por: Cargas Inductivas, Electrónica de Potencia Electrónica de Potencia, cargas no lineales Convertidores y drives Variaciones de carga, corrientes de inserción Cargas monofásicas desbalanceadas Control de Ripple Iluminación, sobrecarga, switching

4 Tipos de carga Cargas Resistivas Lamp. incandescentes Planchas Calentamiento resistivo Cargas Capacativas Capacitores Cables subterraneos Generadores sincrónicos sobre-exitados RED Cargas Inductivas Motores Eléctricos Transformadores Reactores/chokes Líneas aereas Generadores sincrónicos sub-exitados Lámparas de descarga Electrónica de Potencia

5 Tres diferentes tipos de carga 1. CARGAS-RESISTIVAS Cargas Ohmicas U e I en fase Desfase = 0 Sin penalidad I - Corriente =0 U - Tensión En circuitos resistivos las formas de onda de la tensión y de la corriente alcanzan sus picos, valles y cruces por cero en el mismo instante de tiempo. Se dice que la tensión y la corriente están en fase ( = 0 ) y toda la potencia de entrada se convierte en potencia activa. Por lo tanto, los circuitos resistivos tienen un factor de potencia unitario. La resistencia ohmica no depende de la frecuencia.

6 U, I y potencia 2. CARGAS-INDUCTIVAS =90 Cargas I - Corriente Inductivas U adelanta 90 a I desfase = 90 Penalidad! U - Tensión. La mayoría de las cargas industriales son inductivas por naturaleza, por ejemplo: motores, transformadores, etc. Debido a la reactancia inductiva de la carga, la corriente tomada por la carga se retrasa eléctricamente con respecto a la forma de onda de la tensión en un ángulo La magnitud de es proporcional a la reactancia inductiva. Impedancia-X L = 2 * 3.14 * f * L Desfase Cargas inductivas causan un desfase entre corriente y tensión. Se observa potencia positiva y negativa Corriente Potencia + ve + ve -ve Tens ión t Corrección del Factor de Potencia

7 3. CARGAS-CAPACITIVAS Debido a la reactancia capacitiva de la carga, la Cargas Capacativas I adelanta 90 a U desfase = 90 Sobrecompensación es riesgoso! corriente tomada por la carga se adelanta a la tensión en un ángulo. La magnitud de es proporcional a la reactancia capacitiva. I - Corriente Impedancia X C 1 1 C 2 f C =90 U - Tensión

8 Tres diferentes tipos de potencia eléctrica S = Potencia Aparente P = Potencia Activa Q = Potencia Reactiva Potencia Reactiva (kvar) 2 Q S - Q 2 P 2 Q C Q 1 Potencia Activa P S ² - Q ² [ KW ] S S 1 Potencia Aparente S P ² + Q ² [ kva ] cos = P/S = fase Ángulo de desplazamiento sin = Q/S S 1 = Potencia Aparente No Compensada Q = S sin S 2 = Potencia Aparente Compensada con Capacitores Q = P tan

9 1.-Potencia Activa. La parte de la potencia de entrada que se convierte en potencia de salida, se denomina Potencia Activa y se indica generalmente P. La Potencia Activa se define por la siguiente fórmula. P 3 U I cos [W] Idealmente, toda la potencia de entrada por ej. la Potencia Aparente se debería convertir en potencia de salida útil, por ej. calentamiento de un horno, movimiento de un motor, luz de una lámpara. 2.-Potencia Reactiva Las máquinas eléctricas trabajan basadas en el principio de conversión de energía electromagnética (por ej. motores eléctricos, transformadores). Una parte de la energía de entrada se consume para crear y mantener el campo magnético. Esta parte de la energía de entrada no puede ser convertida en energía activa y es retornada a la red eléctrica al removerse el campo magnético. Esta potencia se conoce como Potencia Reactiva Q, y se define del siguiente modo Q 3 U I sin [VAr]

10 3.- Potencia Aparente U, I y Potencia Las aplicaciones de los equipos eléctricos se basan en la conversión de la energía eléctrica en alguna otra forma de energía. La potencia eléctrica tomada por un equipo desde el suministro se denomina Potencia Aparente, y consiste de potencia activa y reactiva. La corriente medida con una pinza amperimétrica indica la potencia aparente. Se define como: Factor de Potencia = Cos Cos phi = P (kw) / S (kva) Corriente desfase + ve + ve Tens ión Potencia -ve t S 3 U I Factor de Potencia [VA] FP Típico Fábrica No Compensado Cervecerías 0,6..0,7 Carnicerías 0,6..0,7 Plantas de cemento 0,6..0,7 Compresores 0,7..0,8 Gruas 0,5..0,6 Plantas de secado 0,8..0,9 Maquinaria, gran tamaño 0,5..0,6 Maquinaria, pequeño tamaño 0,4..0,5 Plantas de papel 0,6..0,7 Molinos 0,6..0,7 Fábrica de acero 0,6..0,7 Azucar 0,8..0,85 Tabaco 0,6..0,7 Bombas de agua 0,8..0,85 Transformadores de soldadura 0,4..0,5

11 Un bajo factor de potencia en una industria, edificio etc., produce los siguientes inconvenientes: Al usuario (industrial): Aumento de la intensidad de corriente. Pérdidas en los conductores y fuertes caídas de tensión. Incrementos de potencia de las plantas, transformadores, reducción de su vida útil y reducción de la capacidad de conducción de los conductores. La temperatura de los conductores aumenta y esto disminuye la vida de su aislamiento. Aumentos en la factura por consumo de energía eléctrica. A la empresa distribuidora de energía: Mayor inversión en los equipos de generación, ya que su capacidad en KVA debe ser mayor, para poder entregar esa energía reactiva adicional. Mayores capacidades en líneas de transmisión y distribución así como en transformadores para el transporte y transformación de esta energía reactiva. Elevadas caídas de tensión y baja regulación de voltaje, lo cual puede afectar la estabilidad de la red eléctrica.

12 Mejorar el factor de potencia resulta práctico y económico, por medio de la instalación de condensadores eléctricos estáticos, o utilizando motores sincrónicos disponibles en la industria (algo menos económico si no se dispone de ellos). Un capacitor instalado en el mismo circuito de un motor de inducción tiene como efecto un intercambio de corriente reactiva entre ellos. La corriente de adelanto almacenada por el capacitor entonces alimenta la corriente de retraso requerida por el motor de inducción. Caso puntual: Un motor de inducción sin corrección de factor de potencia que consume sólo 80 A para su carga de trabajo, necesita la corriente de magnetización de 60 A (reactiva), debiendo obtener del circuito de alimentación 100 A: Las siguientes figuras, muestra un motor de inducción sin corrección del factor de potencia y otro con CFP.

13 El circuito de alimentación conduce ahora únicamente corriente de trabajo (80A). Esto permite conectar equipo eléctrico adicional en el mismo circuito y reduce los costos por consumo de energía como consecuencia de mantener un bajo factor de potencia. Por la línea de alimentación fluye la corriente de trabajo junto con la corriente no útil o corriente de magnetización (reactiva). Después de instalar un capacitor en el motor para satisfacer las necesidades de magnetización del mismo, el circuito de alimentación sólo tiene que conducir y suministrar 80A para que el motor efectúe el mismo trabajo, ya que el capacitor se encarga de entregar los 60A restantes.

14 Por qué mejorar el Factor de Potencia? Reducción del costo de energía (amortización: 6-18 meses, en general) Reducción de pérdidas ohmicas Mejoramiento de la Calidad de Energía (armónicas, caídas de tensión, etc.) Mayor carga de kw de equipos de transmisión y distribución y/o menor dimensionamiento de estos equipos (cable, transformador, barras, etc.) Protección Climática

15 Cómo mejorar el Factor de Potencia? Capacitores de CFP (HV o LV, automáticos o fijos) Reducir la cantidad de carga inductiva Uso de convertidores de moderna tecnología Generadores sincrónicos sobre-excitados CFP Activa (tiempo real) con switches con tiristores

16 0 Principio de la Correccion del Factor de Potencia. Corriente 65 Energía Activa Trabajo mecánico o calor Corriente Corriente 95 Energía Reactiva Capacitor Generación de campos magnéticos Carga Suministro

17 Principio de la Correccion del Factor de Potencia. P = Potencia Activa Q = Potencia Reactiva S = Potencia Aparente S 1 S 2 Q C Q P Q 2 = Q 1 - Q C En términos simples, el factor de potencia mide la eficiencia de su consumo eléctrico, a la hora de convertirlo en potencia útil, como luz, calor o movimiento mecánico. En términos técnicos, es el ratio de potencia activa o útil medida en kilovatios (kw) respecto a la potencia aparente total (potencia activa y reactiva) medida en kilovoltioamperios. Factor de Potencia = kw / kva Corrección del Factor de Potencia

18 Métodos de Correccion del Factor de Potencia Compensación individual Compensación en grupo Conpensación automática centralizada Compensación combinada CFP Activa (Tiempo Real, por medio de semiconductores) Corrección del Factor de Potencia

19 1. Compensación Individual (fija) Ventajas a primera vista kvar producidos en el lugar Reducción de pérdidas en línea Reducción de caídas de tensión Ahorro de desconectador Desventajas Muchos capacitores pequeños son más caros que uno central. Bajo factor de utilización de capacitores para equipos de operación no habitual. Corrección del Factor de Potencia

20 1. Compensación Individual - motor Para compensar motores asincrónicos la potencia del capacitor debería ser como máximo 90 % de la potencia reactiva de vacío del motor. Mayores relaciones de kvar provocan la auto- excitación del motor después de la desconexión de la red. Riesgo de Sobre Tensión > 1,1 * Unominal! La relación de kvar recomendada asegura un FP < 1 pero > 0,9 en vacío, asi como también a plena carga del motor. Una regla práctica recomienda: kvar = 35% de la potencia activa (kw) del motor. La potencia activa se puede encontrar en la placa de características del motor. Corrección del Factor de Potencia

21 Bancos de Compensación Fijos Los bancos fijos son muy útiles cuando se requiere mejorar el factor de potencia de una carga o un grupo de cargas cuya demanda de potencia reactiva es básicamente constante. El banco fijo siempre estará conectado a la línea de alimentación Corrección del Factor de Potencia

22 2. Compensación en Grupo Ventajas a primera vista Reducción de la inversión de capital Pérdidas reducidas en líneas de distribucion. Caídas de tensión reducidas en líneas de distribución. Mayor factor de utilización de capacitores M M M Corrección del Factor de Potencia

23 3. Compensación Centralizada Ventajas a primera vista Mejor utilización de capacitores Solución más efectiva (costo) Más fácil supervisión Control automático En fábricas con muchas cargas de distintas potencias y tiempos de operación, la compensación fija es generalmente demasiado costosa y no efectiva. La solución más económica para aplicaciones complejas es generalmente un banco centralizado y automático de capacitores, controlado por un controlador automático de CFP. El punto de conexión generalmente es el tablero general de distribución. Corrección del Factor de Potencia

24 BANCOS DE COMPENSACIÓN Y REGULADOR DE ENERGIA REACTIVA RTR El banco automático de capacitores consta de un conjunto de celdas capacitivas de valores distintos y también idénticos. El relevador de factor de potencia se encarga de detectar las necesidades de potencia reactiva del sistema y conecta los grupos necesarios. Corrección del Factor de Potencia

25 REGULADOR DE ENERGIA REACTIVA RTR CARACTERÍSTICAS GENERALES Permiten un preciso seguimiento de la curva de cargas existentes, asegurando llevar el cos φ a los valores programados. Se basan en el sistema FCP, que dan al regulador unas prestaciones como: Minimizar el número de maniobras, aumentando la vida de los componentes de la batería de condensadores. Aumento de la velocidad de respuesta del equipo, lo que comporta un mayor ahorro energético. Sistema antipenduleo, evitando conexiones y desconexiones innecesarias de los condensadores. Óptima regulación, gracias a la precisa información del estado de los parámetros de red y el sistema antipenduleo, nos aseguramos seguir con precisión la curva de cargas de la instalación y conseguir el cos φ objetivo, entre otros aspectos más.

26 REGULADOR DE ENERGIA REACTIVA RTR Para la puesta en marcha es necesario la instalación de un transformador de intensidad (normalmente 5A) de acuerdo a la intensidad total de la carga La tensión de alimentación del regulador se realiza entre dos fases y la corriente se toma de la tercera. Debe alimentarse a través de un interruptor o interruptor automático CONEXIONADO El transformador de intensidad tiene que estar colocado de forma que mida la corriente total de las cargas más los condensadores Corrección del Factor de Potencia

27 Medida en 4 cuadrantes El regulador PR-11D6 / D12, es un equipo que mide en 4 cuadrantes. Para potencias generadas, aparece un signo negativo en la visualización del cos ϕ. Comprobar fases de conexión y programación si la indicación no es correcta (SET- UP - Phase).

28 ARRANQUE DIRECTO DE UN MOTOR TRIFASICO DE INDUCCION

29 DIAGRAMA DE CONTROL REGULADOR DE ENERGIA REACTIVA RTR Corrección del Factor de Potencia

30 FORMAS DE ONDA Forma de onda con el motor apagado Forma de onda con el motor encendido sin compensación

31 Forma que toma la onda senoidal sin compensación con el motor a plena carga el cual consume una corriente de 2 Amperios. Forma que toma la onda senoidal con compensación de 0.99 con el motor a plena carga.

32 En Resumen: Cuando el sistema energético de una instalación tiene una demanda de energía reactiva alta, significa que está demandando más energía de la que realmente usa. Esto da como resultado costes adicionales en su factura eléctrica e incrementa la cantidad de energía demandada a la red eléctrica de abastecimiento que podría evitarse. Una alta demanda de energía reactiva puede ser causada por varios factores, pero las causas primarias son equipos que crean campos magnéticos para funcionar, como alumbrado, climatización, ascensores, frigoríficos, etc. La energía usada para crear el campo magnético requerido por estos aparatos para funcionar, sobredemanda su sistema eléctrico y el de la red suministradora, si no se instalan los equipos adecuados de compensación de energía reactiva, como condensadores y filtros armónicos, su sistema eléctrico puede verse sujeto a una alta demanda de energía reactiva. Si la factura eléctrica es anormalmente alta, o si está recibiendo cargos extra por energía reactiva (factor de potencia), son signos obvios de que el sistema eléctrico tiene una alta demanda de energía reactiva.

CORRECCION del FACTOR de POTENCIA

CORRECCION del FACTOR de POTENCIA CORRECCION del FACTOR de POTENCIA Las cargas generan perturbaciones CARGA Armónicas Potencia Reactiva Cargas Asimétricas Flicker RED 2 Diferentes aspectos de la calidad de energía eléctrica Perturbaciones

Más detalles

5.Corrección del factor de potencia

5.Corrección del factor de potencia 5.Corrección del factor de potencia Por: Ing. César C Chilet León Factor de potencia de cargas La mayoría de las cargas industriales (motores, transformadores...), alimentadas con corriente alterna necesitan

Más detalles

ALTERNA (III) TRIFÁSICA: Problemas de aplicación

ALTERNA (III) TRIFÁSICA: Problemas de aplicación ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de

Más detalles

Instalación y mantenimiento de cualquier red eléctrica.

Instalación y mantenimiento de cualquier red eléctrica. Soluciones 1 Soporte Eléctrico Instalación y mantenimiento de cualquier red eléctrica. Desarrollamos proyectos llave en mano enfocados a la Calidad y Eficiencia en el consumo. Transformadores. Subestaciones.

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

Reducción de la factura eléctrica mediante Baterías de Condensadores.

Reducción de la factura eléctrica mediante Baterías de Condensadores. Reducción de la factura eléctrica mediante Baterías de. ÍNDICE 1. previos de Reactiva 2. Factura eléctrica en Baja Tensión 3. al consumo de Reactiva 4. Baterías de 5. de baterías. 6. Previos de Energía

Más detalles

INDICE Capitulo 1. Introducción a las Instalaciones Eléctricas Capitulo 2. Elemento que Constituyen una Instalación Eléctrica

INDICE Capitulo 1. Introducción a las Instalaciones Eléctricas Capitulo 2. Elemento que Constituyen una Instalación Eléctrica INDICE Capitulo 1. Introducción a las Instalaciones Eléctricas 1. Descripción 1 2. Objetivos de una instalación 1 2.1. Seguridad 2.2. Eficiencia 2.3. Economía 2.4. Flexibilidad 2.5. Accesibilidad 3. Clasificación

Más detalles

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3 1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta

Más detalles

CAPITULO III COMPENSACION REACTIVA

CAPITULO III COMPENSACION REACTIVA CAPITULO III COMPENSACION REACTIA 1. GENERALIDADES DE COMPENSACION REACTIA 1.1 FACTOR DE POTENCIA Factor de potencia es el nombre dado a la relación entre la potencia activa (kw) usada en un sistema y

Más detalles

Banco Condensador. H. Briones sistemas eléctricos.

Banco Condensador. H. Briones sistemas eléctricos. Banco Condensador H. Briones sistemas eléctricos. Banco condensador Energía eléctrica Es la causada por el movimiento de cargas eléctricas atraves de materiales conductores, se transforma fundamentalmente

Más detalles

Potencia Eléctrica en C.A.

Potencia Eléctrica en C.A. Potencia Eléctrica en C.A. Potencia Eléctrica en Circuitos Puramente Resistivos (o en Circuitos con C.C.) Si se aplica una diferencia de potencial a un circuito, éste será recorrido por una determinada

Más detalles

La corrección del factor de potencia. Primer paso hacia la Eficiencia Energética Eléctrica.

La corrección del factor de potencia. Primer paso hacia la Eficiencia Energética Eléctrica. La corrección del factor de potencia. Primer paso hacia la Eficiencia Energética Eléctrica. Batería de condensadores. Ahorro económico en el consumo eléctrico 23 septiembre 2015 ÍNDICE DE CONTENIDOS 1.

Más detalles

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J).

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Tema 21.6 Trabajo y potencia Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Trabajo = Fuerza espacio 1 J (1 julio) = 1 N m (newton metro) 1 cal (caloría) = 4,187 J 1

Más detalles

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador INDICE Capítulo 1. Conversión de Energía 1 1.1. Fuerza en un capacitor 2 1.2. El Toroide 5 1.3. Circuitos magnéticos en serie y paralelo 7 1.4. Otros sistemas comunes de unidades magnéticas 8 1.5. Materiales

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

PROGRAMA RESUMIDO DE CURSOS

PROGRAMA RESUMIDO DE CURSOS PROGRAMA RESUMIDO DE CURSOS Curso: Operación de sistemas eléctricos de potencia y centros de control PROGRAMA GENERAL MODULO I: MODULO II: MODULO III: MODULO IV: MODULO V: MODULO VI: Flujos de potencia

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

FACTOR DE POTENCIA Y SUS IMPLICACIONES TÉCNICO- ECONÓMICAS

FACTOR DE POTENCIA Y SUS IMPLICACIONES TÉCNICO- ECONÓMICAS FACTOR DE POTENCIA Y SUS IMPLICACIONES TÉCNICO- ECONÓMICAS FACTOR DE POTENCIA Y SUS IMPLICACIONES TÉCNICO- ECONÓMICAS LAS TRES POTENCIAS En los equipos que funcionan con corriente alterna cuyo funcionamiento

Más detalles

Corrección del Factor de Potencia en Presencia de Armónicas

Corrección del Factor de Potencia en Presencia de Armónicas Corrección del Factor de Potencia en Presencia de Armónicas ING. ERNESTO VIVEROS DOMINGUEZ EXPO ELECTRICA DEL SURESTE 2015 11 DE NOVIEMBRE 2015 0. Introducción al FP.- Definiciones Básicas POTENCIA ELECTRICA

Más detalles

1. Qué es Factor de Potencia?

1. Qué es Factor de Potencia? 1. Qué es Factor de Potencia? Denominamos factor de potencia al cociente entre la potencia activa y la potencia aparente, que es coincidente con el coseno del ángulo entre la tensión y la corriente cuando

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores Introducción En algún instante dado, la potencia en una carga es igual al producto y la corriente Ahora consideremos el caso de C.

Más detalles

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente...

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente... Índice general 1. Principios fundamentales de la electricidad...1 1.1 Introducción...1 1.2 Principios fundamentales de la electricidad...1 1.2.1 Moléculas, átomos y electrones...2 1.3 Estructura del átomo...3

Más detalles

Bancos de capacitores Metering:

Bancos de capacitores Metering: Bancos de capacitores Metering: La solucion ideal para la correccion del Factor de Potencia Bancos de capacitores Meter Un problema muy común en las fábricas, industrias o plantas de producción resulta

Más detalles

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica.

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica. TEMA 3: CORRIENTES DE CORTOCIRCUITO EN REDES TRIFÁSICAS. INTRODUCCIÓN. CLASIFICACIÓN DE CORTOCIRCUITOS. CONSECUENCIAS DEL CORTOCIRCUITO. CORTOCIRCUITOS SIMÉTRICOS. 1. Introducción. Causas y Efectos de

Más detalles

Contenido. Acerca del autor... Prólogo... Agradecimientos...

Contenido. Acerca del autor... Prólogo... Agradecimientos... Contenido Acerca del autor... Prólogo... Agradecimientos... xiii xv xix Capítulo 1: CIRCUITOS MAGNÉTICOS Y CONVERSIÓN DE ENERGÍA...... 1 1.1. Introducción.................................... 1 1.2. Materiales

Más detalles

CURSO DE ELECTRICIDAD BÁSICA

CURSO DE ELECTRICIDAD BÁSICA Capítulo 1: Qué es la Electricidad? CURSO DE ELECTRICIDAD BÁSICA Introducción Los Átomos Electricidad Estática Corriente Eléctrica Conductores o Materiales Conductores en Orden decreciente de Calidad Aisladores

Más detalles

Capacitores y corrección del Factor de Potencia

Capacitores y corrección del Factor de Potencia Capacitores y corrección del Factor de Potencia El factor de potencia se define como el cociente de la relación de la potencia activa entre la potencia aparente; esto es: FP = P S Comúnmente, el factor

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

Cómo ahorrar en la factura eléctrica con una batería de condensadores?

Cómo ahorrar en la factura eléctrica con una batería de condensadores? Cómo ahorrar en la factura eléctrica con una batería de condensadores? Concepto de Reactiva Activa (kw): Potencia eléctrica que se transforma en potencia útil (aprovechable). Reactiva (kvar): Potencia

Más detalles

Capacitores y Factor de Potencia en la Industria

Capacitores y Factor de Potencia en la Industria Ing. Ramón Ramírez R. 400 300 200 100 0-100 φ 0 45 90 135 180 225 270 315 360 405 450 495 540 V I Capacitores y Factor de Potencia en la Industria -200-300 -400 PF Correction Basics - 1 CARGAS COMBINADAS

Más detalles

7 Resistencias de base hacia el distribuidor de encendido o desde éste (contacto de mando)

7 Resistencias de base hacia el distribuidor de encendido o desde éste (contacto de mando) NORMA DIN 72552 DESIGNACION DE BORNES 1 Baja tensión (bobina de encendido, distribuidor de encendido) Distribuidor de encendido con dos circuitos separados 1a 1b al interruptor de encendido I al interruptor

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

PARQUES EÓLICOS CONECTADOS A LA RED. Electricidad es un producto, Requisitos :

PARQUES EÓLICOS CONECTADOS A LA RED. Electricidad es un producto, Requisitos : Electricidad es un producto, Requisitos : Seguridad Calidad : Del servicio y de la onda (V, f, senosoidal pura, equilibrio de fases) Confiabilidad Nivel de Compatibilidad Electromagnética: Con respecto

Más detalles

Ejercicio Nº 601: En el siguiente circuito calcular las tensiones, corrientes y dibujar en escala el diagrama fasorial de corrientes y tensiones.

Ejercicio Nº 601: En el siguiente circuito calcular las tensiones, corrientes y dibujar en escala el diagrama fasorial de corrientes y tensiones. UNIDAD EAICA 06: IEA IFÁICO DE ENIONE ALENA ENOIDALE Ejercicio Nº 601: En el siguiente circuito calcular las tensiones, corrientes y dibujar en escala el I 10 60 ecuencia directa I I 10 60 10 60 Ejercicio

Más detalles

Compensación de la Energía Reactiva y Filtrado de Armónicos. Reguladores automáticos de energía reactiva

Compensación de la Energía Reactiva y Filtrado de Armónicos. Reguladores automáticos de energía reactiva Compensación de la Energía Reactiva y Filtrado de Armónicos Reguladores automáticos de energía reactiva R.1 - Regulatores automáticos de energía reactiva computer Plus-T Regulador inteligente R1-5 computer

Más detalles

Factor de Potencia. Julio, 2002

Factor de Potencia. Julio, 2002 Factor de Potencia Julio, 2002 Factor de potencia (1/2) El factor de potencia se define como el cociente de la relación de la potencia activa entre la potencia aparente; esto es: FP = Comúnmente, el factor

Más detalles

Nombre de la asignatura: CONVERTIDORES ELECTRONICOS DE POTENCIA. Carrera: INGENIERIA ELECTRONICA. Dr. Marco A. Arjona L. Ing. Felipe de Jesús Cobos

Nombre de la asignatura: CONVERTIDORES ELECTRONICOS DE POTENCIA. Carrera: INGENIERIA ELECTRONICA. Dr. Marco A. Arjona L. Ing. Felipe de Jesús Cobos 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: CONVERTIDORES ELECTRONICOS DE POTENCIA Carrera: INGENIERIA ELECTRONICA Clave de la asignatura: Horas teoría - horas práctica créditos: 3 2 8 2.- HISTORIA

Más detalles

Bloque II: 5- Motores de corriente alterna (Motores trifásicos)

Bloque II: 5- Motores de corriente alterna (Motores trifásicos) Bloque II: 5- Motores de corriente alterna (Motores trifásicos) 1.- Introducción: Corriente alterna y red trifásica Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y dirección

Más detalles

PROGRAMA ANALÍTICO. Fecha de aprobación: Departamento de Energía. o e OBLIGATORIA. OPTATIVA General de Área de Concentración. TRIMESTRE Observaciones

PROGRAMA ANALÍTICO. Fecha de aprobación: Departamento de Energía. o e OBLIGATORIA. OPTATIVA General de Área de Concentración. TRIMESTRE Observaciones Departamento de Energía Fecha de aprobación: 7 enero 2011 PROGRAMA ANALÍTICO Nivel Licenciatura Unidad de enseñanza-aprendizaje Clave 113141 INGENIERÍA ELÉCTRICA Horas teoría 6.0 Horas práctica 0.0 Seriación:

Más detalles

INDICE Capítulo 1. Introducción Capítulo 2. Conversión de energía Electromecánica Capítulo 3. Construcción de Máquinas Reales, Dínamos de CD

INDICE Capítulo 1. Introducción Capítulo 2. Conversión de energía Electromecánica Capítulo 3. Construcción de Máquinas Reales, Dínamos de CD INDICE prefacio XIX Capítulo 1. Introducción 1 1.1. Mayor uso de la corriente alterna 1 1.2. Primeros usos de los motores 5 1.3. Distribución de la energía eléctrica a los particulares 7 1.4. Ignorancia

Más detalles

Curso Eléctrico Palas P&H 4100XPC Codelco Andina.

Curso Eléctrico Palas P&H 4100XPC Codelco Andina. Curso Eléctrico Palas P&H 4100XPC Codelco Andina. Sist em a RPC y Sup r esora Introducción La cabina RPC se encarga mantener una potencia reactiva los mas cercana a uno, descargando bancos de condensadores

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

Introducción a los principios de las máquinas

Introducción a los principios de las máquinas CONTENIDO Prefacio Capítulo 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Introducción a los principios de las máquinas Las máquinas eléctricas, los transformadores y la vida diaria Nota referente a las unidades

Más detalles

CAPITULO 2: ELEMENTOS Y EQUIPOS TEMA 2.4. CONVERTIDORES DE TENSIÓN

CAPITULO 2: ELEMENTOS Y EQUIPOS TEMA 2.4. CONVERTIDORES DE TENSIÓN CAPITULO 2: ELEMENTOS Y EQUIPOS TEMA 2.4. CONVERTIDORES DE TENSIÓN 2.4 CONVERTIDORES DE TENSIÓN. DESARROLLO DE LOS CONTENIDOS 1. INTRODUCCIÓN. 2. CONVERTIDOR CC/CC. 3. CONVERTIDOR CC/CA. 3.1. INVERSORES

Más detalles

TEST ELECTRICIDAD BÁSICA 2:

TEST ELECTRICIDAD BÁSICA 2: 1. Un conductor eléctrico es: A. Un elemento capaz de transportar la energía eléctrica ofreciendo baja resistividad. B. Un elemento capaz de transportar la energía eléctrica ofreciendo baja resistencia.

Más detalles

DEPARTAMENTO DE OPERACIONES MONITOREO DE PARÁMETROS ELÉCTRICOS

DEPARTAMENTO DE OPERACIONES MONITOREO DE PARÁMETROS ELÉCTRICOS DEPARTAMENTO DE OPERACIONES MONITOREO DE PARÁMETROS ELÉCTRICOS EMPRESA: UBICACIÓN: EQUIPO: Martirea Honsel (Servicio interno) Av. La montaña No. 21, km 25.8, Qro. Santa Rosa Jauregui, Qro., C.P. 7622 Circuito

Más detalles

MATERIA: ELECTRICIDAD BÁSICA

MATERIA: ELECTRICIDAD BÁSICA MATERIA: ELECTRICIDAD BÁSICA 1. CUÁL ES LA PARTÍCULA MÁS PEQUEÑA DE LA MATERIA? a. UN ELECTRÓN b. UNA MOLÉCULA c. UN ELEMENTO d. NINGUNA DE LAS ANTERIORES 2. EL HIDRÓGENO ES UN ELEMENTO O UN COMPUESTO?

Más detalles

Consideraciones eléctricas y conceptos básicos sobre la generación, transmisión y distribución de energía Unidad 1 Parte 2.

Consideraciones eléctricas y conceptos básicos sobre la generación, transmisión y distribución de energía Unidad 1 Parte 2. Consideraciones eléctricas y conceptos básicos sobre la generación, transmisión y distribución de energía Unidad 1 Parte 2. 1 CONTENIDO 2. ENERGÍA... 3 2.1 Generación... 3 2.2 Subestaciones de energía

Más detalles

b) Frecuencia nominal. La frecuencia (medida en Hz) del sistema de potencia para el cual el banco del capacitor es diseñado.

b) Frecuencia nominal. La frecuencia (medida en Hz) del sistema de potencia para el cual el banco del capacitor es diseñado. 4. Características de los capacitores Como ya se menciono anteriormente los elementos de compensación son necesarios para la adecuada operación de sistemas eléctricos de potencia. Estos pueden clasificarse

Más detalles

Tema 11: CIRCUITOS ELÉCTRICOS

Tema 11: CIRCUITOS ELÉCTRICOS Tema 11: CIRCUITOS ELÉCTRICOS Esquema 1. Estructura atómica 2. El circuito eléctrico 3. Magnitudes eléctricas básicas 4. Ley de Ohm 5. Energía eléctrica. Efecto Joule. 6. Potencia eléctrica. Tipos de resistencias

Más detalles

Capítulo L Mejora del factor de potencia y filtrado de armónicos

Capítulo L Mejora del factor de potencia y filtrado de armónicos Capítulo L Mejora del factor de potencia 1 2 3 4 5 6 7 8 9 10 Índice Energía reactiva y factor de potencia L2 1.1 Naturaleza de la energía reactiva L2 1.2 Equipos que requieren energía reactiva L2 1.3

Más detalles

Módulo 1.6 Equipos auxiliares. Enrique Belenguer Balaguer Universitat Jaume I - Fundación f2e

Módulo 1.6 Equipos auxiliares. Enrique Belenguer Balaguer Universitat Jaume I - Fundación f2e Módulo 1.6 Equipos auxiliares Enrique Belenguer Balaguer Universitat Jaume I - Fundación f2e Contenido: Funciones de los equipos auxiliares. Esquemas eléctricos. Balastos electrónicos. Reguladores para

Más detalles

Estudio de Eficiencia Energética. Informe Técnico 108/11. Instalación : Hotel

Estudio de Eficiencia Energética. Informe Técnico 108/11. Instalación : Hotel Cliente : Hotel. Estudio de Eficiencia Energética Informe Técnico 108/11 Instalación : Hotel Fecha: 30 de Mayo de 2011 Informe técnico IT108 Equipo de medida El estudio se ha realizado con un Analizador

Más detalles

Elección de un contactor para aplicaciones no motor

Elección de un contactor para aplicaciones no motor Elección de un contactor para aplicaciones no motor Miguel Cañadas Responsable de Formación de Control Industrial de Schneider Electric. (División Telemecanique) SON MUCHAS Y VARIADAS LAS APLICACIONES

Más detalles

I. RESULTADOS DE APRENDIZAJE. Implementar un circuito de control de arranque con aplicación de los temporizadores.

I. RESULTADOS DE APRENDIZAJE. Implementar un circuito de control de arranque con aplicación de los temporizadores. UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO II-15 CONTROL DE MOTORES ELÉCTRICOS GUÍA DE LABORATORIO # 3 NOMBRE DE LA PRÁCTICA: ARRANQUE SECUENCIAL,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico

Más detalles

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA CIRCUITOS Y SISTEMAS EN CORRIENTE CONTINUA MOD. MCM1/EV EB 15 CIRCUITOS Y SISTEMAS EN CORRIENTE ALTERNADA MOD. MCM2/EV EB 16 CIRCUITOS Y SISTEMAS TRIFASICOS

Más detalles

MEMORIA DE INSTALACION DE AUTOCONSUMO

MEMORIA DE INSTALACION DE AUTOCONSUMO MEMORIA DE INSTALACION DE AUTOCONSUMO OBJETO Este documento comprende el estudio técnico a realizar en una instalación de AUTOCONSUMO SOLAR. GENERALIDADES. El objetivo principal de la instalación de AUTOCONSUMO

Más detalles

ni.com Medidas Fundamentales con Sensores

ni.com Medidas Fundamentales con Sensores Medidas Fundamentales con Sensores Medidas de Tensión, Corriente y Potencia Covadonga Villalba Ingeniero de Marketing National Instruments Puntos Clave Fundamentos de potencia Desviación de potencia debido

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS 1 CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA CRONOGRAMA DE MATERIA CARRERA: ING. COM. Y ELECT. HORAS SEM: T: 60 hrs. P:

Más detalles

Ingeniería Industrial

Ingeniería Industrial CÓDIGO ASIGNATURA 986 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: Máquinas Eléctricas Ingeniería Industrial OBJETIVOS: La asignatura "Máquinas Eléctricas", que forma parte del cuarto

Más detalles

ALUMNO-A: CURSO: 2º ESO

ALUMNO-A: CURSO: 2º ESO UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,

Más detalles

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C.

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. 1. INTRODUCCION La forma como se produce el flujo magnético en las máquinas de corriente contínua (cc), estas máquinas se clasifican en: EXCITACIÓN INDEPENDIENTE

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos,

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos, Electricidad avanzada ENTREGA 1 Pruebas de circuito abierto y cortocircuito en los generadores sincrónicos La máquina sincrónica es hoy por hoy, la más ampliamente utilizada para convertir grandes cantidades

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Tema 6 Regulación de velocidad de motores

Tema 6 Regulación de velocidad de motores Tema 6 Regulación de velocidad de motores 1. Velocidad de los motores de corriente alterna... 1 2. Conmutación de polos... 2 3. Variación de frecuencia... 3 4. Funcionamiento del regulador de velocidad...

Más detalles

ÍNDICE DE CONTENIDOS

ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS CAPÍTULO 1. INTRODUCCIÓN A LAS FUENTES DE ENERGÍA ELÉCTRICA... 7 1.1. INTRODUCCIÓN... 9 1.2. LA RED DE SUMINISTRO ELÉCTRICO... 10 1.3. ENERGÍA ELECTROQUÍMICA... 11 1.4. ENERGÍA SOLAR

Más detalles

MEDIDAS ELECTRICAS FACTOR DE POTENCIA Y CORRECCIÓN

MEDIDAS ELECTRICAS FACTOR DE POTENCIA Y CORRECCIÓN MEDIDAS ELECTRICAS FACTOR DE POTENCIA Y CORRECCIÓN OBJETIVOS Conocer en forma generalizada conceptos relacionados con el Factor de Potencia y su corrección. Conocer los beneficios que genera la corrección

Más detalles

INSTALACIONES ELECTRICAS DE ENLACE LINEA GENERAL DE ALIMENTACION Y DERIVACIONES INDIVIDUALES PROBLEMAS. Departamento de Electricidad

INSTALACIONES ELECTRICAS DE ENLACE LINEA GENERAL DE ALIMENTACION Y DERIVACIONES INDIVIDUALES PROBLEMAS. Departamento de Electricidad LINEA GENERAL DE ALIMENTACION Y DERIVACIONES INDIVIDUALES PROBLEMAS PROBLEMA 1: Un edificio destinado a viviendas y locales comerciales tiene una previsión de cargas de P = 145 kw. Se alimenta a 400 V.

Más detalles

LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS

LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS 1.1. OBJETIVO DEL LABORATORIO. 1.1.1. OBJETIVO GENERAL. Conocer las características de operación de la Conexión Triángulo y la derivada Delta

Más detalles

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en: INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también

Más detalles

Calidad y continuidad eléctrica para Data Centers

Calidad y continuidad eléctrica para Data Centers Calidad y continuidad eléctrica para Data Centers Agenda Calidad de la energía Principales disturbios eléctricos Topologías de UPS Configuraciones Redundantes Calidad de la energía Nuestro mundo tecnológico

Más detalles

1º- CORRIENTE ALTERNA

1º- CORRIENTE ALTERNA º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje

Más detalles

5.1.7 UNIDAD GENERADORA Nº 8 GENERAL ELECTRIC GE UNIDAD GENERADORA Nº 9 SOLAR TITÁN EQUIPOS DE TRANSFORMACIÓN

5.1.7 UNIDAD GENERADORA Nº 8 GENERAL ELECTRIC GE UNIDAD GENERADORA Nº 9 SOLAR TITÁN EQUIPOS DE TRANSFORMACIÓN INFORMACIÓN TÉCNICA SISTEMA ELÉCTRICO PUNTA ARENAS 2014 1. ÍNDICE. 1. ÍNDICE... 1 3. DIAGRAMA UNILINEAL SISTEMA ELÉCTRICO PUNTA ARENAS.... 5 4. CENTRAL PUNTA ARENAS.... 6 4.1 UNIDADES GENERADORAS.... 6

Más detalles

Anexo L Cálculo de la capacidad para lograr el cos = 0,95 en una empresa industrial (pequeña, mediana o grande)

Anexo L Cálculo de la capacidad para lograr el cos = 0,95 en una empresa industrial (pequeña, mediana o grande) Anexo L Cálculo de la capacidad para lograr el cos = 0,95 en una empresa industrial (pequeña, mediana o grande) Corrección del factor de potencia Las cargas que en una industria consumen energía eléctrica,

Más detalles

5 PREGUNTAS BÁSICAS SOBRE EL

5 PREGUNTAS BÁSICAS SOBRE EL 5 PREGUNTAS BÁSICAS SOBRE EL NUEVO REGLAMENTO: CUÁNDO, DÓNDE, QUIEN, QUÉ, CÓMO 1. CUANDO - Cuándo entra en vigor el Nuevo Reglamento R.E.B.T? El Nuevo Reglamento Electrotécnico para Baja Tensión se aprobó

Más detalles

SUBESTACIONES Y TABLEROS DE DISTRIBUCION

SUBESTACIONES Y TABLEROS DE DISTRIBUCION SUBESTACIONES Y TABLEROS DE DISTRIBUCION índice INTRODUCCIÓN 1- QUE ES UNA SUBESTACIÓN? 1.1-SECCIONES QUE LA CONFORMAN 1.2- TIPOS DE SUBESTACIONES 1.3- CLASIFICACIÓN 1.4- FUNCIONES 2- QUE ES UN TABLERO

Más detalles

PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS

PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS A. OBJETIVOS: 1. Determinar en forma teórica y experimentalmente;

Más detalles

Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona

Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 3 Máquina Síncrona David Santos Martín CAPÍTULO 3 Máquina Síncrona 3.1.- Introducción 3.2.-

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

...Sabia Ud? JEMStar

...Sabia Ud? JEMStar Progos presenta para las Distribuidoras y Generadoras Electricas......Sabia Ud? JEMStar Sabía Ud el ahorro que tendría con el JEMStar? Se puede ahorrar desde 0.2% (medidor tradicional) vs/ 0.07% (precision

Más detalles

Practico 1 - Calculo de Cortocircuito Instalaciones Eléctricas

Practico 1 - Calculo de Cortocircuito Instalaciones Eléctricas Practico 1 - Calculo de Cortocircuito Instalaciones Eléctricas - 2005 Ejercicio 1 De un proyecto para la instalación eléctrica de un supermercado, con suministro de energía en media tensión, se ha extraído

Más detalles

PERTURBACIONES CAPÍTULO XXVII

PERTURBACIONES CAPÍTULO XXVII PERTURBACIONES CAPÍTULO XXVII INDICE 1. INTRODUCCIÓN.... 1 2. TIPOS DE PERTURBACIONES... 1 2.1. HUECOS DE TENSIÓN....1 2.3. SOBRETENSIÓN TRANSITORIA... 2 2.4. SUBTENSIÓN... 2 2.5. FLICKER.... 2 2.6. ARMÓNICOS....

Más detalles

Aplicando la identidad trigonometrica en la expresión anterior:

Aplicando la identidad trigonometrica en la expresión anterior: UNIDAD 1: Fundamentos de los Sistemas Electicos de Potencia 1. Potencia en Circuitos de Corriente Alterna (C.A): La potencia es la rapidez con la cual se transforma la energía electrica en cualquier otro

Más detalles

En un instante determinado el generador está generando 500 kw y consumiendo 400 KVAr, y la tensión en bornas es 680 V.

En un instante determinado el generador está generando 500 kw y consumiendo 400 KVAr, y la tensión en bornas es 680 V. n generador de un parque eólico de 690 V se conecta a las líneas interiores del parque a través de un transformador dy de 1.000 kva y relación de transformación 690/15.500 V. Dicho transformador tiene

Más detalles

Fundamentos de Electricidad y Principios de Instalaciones

Fundamentos de Electricidad y Principios de Instalaciones Fundamentos de Electricidad y Principios de Instalaciones OBJETIVOS Objetivos Generales Proporcionar a los alumnos los conocimientos teórico-prácticos fundamentales que le permita realizar operaciones

Más detalles

Perturbaciones Importantes

Perturbaciones Importantes Perturbaciones Importantes Interrupciones Huecos de Tensión y Micro-cortes Armónicas (inter y sub-armónicas) Flicker Sobretensiones transitorias Sobretensiones permanentes Subtensiones permanentes Desbalance

Más detalles

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA 1.- Una tensión viene dada por la expresión es de: v(t)=240 sen( t+30). Si se aplica la tensión v(t) a un receptor puramente inductivo cuya impedancia es de j2 2 Ω, hallar el valor de la intensidad instantánea

Más detalles

Especificación técnica CI-tronic Limitador de par de Arranque TCI (Arranque Suave) Junio 2001 DKACT.PD.C50.F B0943

Especificación técnica CI-tronic Limitador de par de Arranque TCI (Arranque Suave) Junio 2001 DKACT.PD.C50.F B0943 CI-tronic Limitador de par de Arranque TCI (Arranque Suave) Junio 2001 DKACT.PD.C50.F2.05 520B0943 2 DKACT.PD.C50.F2.05 ã Danfoss A/S 06-2001 Especificación técnica Limitador de par de Arranque, tipo TCI

Más detalles

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 02: MEDICION DE TENSION

Más detalles

Línea de Especialización Equipos y Dispositivos Eléctricos

Línea de Especialización Equipos y Dispositivos Eléctricos Línea de Especialización Equipos y Dispositivos Eléctricos 1.- Propósito de la línea de especialización: Formar un Ingeniero de aplicaciones prácticas, con amplio conocimiento de máquinas e instalaciones

Más detalles

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en

Más detalles

MONITOREO ENERGÉTICO Abril 2014

MONITOREO ENERGÉTICO Abril 2014 MONITOREO ENERGÉTICO Abril 2014 1 Monitoreo Energético Es un Sistema que permite el Monitoreo del Consumo de Energía Eléctrica, Agua, Gas y Aire Comprimido desde una Sala de Control Se utiliza para medir

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

SESION 10: GENERADORES DE C.C.

SESION 10: GENERADORES DE C.C. SESION 10: GENERADORES DE C.C. 1. INTRODUCCION Los generadores de c.c. son máquinas de cc que se usan como generadores. No hay diferencia real entre un generador y un motor, pues solo se diferencian por

Más detalles

Tema 7: Puesta a tierra del sistema

Tema 7: Puesta a tierra del sistema Tema 7: Puesta a tierra del sistema Alta Especificidad Curso 2006/2007 Índice Introducción Tipos de puesta a tierra Obtención de un neutro Distribución de corrientes de falta a tierra Comparación de los

Más detalles

5.1.1)Principio de funcionamiento.

5.1.1)Principio de funcionamiento. CAPÍTULO 5 MÁQUINAS DE CORRIENTE CONTINUA 5.1)ASPECTOS CONSTRUCTIVOS Y PRINCI- PIO DE FUNCIONAMIENTO. 5.1.1)Principio de funcionamiento. Devanado de Estator (campo): - Objetivo: producir el campo que posibilita

Más detalles