1º- CORRIENTE ALTERNA
|
|
|
- Diego Aguilera Caballero
- hace 9 años
- Vistas:
Transcripción
1 º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje instantáneo φ desfase e E max sen( w t ) i Intensidad instantánea w pulsación i Im ax sen( w t + ϕ ) Emax e Imax valores máximos t variable tiempo Estas dos expresiones nos indicarían los valores instantáneos que tomarían la tensión y la intensidad en un circuito sometido a corriente alterna. Para cada una de ellas se genera una grafica de representación senoidal en la que la onda se repite periódicamente a lo largo del tiempo. Para concretar esta repetición definimos: Frecuencia (f) : Es el número de veces que se repite la onda en la unidad de tiempo. Se mide en ciclos/s o hercios (Hz). Periodo (T) : Es el tiempo que tarda cada electrón en modificar y volver a recuperar el sentido de su movimiento. El tiempo en segundos que tarda en desarrollarse un ciclo completo y su valor es el inverso de la frecuencia. Pulsación (w) : Es la velocidad en radianes por segundo con la que gira el inducido del generador de corriente alterna que genera la onda senoidal que aparece en el circuito. f T T f w πf º-VENTAJAS DE LOS CIRCUITOS DE CORRIENTE ALTERNA La corriente alterna es más fácil de producir en alternadores a partir de un movimiento de giro. Usando el transformador podemos, conservando la potencia, variar la tensión de las líneas para conseguir unas menores pérdidas por efecto Joule. Al no presentar polaridad las conexiones son más simples. 3º- CÁLCULO DE MAGNITUDES EN CIRCUITOS DE CORRIENTE ALTERNA Para hacer cálculos en corriente alterna hay que trabajar con funciones seno variables en el tiempo, lo que implica la realización de complejas integrales y derivadas que lentifican y dificultan el cálculo. Página de 6
2 Para facilitar el trabajo con estas magnitudes se utilizan trucos de cálculo, el más usual es utilizar una aplicación biyectiva y hacer corresponder a la magnitud senoidal un fasor. El fasor es un vector giratorio con modulo igual al valor eficaz de esta magnitud senoidal, con ángulo igual al de fase de dicha magnitud y que gira a una velocidad angular igual a la pulsación (w). La proyección vertical del fasor giratorio multiplicado por nos da en cada instante el valor instantáneo de la magnitud considerada. e E i I m ax max sen sen ( w t ) ( w t + ϕ ) E E I I Dentro de la definición de fasor hay que considerar dos términos que definimos en profundidad: *Valor eficaz: Se entiende por valor eficaz de una corriente alterna (tanto para tensión como para intensidad) aquel valor que debería tener una corriente continua para producir la misma energía en las mismas condiciones ( mismo tiempo y misma resistencia). / ϕ / 0 E E max I Im ax *Desfase: (φ) : Sucede que en ocasiones tensión e intensidad no alcanzan los valores máximos y mínimos a la vez, si no que la intensidad adelanta o retrasa con respecto a la tensión. Este desfase se produce por la existencia en el circuito de elementos que plantearan impedancias inductivas (bobinas) o capacitivas (condensadores). 4º- LEYES DE COMPORTAMIENTO DE LOS ELEMENTOS PASIVOS EN UN CIRCUITO ELECTRICO. Resistencia: Disipa la energía eléctrica en forma de calor y/o luz. Su comportamiento al relacionar voltaje e intensidad es lineal, según la ley de Ohm. V I R Energía disipada E R I t Nota: en las dos formulas expuestas nos referimos a V y I como valores eficaces para la señal alterna. Un circuito de corriente alterna en el que únicamente exista resistencia no produce desfase entre la tensión y la intensidad. Los valores máximos de ambas se alcanzan simultáneamente. Bobina: Este elemento almacena energía eléctrica en forma de campo magnético, pero no disipa o consume ninguna energía. La variación de intensidad en la bobina nos produce una fuerza electromotriz autoinducida que hace que la intensidad se retrase con respecto a la tensión. Página de 6
3 Voltaje que se induce en una bobina depende de la variación de la intensidad en la misma ( en corriente continua como la intensidad no varia no se induce ningún voltaje ) y de las características constructivas del elemento nos dan su coeficiente de auto inducción L que se mide en Henrios. di v L dt Las bobinas se realizan arrollando el material conductor en un núcleo de hierro dulce, con lo que la variación de intensidad que produce el campo magnético. Los motores eléctricos presentan un fuerte carácter inductivo. Condensador: Este elemento almacena energía eléctrica en forma de campo eléctrico, pero no disipa o consume ninguna energía. El elemento va ganando carga según sea la tensión entre sus extremos y su capacidad. Un condensador puro se compone de dos placas metálicas separadas por un elemento no conductor, esto se comporta como un interruptor para una corriente continua. Pasaría intensidad hasta que las placas del condensador se polaricen con el voltaje de la pila y ganen la carga que les corresponda según su capacidad. Tras esto la corriente deja de circular. Un condensador se caracteriza por su capacidad, que depende de sus características constructivas, que relaciona la cantidad de carga que se acumula en el condensador con el voltaje establecido entre sus extremos: La capacidad de un condensador se mide en faradios. Un condensador con capacidad de un faradio almacena un culombio de carga al someterlo a una diferencia de potencial de un voltio. La variación de voltaje en una corriente alterna produce una variación de carga en el condensador. Esto hace que la intensidad de corriente adelante a la tensión al aplicar una señal senoidal. El voltaje en el condensador será: Q C V dv i C dt v C i dt 5º- IMPEDANCIA DE UN CIRCUITO DE CORRIENTE ALTERNA Los elementos de un circuito eléctrico de corriente alterna no se comportan nunca como una resistencia, bobina y condensador puros. Se caracterizan por su impedancia (equivalente a la resistencia en corriente continua ) que es un número imaginario con una parte real (resistencia) debida a la resistencia y una parte imaginaria (reactancia) que será positiva si tiene componente inductivo y será negativa si tiene componente capacitivo. Impedancia capacitiva ( debida al efecto condensador) Xc j wc Impedancia inductiva ( debida al efecto bobina) XL Lwj Página 3 de 6
4 Resistencia Ohmica ( debida al efecto de la resistencia) R Impedancia ( número complejo ) Z R ± X Zϕ Para calcular la impedancia los valores de la resistencia en ohmios del circuito se toman como parte real, para hallar la reactancia se aplican a las formulas anteriores los valores de capacidad de los condensadores ( C ) y de la reactancia ( L ) de las bobinas. Si en el circuito predomina el efecto inductivo la reactancia será positiva, el ángulo de la impedancia ( +φ ) será positivo y en el circuito la intensidad retrasa con respecto al voltaje. En el caso de predominar el efecto capacitivo la reactancia será negativa, el ángulo de la impedancia ( -φ ) será negativo y en el circuito la intensidad adelanta con respecto al voltaje. 6º- LEY DE OHM EN LOS CIRCUITOS DE CORRIENTE ALTERNA Los cálculos de los circuitos de corriente alterna son muy similares a los de corriente continua pero considerando números complejos en vez de números reales. La ley de Ohm para cualquier circuito de corriente alterna se cumple igual que en los circuitos de corriente continua. I / ϕ V Z / 0 / ϕ Hay que tomar un referencia de fase que suele ser el fasor de tensión, por eso su ángulo es 0. Para hallar la intensidad dividimos el voltaje entre dos puntos del circuito por la impedancia entre esos dos puntos. De esta formula podemos sacar las siguientes conclusiones: - La impedancia es el número complejo que define el circuito y nos marca la relación entre tensión e intensidad. - El ángulo del complejo impedancia será positivo en el caso de que la parte imaginaria de este número sea positiva, lo que se da en un circuito inductivo donde predomina el efecto de las bobinas. En estos circuitos la intensidad retrasa (-φ) con respecto a la tensión un ángulo igual al de la impedancia. - El ángulo del complejo impedancia será negativo en el caso de que la parte imaginaria de este número sea negativo, lo que se da en un circuito inductivo donde predomina el efecto de los condensadores. En estos circuitos la intensidad adelanta (+φ) con respecto a la tensión un ángulo igual al de la impedancia. - Si el ángulo de la impedancia es cero, no existen bobinas y/o condensadores en el circuito o existiendo sus efectos se compensan. De forma que la resistencia ohmica es la única que actúa. En este caso la intensidad esta en fase con la tensión. 7º- POTENCIA EN LOS CIRCUITOS DE CORRIENTE ALTERNA La potencia en corriente alterna es un número complejo S ( Potencia aparente ) con una parte real P ( Potencia activa ) y una parte imaginaria Q ( Potencia reactiva ). Página 4 de 6
5 Q (Potencia Reactiva) S (Potencia Aparente) φ P (Potencia Activa) La potencia aparente no es un número complejo que se obtiene multiplicando la tensión por la intensidad en su valor conjugado. Se mide en voltio-amperios (VA) y no es un valor con representación física real. * S / ϕ V / 0 ( I / ϕ) P ± Qj La potencia activa es la parte real de la potencia aparente. En un circuito es la que realmente se consume en las resistencias. Se mide en vatios (W). P S cosϕ V I cosϕ R I La potencia reactiva es la parte imaginaria de la potencia aparente. En un circuito no se consume, pero se mantiene latente en forma de campos magnéticos y eléctricos. Se mide en voltio-amperios-reactivos (VAR). Será positiva si en el circuito predomina el efecto inductivo y negativa en el caso de predominar el capacitivo. Q S senϕ V I senϕ X I 8º- FACTOR DE POTENCIA La corriente alterna la única energía que se consume es la activa que se obtiene multiplicando los valore eficaces de tensión e intensidad por el coseno del ángulo de desfase entre la tensión y la intensidad (cos φ). P V I cosϕ A este último componente se le llama factor de potencia. Es un número entre 0 y, su valor es el mismo para un ángulo positivo o negativo y será para circuitos puramente resistivos. El factor de potencia de una instalación nos permite conocer la cantidad de desfase entre la tensión y la intensidad. Es mayor para un factor de potencia pequeño. En los circuitos de baja tensión predomina el efecto inductivo debido a los motores y a las lámparas de descarga, para aumentar el factor de potencia en las ocasiones en que el desfase entre tensión e intensidad es muy alto se colocan condensadores en paralelo a la entrada de los circuitos. Página 5 de 6
6 9º- RESONANCIA Como el componente imaginario de la impedancia, la reactancia X, varía con la frecuencia de la corriente alterna que pongamos. Para un valor determinado de voltaje al cambiar la frecuencia obtendremos la máxima intensidad para una impedancia de un circuito. Como la componente real R de la impedancia no depende la frecuencia, siempre será el mismo. El valor del modulo del complejo Z es el mas pequeño cuando la parte imaginaria X sea nula, en ese caso ZR. Al tener una Z pequeña el valor de la intensidad será más grande al aplicar la ley de Ohm. Cuando la componente inductiva de la reactancia debida a las bobinas del circuito y la componente capacitiva debida a los condensadores sean iguales, la reactancia se anula y esto de consigue en la frecuencia de resonancia del circuito (ω o ): X L X C 0 L wo C wo 0 w o L C f o π L C 0º- TRABAJO CON NÚMEROS COMPLEJOS Un número complejo A es de la forma a + jb, donde a y b son números reales y j es la unidad imaginaria ( j- ). Al número real a se le llama parte real y se dibuja en el eje de abscisas. A la parte jb se la llama parte imaginaria y se dibuja sobre el eje de ordenadas. La raíz cuadrada de un número real negativo es un número imaginario, se representan con la unidad imaginaria j. j Los números complejos se suelen representar de dos formas, la forma polar y la forma rectangular. Paso de Polar a A ϕ a b arctg a A A ± ϕ a ± jb Rec tan gular a ± jb Paso de retangular a polar + b rectangular a A cosϕ b A senϕ Polar A ± La suma y resta de números complejos se realiza en forma rectangular sumando y restando sus partes reales e imaginarias independientemente: ( 4 + j8) + ( j) 6 + j / 45 La multiplicación de complejos se realiza en forma polar, multiplicando los módulos y sumando los ángulos. 4 3 / 0 4 / 6 / 3,56 + j8,47 La división de complejos se realiza en forma polar, dividiendo los módulos y restando los ángulos. 3,46 + El conjugado de un número complejo en forma polar es el complejo con igual módulo y signo del ángulo contrario. 0 5 / / A A / 30 * 45 / 30 conjugado 45 / 30 ϕ j Página 6 de 6
3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2
3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro
Ejercicios corriente alterna
Ejercicios corriente alterna 1. EJERCICIO 2. (2.5 puntos) A una resistencia de 15Ω en serie con una bobina de 200 mh y un condensador de 100µF se aplica una tensión alterna de 127 V, 50 Hz. Hallar: a)
TEMA 6 CORRIENTE ALTERNA
TEMA 6 CORRIENTE ALTERNA CARACTERÍSTICAS DE LA CORRIENTE ALTERNA Un circuito de corriente alterna consta de una combinación de elementos: resistencias, condensadores y bobinas y un generador que suministra
Máster Universitario en Profesorado
Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar
MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA
MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA CIRCUITOS Y SISTEMAS EN CORRIENTE CONTINUA MOD. MCM1/EV EB 15 CIRCUITOS Y SISTEMAS EN CORRIENTE ALTERNADA MOD. MCM2/EV EB 16 CIRCUITOS Y SISTEMAS TRIFASICOS
CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO
UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE
CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z
CAPITULO 7 LUGARES GEOMETRICOS 7. INTRODUCCION Si tenemos elementos que pueden variar sus valores en un circuito, ya sea una resistencia una reactancia o la frecuencia de la señal de entrada, las respuestas
Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.
Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente
TEMA 5 CIRCUITOS DE CORRIENTE ALTERNA
TEMA 5 CIRCUITOS DE CORRIENTE ALTERNA V.A Trigonometría V.B Coordenadas vectoriales V.C Operaciones vectoriales V. Generación de la CA V. Características de la CA V.3 Receptores ideales de CA V.4 Asociación
TEMA I. Teoría de Circuitos
TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:
ALUMNO-A: CURSO: 2º ESO
UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,
Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse.
CONDENSADOR ELÉCTRICO Un capacitor es un dispositivo formado por dos conductores, en forma de placas o láminas, separados por un material que actúa como aislante o por el vacío. Este dispositivo al ser
CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito
CAPIULO XI EL VAIMERO. INRODUCCION. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito Según la definición de potencia, un vatímetro debe ser un instrumento que
Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos
Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes
Aplicando la identidad trigonometrica en la expresión anterior:
UNIDAD 1: Fundamentos de los Sistemas Electicos de Potencia 1. Potencia en Circuitos de Corriente Alterna (C.A): La potencia es la rapidez con la cual se transforma la energía electrica en cualquier otro
3.1. FUNCIÓN SINUSOIDAL
11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.
Tema 8. Inducción electromagnética
Tema 8. Inducción electromagnética Se producirá una corriente eléctrica inducida en un circuito, cuando varíe el flujo magnético que lo atraviesa. Los aparatos se alimentan con energía eléctrica, y necesitan
TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R
TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,
Aplicar la ley de ohm, en el desarrollo de ejercicios..
Corriente eléctrica Aplicar la ley de ohm, en el desarrollo de ejercicios.. En términos simples, la electricidad corresponde al movimiento de cargas eléctricas. Las cargas que pueden moverse son los electrones
EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA
Averigua lo que sabes La corriente eléctrica es: La agitación de los átomos de un objeto. EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA El movimiento ordenado de
Corriente y Circuitos Eléctricos
Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando
Ejercicios Resueltos de Circuitos de Corriente Alterna
Ejercicios Resueltos de Circuitos de Corriente Alterna Ejemplo resuelto nº 1 Cuál ha de ser la frecuencia de una corriente alterna para que una autoinducción, cuyo coeficiente es de 8 henrios, presente
[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA]
2013 [PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 3º E.S.O. PRACTICA Nº 1. RESISTENCIAS VARIABLES POTENCIÓMETRO Monta los circuitos de la figura y observa que ocurre cuando el potenciómetro es de 100Ω, de 1kΩ
CAPITULO XII PUENTES DE CORRIENTE ALTERNA
CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este
= CBD
ANCHO DE BANDA Cuando el valor máximo de la corriente a la derecha o a la izquierda de, desciende hasta á (se toma por dos razones). 1. Se tiene el valor absoluto de. Son los puntos de potencia media (±5
ELECTROTECNIA. PRÁCTICA nº 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA.
ELECTROTECNIA PRÁCTICA nº 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA. 1 PRACTICA 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA 1.- OBJETO. Esta práctica tiene por objeto en primer lugar conocer y analizar
TEMA 5: Motores de Corriente Continua.
Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un
Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra
Unidad Didáctica 3: Corriente Alterna. Monofásica y trifásica. Armónicos: causas y efectos. 1.- Corriente alterna Es una corriente que se repite cambiando de sentido periódicamente. La corriente alterna
ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO
ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala
INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B
INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto
1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A
Propiedades de la corriente alterna
Propiedades de la corriente alterna Se denomina corriente alterna (abreviada CA en español y AC en inglés, de Alternating Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente.
ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO
ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.
PROBLEMAS DE ELECTRICIDAD
PROBLEMAS DE ELECTRICIDAD 1. Qué intensidad de corriente se habrá establecido en un circuito, si desde que se cerro el interruptor hasta que se volvió a abrir, transcurrieron 16 minutos y 40 segundos y
Capítulo 16. Electricidad
Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra
Resistencias Variables
Resistencias Variables Estos tipos de resistencias se denominan potenciómetros, siendo posible modificar el valor óhmico mediante un dispositivo móvil llamado cursor. Estos valores varían entre cero y
Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua
Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO
ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO
ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO 2. ELEMENTOS DE UN CIRCUITO 3. MAGNITUDES ELÉCTRICAS 4. LEY DE OHM 5. ASOCIACIÓN DE ELEMENTOS 6. TIPOS DE CORRIENTE 7. ENERGÍA ELÉCTRICA. POTENCIA 8. EFECTOS DE LA
Electrónica REPASO DE CONTENIDOS
Tema 1 Electrónica Conocerás las principales componentes de los circuitos eléctricos. Resistencias, condensadores, diodos y transistores. Sabrás cómo montar circuitos eléctricos simples. REPASO DE CONTENIDOS
Departamento de Tecnología I.E.S. Mendiño. Electricidad 3º E.S.O. Alumna/o :...
Departamento de Tecnología I.E.S. Mendiño Electricidad 3º E.S.O. Alumna/o :... Electricidad.- Magnitudes fundamentales. Tensión o Voltaje: Indica la diferencia de potencial entre 2 puntos de un circuito.
2. El conjunto de los números complejos
Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más
Guía de Aprendizaje ELECTROTECNIA DE CORRIENTE ALTERNA COMPETENCIA GENERAL
PLAN 2008 Guía de Aprendizaje ELECTROTECNIA DE CORRIENTE ALTERNA COMPETENCIA GENERAL COMPETENCIA GENERAL Soluciona problemas de circuitos de corriente alterna monofásicos y trifásicos, de acuerdo a los
APUNTES DE TECNOLOGÍA
APUNTES DE TECNOLOGÍA 4º E.S.O. TEMA 1 CIRCUITOS ELÉCTRICOS Alumno: Grupo: 4º 1 CORRIENTE ELÉCTRICA 1.-CIRCUITOS ELÉCTRICOS La corriente eléctrica es un flujo de electrones en el seno de un material conductor.
Qué diferencia existe entre 110 ó 220 volts?
Qué diferencia existe entre 110 ó 220 volts? La diferencia en cuestión es el voltaje, como mejor es la 220v, ya que para una potencia determinada, la intensidad necesaria es menor, determinada por la siguiente
Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra
Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad
Bloque 3 Análisis de circuitos alimentados en corriente alterna. Teoría de Circuitos Ingeniería Técnica Electrónica
Bloque 3 Análisis de circuitos alimentados en corriente alterna Teoría de Circuitos Ingeniería Técnica Electrónica 3. Introducción. Representación de ondas sinusoidales mediante fasores Corriente alterna
DALCAME Grupo de Investigación Biomédica
LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida
ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:
(Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial
Práctica de Laboratorio. Tema: Medición de Potencia Activa en Sistemas Trifásicos.
Universidad Nacional de Mar del lata. ráctica de Laboratorio Tema: Medición de otencia Activa en Sistemas Trifásicos. Cátedra: Medidas Eléctricas I º año de la carrera de Ingeniería Eléctrica. Área Medidas
Estudio de fallas asimétricas
Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.
Máquinas e Instalaciones Eléctricas / Electrónicas
MODULO 1 1- NOCIONES TRIGONOMETRICAS: 1.1 Pitágoras y relaciones trigonométricas. seno a = cateto opuesto hipotenusa hip cateto opuesto coseno a = cateto adyacente hipotenusa tangente a = cateto opuesto
INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador
INDICE Capítulo 1. Conversión de Energía 1 1.1. Fuerza en un capacitor 2 1.2. El Toroide 5 1.3. Circuitos magnéticos en serie y paralelo 7 1.4. Otros sistemas comunes de unidades magnéticas 8 1.5. Materiales
Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM
Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental
Practicas de Fundamentos de Electrotecnia ITI. Curso 2005/2006
Practicas de Fundamentos de Electrotecnia ITI. Curso 005/006 Práctica 4 : Modelo equivalente de un transformador real. Medidas de potencia en vacío y cortocircuito. OBJETIVO En primer lugar, el alumno
CIRCUITOS ELECTRICOS DE CORRIENTE CONTINUA (C.C.)
.E.S. ZOCO (Córdoba) º Bachillerato. eoría. Dpto. de ecnología CCUOS ELECCOS DE COENE CONNU (C.C.) CCUO ELÉCCO: Es el conjunto de receptores y de fuentes de energía eléctrica conectados mediante conductores
Corrección del Factor de Potencia en Presencia de Armónicas
Corrección del Factor de Potencia en Presencia de Armónicas ING. ERNESTO VIVEROS DOMINGUEZ EXPO ELECTRICA DEL SURESTE 2015 11 DE NOVIEMBRE 2015 0. Introducción al FP.- Definiciones Básicas POTENCIA ELECTRICA
CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.
CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de
3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD
3º ESO Tecnología, programación y robótica Tema Electricidad página 1 de 12 3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3
CIRCUITOS ELÉCTRICOS
CIRCUITOS ELÉCTRICOS 1. LA CORRIENTE ELÉCTRICA. 1.1. Estructura del átomo. Todos los materiales están formados por átomos. En el centro del átomo (el núcleo) hay dos tipos de partículas: los protones (partículas
Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople
Capítulo II: Circuitos resonantes y Redes de acople 21 22 2. Circuitos Resonantes y Redes de Acople En este capítulo se estudiaran los circuitos resonantes desde el punto de vista del factor de calidad
CORRIENTE ALTERNA. Fig.1 : Corriente continua
CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones
Circuitos Eléctricos RL RC y RLC
Circuitos Eléctricos RL RC y RLC Andrés Felipe Duque 223090 Grupo:10 Resumen. En esta práctica podremos analizar básicamente los circuitos RLC donde se acoplan resistencias, capacitores e inductores, y
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere
COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO
COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO 1.- INTRODUCCION Los tres componentes pasivos que, en general, forman parte de los circuitos eléctricos son los resistores, los inductores y los capacitores.
PRINCIPIOS DE LA ELECTRICIDAD
PRINCIPIOS DE LA ELECTRICIDAD La materia está constituida por moléculas y a su vez éstas por átomos, que es la estructura mínima. Los átomos tienen un núcleo central compuesto por neutrones y protones,
Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal
Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial
MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS
Práctica Nº 6 MEDID DE POTENI EN TRIFÁSI MÉTODO DE OS DOS VTÍMETROS 1. Objetivos a) Medida de la potencia activa, reactiva y el factor de potencia, en una red trifásica a tres hilos (sin neutro), utilizando
INVERSORES RESONANTES
3 INVERSORES RESONANTES 3.1 INTRODUCCIÓN Los convertidores de CD a CA se conocen como inversores. La función de un inversor es cambiar un voltaje de entrada en CD a un voltaje simétrico de salida en CA,
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje
PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable.
PROGRAMA IEM-212 1.1 Introducción. En el curso anterior consideramos la Respuesta Natural y Forzada de una red. Encontramos que la respuesta natural era una característica de la red, e independiente de
TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos
TEMA 6 ELECTROACÚSTICA Sonorización industrial y de espectáculos Ley de Ohm La intensidad de corriente que circula en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional
Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:
Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta
CIRCUITOS CON CORRIENTE VARIABLE
11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchho. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchho.
Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.
EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación
TEMA I. Teoría de Circuitos
TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración
CONDUCTORES Y AISLANTES CORRIENTE ELÉCTRICA ELEMENTOS BÁSICOS DE UN CIRCUITO SENTIDO DE LA CORRIENTE ELÉCTRICA TECNOLOGÍAS 4ºE.S.O.
CONTENIDOS. Pag 1 de 1 Nombre y Apellidos: Grupo: Nº de lista: CONDUCTORES Y AISLANTES Inicialmente los átomos tienen carga eléctrica neutra, es decir. Nº de protones = Nº de electrones. Si a un átomo
UNIDAD 8.ELECTRICIDAD
UNIDAD 8.ELECTRICIDAD CORRIENTE ELÉCTRICA CIRCUITOS ELÉCTRICOS MAGNITUDES ELÉCTRICAS FUNDAMENTALES LEY DE OHM DEPARTAMENTO TECNOLOGÍA IES AVENIDA DE LOS TOREROS UD. 8: ELECTRICIDAD - 1 ELECTRICIDAD Por
CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados.
CORRIENTE ALTERNA Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. Generalidades sobre la c. alterna. Respuesta de los elementos pasivos básicos
NÚMEROS COMPLEJOS: C
NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales
CAPITULO 6 POTENCIA COMPLEJA 6.1 INTRODUCCION. Si V VmSen wt v. P Vm Sen wt v Sen wt i. Cos v i Cos wt v i 2 2. P VICos v i.
CAULO 6 OENCA COMLEJA 6. NRODUCCON La potencia compleja (cuya magnitud se conoce como potencia aparente) de un circuito eléctrico de corriente alterna, es la suma (vectorial) de la potencia que disipa
TEMA11. CORRIENTE ALTERNA
TEMA. OENTE ATENA..-FUEAS EETOMOTES SNUSODAES. Se ha visto el comportamiento de algunos circuitos de corriente continua, en los que las corrientes, tensiones y fem son constantes, no varían en el tiempo,
CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor.
CIRCUITOS DC Y AC 1. Fuentes de tensión y corriente ideales.- Una fuente ideal de voltaje se define como un generador de voltaje cuya salida V=V s es independiente de la corriente suministrada. El voltaje
Electronica. Estudia los circuitos y componente que permiten modificar la corriente eléctrica: determinada velocidad (filtra)
Electronica Estudia los circuitos y componente que permiten modificar la corriente eléctrica: 1. Aumentar o disminuir la intensidad 2. Obliga a los electrones a circular en un sentido (rectifica) 3. Deja
Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona
Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 3 Máquina Síncrona David Santos Martín CAPÍTULO 3 Máquina Síncrona 3.1.- Introducción 3.2.-
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo
Electricidad y magnetismo CORRIENTE ELÉCTRICA Diferencia de potencial, resistencia e intensidad La palabra corriente se utiliza para expresar movimiento de. La corriente de un río, por ejemplo, nos expresa
FACTOR DE POTENCIA. Cos φ
FACTOR DE POTENCIA Cos φ El Factor de Potencia, es el indicador del correcto aprovechamiento de la energía Eléctrica y puede tomar valores, entre 0 y 1, lo que significa que: Factor de Potencia, es un
Circuitos de Corriente Continua
Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua -Elementos activos de un circuito: generadores ideales y reales. Equivalencia de generadores. -Potencia y energía. Ley
EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.
EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de
Análisis de circuitos trifásicos. Primera parte
Análisis de circuitos trifásicos. Primera parte Objetivos 1. Mencionar el principio de funcionamiento de los generadores trifásicos. 2. Establecer los tipos básicos de conexiones de circuitos trifásicos
Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC
PATA - 12 EATANA DE UN ONDENSADO Y AATEÍSTAS DE UN UTO SEE - Finalidades 1.- Determinar la reactancia capacitiva (X ) de un condensador. 2.- omprobar la fórmula: X? 1?? 3.- Determinar experimentalmente
PROBLEMAS ELECTROMAGNETISMO
PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE
P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A
P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A Nombres y apellidos: Curso:. Fecha:.. Firma: PRÁCTICA 1: RESISTENCIAS OBJETIVO: Conocer los tipos y características de las resistencias, así
