Medida de Resistividad de Terreno

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Medida de Resistividad de Terreno"

Transcripción

1 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica EL41B - Laboratorio de Redes Medida de Resistividad de Terreno INTEGRANTES Jorge Dharmawidjaja Andrés Quezada Gustavo Soto Semestre Primavera 08

2 1. INTRODUCCION PUESTA A TIERRA MARCO TEORICO CONDUCCION EN TERRENOS Clasificación de los Suelos Variables que afectan la resistividad de un terreno Humedad Temperatura...9 Tabla 2: variación de la resistividad del suelo en función de la temperatura Compactación del suelo Concentración de sales disueltas MEDIDA DE RESISTIVIDAD DE TERRENO Configuración de cuatro electrodos Cálculo de la resistividad aparente...13 Interpretación de las curvas de resistividad aparente EXPERIENCIA PRÁCTICA: METODOLOGÍA Y RESULTADOS MATERIALES MONTAJE DEL EQUIPO RESULTADOS DISCUSIÓN CONCLUSIONES...19 REFERENCIAS UTILIZADAS...20

3 1. INTRODUCCION 1.1 PUESTA A TIERRA Una puesta a tierra es un conjunto de electrodos que proporcionan un contacto eléctrico conductivo entre el medio en que se encuentran inmersos e instalaciones, equipos, estructuras metálicas, etc. que se encuentran instaladas fuera de este equipo. La IEEE define tierra (sistema de tierra) como una conexión conductora, ya sea intencional o accidental, por medio de la cual un circuito eléctrico o equipo se conecta a la tierra o a algún cuerpo conductor de dimensión relativamente grande que cumple la función de tierra. Por qué es tan común la práctica de poner a tierra los sistemas eléctricos? En una instalación de media y alta tensión, los elementos metálicos expuestos y con los que el personal que trabaja en la estación tiene contacto, pueden adquirir potenciales peligrosos e incontrolados si no se toman las precauciones adecuadas. Incluso esta situación puede presentarse en situaciones normales. Por otro lado, en condiciones de falla (descargas atmosféricas, contacto con sistemas que operan a mayor voltaje, cortocircuito, etc) pueden ocurrir hechos tales como: sobrevoltaje de los equipos, ruptura dieléctrica de los aislantes, etc. Desde el punto de vista de la seguridad, el objetivo de la puesta a tierra es evitar diferencias de voltaje peligrosas para las personas que trabajan en la instalación. Normalmente, esto se logra estableciendo potenciales lo mas parecido posible entre las distintas partes y entre las partes y el terreno. Una puesta a tierra adecuada restringirá estas diferencias de potencial a valores compatibles con el nivel de aislamiento utilizado en los equipos.

4 Desde el punto de vista del comportamiento de un sistema eléctrico, una puesta a tierra cumple diversas funciones: - establecer valores de tensión adecuadamente bajos entre las fases sanas y tierra, durante fallas en los sistemas de transmisión - Proporcionar una vía de baja impedancia para la operación adecuada de las protecciones. - Conducir a tierra las corrientes provenientes de descargas atmosféricas, limitando las diferencia de potencial que pueden producirse en la estación. - Definir un nivel de referencia de voltaje. A partir de los objetivos o funciones de la puesta a tierra, se pueden denominar como puesta a tierra de protección, si guardan relación con la seguridad de las personas. A estas tierras se conectan elementos expuestos de la instalación, como carcazas, tuberías, etc. que pueden adquirir un potencial respecto a la tierra o a otros objetos conductores. Asimismo, las tierras que tienen como objetivo exclusivo ser utilizada para conectar las partes activas de un circuito eléctrico se denominan puestas a tierra de operación o servicio.

5 2. MARCO TEORICO 2.1 CONDUCCION EN TERRENOS En el diseño de una puesta a tierra, es muy importante conocer la resistividad del terreno. En este capítulo se definirá la resistividad y los factores que la determinan. Como se verá, pese a que el suelo está compuesto en general por minerales que pueden considerarse aislantes, factores como, por ejemplo, la humedad del terreno hacen que se observe en él una condición conductora. Se define la resistividad de terreno como el grado de oposición que presenta un terreno a la circulación de corriente eléctrica. Figura 1: Resistividad del suelo La resistividad se representa con la letra ρ, y su fórmula es la que se señala a continuación: 2 [ m ] R S = [ Ωm] R[ Ω] S ρ = [1] L[ m] L

6 2.1.1 Clasificación de los Suelos Los dos principales constituyentes del suelo, el óxido de silicio y el óxido de aluminio, son excelentes aislantes Sin embargo, normalmente es posible detectar una conducción eléctrica apreciable en el terreno. Esto es justificable pues: a) La conductividad del suelo se debe en gran medida a la presencia de humedad y sales en solución en los intersticios dejados por las formaciones rocosas o masas minerales. b) La cantidad de corriente transportada puede alcanzar valores importantes incluso en un mal conductor, si su volumen es considerable De la primera observación se deduce que el proceso de conducción en suelos es de carácter electroquímico y depende de factores como: - porosidad de materiales componentes del terreno - distribución y disposición de los poros - conductividad del agua que llena los poros. Este último parámetro se compone a su vez de una conductividad primaria (la propia del agua) y una conductividad secundaria (la adquirida por disolución del material y sales) que depende del estancamiento. De este modo, considerando el tipo de agua que llena los poros del material que compone el terreno y la resistividad del agua, es posible una clasificación estimativa de los terrenos de acuerdo a su resistividad según se muestra en la siguiente tabla: Tabla 1: resistividades de diversos terrenos

7 Estos valores estimativos pueden usarse con buen criterio, sólo en caso de la imposibilidad de conocer la resistividad real mediante mediciones en el terreno. En cuanto a la segunda observación, respecto de corriente transportada y volumen de terreno implicado, se deben destacar 2 aspectos importantes Toda corriente que fluye a través de un medio de alta resistividad, genera una diferencia de potencial importante en el medio. De lo que se desprende que la circulación de corriente por el terreno puede desarrollar un gradiente de potencial elevado y afectar extensas regiones, en particular sobre la superficie del suelo. Un análisis riguroso de la distribución de corrientes en el terreno es muy difícil, sino imposible, por cuanto éste no es homogéneo en la gran mayoría de los casos. Y éste corresponde precisamente al segundo aspecto: la resistividad del terreno varía tanto en sentido horizontal como vertical. En general la variación de resistividad en la dirección horizontal es reducida comparada con las dimensiones normales de una puesta a tierra y puede por lo tanto ser despreciada. Por consiguiente, en los casos prácticos, un terreno puede ser razonablemente representado por un modelo de estratos paralelos a la superficie del suelo, caracterizado cada uno de ellos por su espesor y un valor constante de resistividad. El estrato homogéneo más profundo se considera de espesor infinito. Figura 2: representación estratificada del suelo

8 2.1.2 Variables que afectan la resistividad de un terreno. Para un tipo de terreno determinado, su resistividad puede verse significativamente afectada por varios factores: Humedad. La humedad que posee el terreno determina fuertemente su resistividad. El agua que contiene el terreno, debido a su estado higrométrico, es la que influye. Siempre que se añada agua a un terreno disminuye la resistividad respecto a la que tendría en seco. Se dice que un terreno está saturado cuando todos sus intersticios están llenos de agua. Por efectos de la evaporación natural de la superficie del terreno, se produce un empobrecimiento del agua contenida en los agregados, fenómeno que se propaga lentamente desde la superficie hacia los estratos más profundos. Este fenómeno tiene más importancia cuanto más seco sea el clima del lugar y cuanto más superficial es la ubicación de la puesta a tierra. Para una cierta región geográfica, el contenido de humedad del suelo depende de sus características climáticas, por lo que en las puestas a tierra se debe considerar la época del año que ofrezca la peor condición. En épocas de lluvias, el nivel freático se aproxima a la superficie del terreno, presentando éste una resistividad menor que en el periodo de seguía, en el que dicho nivel se aleja en profundidad de la superficie. A lo largo del año, se presentan variaciones estacionales que son más acusadas, cuanto más próxima a la superficie se encuentre la puesta a tierra.

9 Temperatura La temperatura del terreno también es un factor importante a considerar dentro del estudio de los factores que determinan la resistividad de los suelos. La tierra seca es un aislador excelente; al aire y al sol, las capas de arena seca de la superficie se acercan mucho a la condición de buen aislador. En general, el grosor de tales capas secas no es muy grande, alcanzan sólo entre 10 y 20 centímetros. La escarcha tiene una penetración más profunda, entre 50 y 100 centímetros, o más, según el estrato, por el cual, las tomas a tierra deben ser a mayor profundidad dado que, el grado de la humedad, tal como se sabe, es un factor esencial en la conductividad, debido a que el hielo es un aislante. Para valores superiores al punto del congelamiento del agua, e inferiores a 100[ C], la resistividad de los suelos disminuye al aumentar la temperatura, por la mayor movilidad de los iones en el agua. La tabla siguiente muestra la variación de la resistividad de un suelo compuesto de una mezcla de arcilla y arena con un 15 % de contenido de agua. Temperatura Resistividad típica [ C] [Ωm] Agua 50 0 Hielo Tabla 2: variación de la resistividad del suelo en función de la temperatura Existe una expresión analítica aproximada que intenta cuantificar la influencia de estos dos parámetros en el valor de resistividad y que pretende ser independiente del tipo de terreno: [2] 1,3 x 104 ρ = T > 0 C [2] (1 + 0,73 H 2 )( T) En esta expresión, conocida como "ecuación de Albrecht", se incorpora la humedad del suelo, en % de peso (H) y su temperatura en grados Celsius (T). Se recomienda su utilización sólo para el cálculo comparativo de la influencia de los parámetros en la resistividad del terreno.

10 Compactación del suelo Una mayor compactación del suelo disminuye la distancia entre las partículas y se logra una mejor conducción a través de la humedad contenida. A medida que se aumenta el contenido de humedad, se alcanza una especie de saturación ya que el agua envuelve la mayoría de las partículas y un mayor acercamiento entre éstas no influye en la conducción Concentración de sales disueltas La concentración de sales disueltas en el terreno es un factor determinante en la resistividad del mismo. Al existir una mayor concentración de sal en el suelo, éste mejora su conductividad. En forma general, entonces, se podría establecer que mejor conductor es el terreno mientras mayor contenido de sal haya en él. El agua disocia las sales en iones y cationes que se encargan de transportar los electrones por el terreno. Para comprender este fenómeno, sólo se debe recordar el comportamiento eléctrico del agua. El agua destilada es aislante y aunque introduzcamos unos electrodos en el interior de un recipiente conectados a un batería, no circulará energía eléctrica a través de ella. Si al agua le añadimos más compuestos salinos, por ejemplo, cloruro de sodio o sal común, comenzará a circular electricidad y a medida que añadamos más sal, circulará más electricidad; esto es debido a que los electrones se desplazan por el agua gracia a los iones disociados. En los lugares de lluvias estacionales, hay que tener muy presente estos fenómenos, debido a que en la época de lluvias el terreno presenta un resistividad muy baja (la lluvia disuelve las sales del terreno), mientras que en la época seca la resistividad es muy alta.

11 2.2 MEDIDA DE RESISTIVIDAD DE TERRENO Como se mencionó al comienzo, la resistividad del terreno es de importancia decisiva en el proyecto de una puesta a tierra y la única forma de conocerla con exactitud es mediante medidas directas de campo. En líneas generales, la medida se efectúa según una cierta disposición de electrodos de corriente y de potencial. Teniendo presente el modelo de terreno estratificado, el objetivo de las mediciones es conocer la resistividad y espesor de cada una de las capas constituyentes, hasta una profundidad que depende de la zona de influencia de la puesta a tierra; esta zona puede definirse como aquella limitada por la profundidad a la cual el potencial tiene un valor igual al 5% del potencial de la puesta a tierra. Sin embargo, las diversas configuraciones básicas de electrodos posibles suponen para cada medida la existencia de un medio homogéneo, lo cual conduce a la determinación de una "resistividad aparente", que depende de las distancias particulares a las que se ubican los electrodos. La resistividad aparente ρa puede definirse como aquélla correspondiente a un terreno homogéneo en el cual, para la disposición dada de electrodos e igual magnitud de corriente inyectada al medio, se produce una misma elevación de potencial medida en el terreno no homogéneo. La resistividad aparente, o resistividad del terreno homogéneo equivalente, no corresponde necesariamente a ninguno de los valores de resistividad presentes en el terreno no homogéneo, pero sí depende de las características de éste. El comportamiento de ρ a con la separación de los electrodos proporcionará una guía para la determinación de las características de resistividad del terreno. Las configuraciones básicas de electrodos usualmente empleadas pueden clasificarse en configuraciones de tres y cuatro electrodos. No se entrará en detalles de las configuraciones de 3 electrodos pues estas se usan preferentemente para medir resistencias efectivas de puesta a tierra y escasamente para deducir valores de resistividad del terreno.

12 2.2.1 Configuración de cuatro electrodos Tal como se muestra en la figura siguiente, los cuatro electrodos se ubican sobre un mismo eje; se inyecta corriente al terreno a través de los electrodos de corriente externos y se mide la diferencia de potencial entre los electrodos de potencial internos. La corriente inyectada puede ser corriente continua conmutada o corriente alterna de baja frecuencia. Se evita el uso de corriente continua plena pues produce el fenómeno de "polarización" (acumulación de gas en el electrodo negativo) lo cual se traduce en un aumento artificial de la resistividad aparente. Figura 3: configuración de 4 electrodos Los electrodos se ubican a distancias relativamente grandes comparadas con la profundidad de enterramiento, de modo de suponerse a éstos como fuentes puntuales de corriente. Si la profundidad de entierro de los electrodos es de 1/20 la distancia de los electrodos, esto se cumple sin problemas.

13 2.2.2 Cálculo de la resistividad aparente La resistividad aparente se calcula mediante la fórmula: 2 V[( L / s) 0,25] s ρ a = π [ Ω : m] [3] I El centro y el eje de medición se mantienen constantes mientras se aumenta la separación entre los electrodos de corriente. Se grafica una curva de resistividad aparente en función de la separación de los electrodos. Su finalidad es la determinación del número de capas de subsuelo, espesor y resistividad eléctrica de las mismas. Interpretación de las curvas de resistividad aparente - Método de las curvas patrón La curva de sondeo eléctrico con una configuración electródica determinada, para un modelo geoeléctrico definido, es una función analítica conocida y existen numerosas curvas teóricas de resistividad llamadas Curvas Patrón, que contemplan combinaciones de capas de diferentes resistividades y espesores. El problema inverso, dada una curva de sondeo eléctrico vertical obtenida mediante medidas de campo, deducir y conocer la estructura geoeléctrica que la ha producido, no tiene solución única. En la práctica, suponiendo que a cada curva de campo le corresponde una única estructura, se compara la curva de campo con las curvas de resistividad aparente patrón. Si se obtiene un calce perfecto entre la curva de terreno y una curva patrón, se supone que la estructura del terreno es idéntica a la teórica. Las curvas se construyen en papel bilogarítmico y están normalizadas, con el objeto de independizarse de las unidades y magnitudes de la medición, interesando sólo la forma de ella. De estas curvas patrón las de mayor uso son las de Orellana y Mooney. Este modelo de curvas patrón será el que, posteriormente, se usará para encontrar la estructura del terreno. - Método de los quiebres de curvas de resistividad En general, el número capas que tiene el terreno se determina por el número de puntos de inflexión que posee la curva de resistividad aparente, mas 1

14 3. EXPERIENCIA PRÁCTICA: Metodología y Resultados A continuación se explicarán los detalles relacionados con la experiencia de medición. Esta se realizó en un parque frente a plaza Ercilla, en los alrededores de la facultad, con la cooperación del profesor Nelson Morales, quien facilitó los implementos utilizados. 3.1 MATERIALES Se utilizaron los siguientes materiales para la realización de esta experiencia: Termómetro GEOHM 3 4 estacas (electrodos) Cables banana 2 carretes de cable Huincha de medir Mazo Figura 4: Materiales

15 3.2 MONTAJE DEL EQUIPO Se utilizó el método de Schlumberger, descrito antes. En una primera instancia, se ubicaron los electrodos de voltaje a una distancia de 1 [m] entre ellos. Los electrodos de corriente se alejaron a distancias proporcionales cada vez. Cuando la resolución del terrómetro no permitía obtener datos precisos, se reubicaban los electrodos centrales a una distancia mayor y los de corriente se alejaban proporcionalmente a esta nueva distancia. Figura 5: configuración de Schlumberger Debe mencionarse que, como se indicó en el marco teórico, los electrodos se enterraron 5 [cm] a fin de que pudieran considerarse puntuales. Se tomaron 14 mediciones, desde los 0,75[m] hasta 40 [m] en un sector de césped.

16 3.3 RESULTADOS La siguiente tabla resume los datos obtenidos: medición L [m] S [m] R [Ω] 1 0, ,1 2 1,25 1 4,6 3 1,75 1 2,7 4 2,75 1 1,5 5 3,75 1 1, , , , , , , , , ,14 Tabla 3: datos recopilados Donde L y S son las distancias descritas en la figura 5 y R es el cociente entre el voltaje y la corriente en los electrodos correspondientes, valor que es entregado por el terrómetro. El siguiente gráfico muestra la resistividad aparente, calculada con la fórmula [3] en función de la distancia entre los electrodos de corriente, en metros.

17 Figura 6: Resistividad aparente del terreno en función de la separación entre electrodos de corriente en escala bílogartimica

18 4. DISCUSIÓN La curva mostrada arriba describe las resistividades aparentes del lugar donde se realizaron las mediciones. Esta curva se debe comparar con las curvas patrón a modo de encontrar aquellas que calcen de mejor manera. Por la forma que tiene la curva de resistividad aparente. se puede decir que el terreno en que se realizaron las mediciones cuenta con 6 estratos, aunque la forma final de la curva, que no coincide con ninguna de las curvas patrón, hace suponer que puede existir en esa zona alguna imperfección (eventualmente roca) o algún error en la última medición. Esto debe destacarse, en el sentido que el método de Schlumberger supone que no existen variaciones laterales de resistividad. Las variaciones laterales que no son advertidas constituyen una de las causas de error mas frecuentes en los sondeos eléctricos verticales. Para soslayar estos errores, se sugiere realizar, en un mismo punto, mediciones perpendiculares con el método de Schlumberger. Las discrepancias entre ambos se atribuyen con alta certeza a discrepancias laterales. Como se indicó, la última medición se encontraba muy cerca de postes de alumbrado público y de la vereda. Esto permite concluir que la variación final se debió a un error de medición provocado por una variación lateral de resistividad o incluso por un acoplo electromagnético con los conductores de los postes.

19 5. CONCLUSIONES A partir de la ejecución del experimento y de la investigación realizada, se puede concluir: - La determinación de la resistividad de terreno es un factor muy importante en la puesta a tierra de instalaciones eléctricas. Esta puede depender de factores como la humedad, temperatura o disolución de minerales. Para efectos prácticos se aconseja que la medida de resistividad se realice en condiciones climáticas que ofrezcan la peor situación resistiva del terreno. Si la experiencia realizada se viera enmarcada en un contexto mas específico, como sería efectivamente la puesta a tierra de un proyecto, se sugiere que se realice en los meses venideros, donde las temperaturas son mayores y la ocurrencia de lluvias es menor. - Pese a que se realizaron 14 mediciones, y se abarcó una distancia superior a la recomendada de 20 a 25 [m] se debe tener mucho cuidado con las imperfecciones que inducen error en los cálculos. Estas se refieren en específico a las variaciones laterales de resistividad o a la presencia de dispositivos conductores o zanjas que puedan alterar significativamente la resistividad aparente en el entorno de una medición. - La utilización de las curvas patrón de Orellana y Mooney sigue siendo masivamente usadas para determinar la estructura de terrenos estratificados bajo SEV. Sin embargo, y acorde a los nuevos tiempos, existen alternativas mas sofisticadas a ellas. Un ejemplo de lo anterior es el software GEOMod, que permite obtener la configuración del terreno en hasta 14 estratos. Mas información en

20 REFERENCIAS UTILIZADAS - Orellana, Ernesto; Mooney, Harold M. Master tables and curves for vertical electrical sounding over layered structures - Tablas y curvas patrón para sondeos eléctricos verticales sobre terrenos estratificados - Morales Osorio, Nelson. Puesta a Tierra. Publicación T(P)/25 - Mallas de Tierra. Publicación PROCOBRE - Sistemas de puesta a tierra. Publicación PROCOBRE

JUAN DAVID CÁRDENAS VALENCIA ESTEBAN GALVIS GARCIA

JUAN DAVID CÁRDENAS VALENCIA ESTEBAN GALVIS GARCIA MANUAL PARA LA INTERPRETACIÓN DEL PERFIL DE RESISTIVIDAD OBTENIDO AL REALIZAR EL ESTUDIO DE LA RESISTIVIDAD DEL SUELO A PARTIR DE LAS CONFIGURACIONES DEL MÉTODO DE WENNER JUAN DAVID CÁRDENAS VALENCIA ESTEBAN

Más detalles

Información general del curso:

Información general del curso: Información general del curso: SISTEMA DE PROTECCIÓN ATMOSFÉRICA Y PUESTA A TIERRA Usted aprenderá a integrar los conocimientos y herramientas necesarias para la creación e incorporación de los Sistemas

Más detalles

PROGRAMA DE CURSO. Personal

PROGRAMA DE CURSO. Personal PROGRAMA DE CURSO Código Nombre EL6013 Puesta a tierra de Instalaciones Eléctricas y Electrónicas Nombre en Inglés Electrical and Electronic Grounding SCT es Horas de Horas Docencia Horas de Trabajo Docentes

Más detalles

MEDICIONES ELECTRICAS II

MEDICIONES ELECTRICAS II Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS II Trabajo Práctico N 2 Tema: RESISTENCIA DE PUESTA A TIERRA. Conceptos Fundamentales: Finalidad de la Puesta a tierra Las tomas a tierra son necesarias

Más detalles

CONDUCTIVIDAD. Definición:

CONDUCTIVIDAD. Definición: CONDUCTIVIDAD Definición: La conductividad es la capacidad de una solución acuosa para conducir una corriente eléctrica. Es igual al recíproco de la resistividad de la solución. Las medidas de conductividad

Más detalles

LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD

LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD No 4 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprender que la resistencia eléctrica de un elemento conductor

Más detalles

PTD-H 05/11/2006 Elaboró IEB Código Documento: Revisó SIEMENS REP-PARAMONGA-GT Aprobó REP

PTD-H 05/11/2006 Elaboró IEB Código Documento: Revisó SIEMENS REP-PARAMONGA-GT Aprobó REP Servicios de asesoría, consultoría, estudios y supervisión de montaje y construcción en las áreas de ingeniería eléctrica y civil. Pruebas de funcionamiento y puesta en servicio de subestaciones eléctricas

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

Resistores en circuitos eléctricos

Resistores en circuitos eléctricos Resistores en circuitos eléctricos Experimento : Resistencias en circuitos eléctricos Estudiar la resistencia equivalente de resistores conectados tanto en serie como en paralelo. Fundamento Teórico. Cuando

Más detalles

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, miaguilar@ciudad.com.ar Mariana Ceraolo

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERÍA ELÉCTRICA TRABAJO PRÁCTICO Nº 10

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERÍA ELÉCTRICA TRABAJO PRÁCTICO Nº 10 UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERÍA ELÉCTRICA TRABAJO PRÁCTICO Nº 10 TEMA: MEDICIÓN DE RESISTENCIA DE PUESTA A TIERRA 2 TRABAJO PRACTICO Nº 10 TEMA: MEDICIÓN

Más detalles

Línea de Especialización Equipos y Dispositivos Eléctricos

Línea de Especialización Equipos y Dispositivos Eléctricos Línea de Especialización Equipos y Dispositivos Eléctricos 1.- Propósito de la línea de especialización: Formar un Ingeniero de aplicaciones prácticas, con amplio conocimiento de máquinas e instalaciones

Más detalles

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo Electricidad y magnetismo CORRIENTE ELÉCTRICA Diferencia de potencial, resistencia e intensidad La palabra corriente se utiliza para expresar movimiento de. La corriente de un río, por ejemplo, nos expresa

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

TS254 SENSOR DE HUMEDAD DE SUELO. MANUAL DEL USUARIO Rev.03. Tecmes Instrumentos Especiales SRL

TS254 SENSOR DE HUMEDAD DE SUELO. MANUAL DEL USUARIO Rev.03. Tecmes Instrumentos Especiales SRL TS254 SENSOR DE HUMEDAD DE SUELO MANUAL DEL USUARIO Rev.03 Tecmes Instrumentos Especiales SRL www.tecmes.com TS254 Sensor de Humedad de Suelo Descripción El sensor de Humedad de Suelo TS254 es un equipo

Más detalles

LAR450 Protección contra sobretensiones causadas por descargas

LAR450 Protección contra sobretensiones causadas por descargas LAR450 Protección contra sobretensiones causadas por descargas NORMA TÉCNICA Elaborado por: Revisado por: AREA NORMAS G.V. Revisión #: Entrada en vigencia: LAR 450 10/11/2003 Esta información ha sido extractada

Más detalles

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1 Nº GUÍA PRÁCTICA Electricidad II: circuitos eléctricos Ejercicios PSU 1. La corriente continua es generada por I) pilas. II) baterías. III) alternadores. Es (son) correcta(s) A) solo I. B) solo II. C)

Más detalles

ANEXO 1 EJEMPLO DE CALCULO DE RESISTIVIDAD APARENTE. Subestaciones de Media Tensión Curso Fernando Berrutti Staino

ANEXO 1 EJEMPLO DE CALCULO DE RESISTIVIDAD APARENTE. Subestaciones de Media Tensión Curso Fernando Berrutti Staino ANEXO 1 EJEMPLO DE CALCULO DE RESISTIVIDAD APARENTE Subestaciones de Media Tensión Curso 015 Fernando Berrutti Staino Planteo del problema Se realizan mediciones con un telurímetro en el terreno de una

Más detalles

Certificada ISO 9001: NCh 2728.Of2003 SEMINARIO TECNICO. Viernes 25 de noviembre :30 a 13:30 hrs Justo Geisse 851, Osorno.

Certificada ISO 9001: NCh 2728.Of2003 SEMINARIO TECNICO. Viernes 25 de noviembre :30 a 13:30 hrs Justo Geisse 851, Osorno. SEMINARIO TECNICO Viernes 25 de noviembre 2011 09:30 a 13:30 hrs Justo Geisse 851, Osorno. ESTUDIO Y DISEÑO DE MALLA A TIERRA BT Y MT Duración: 5 horas cronológicas. Valor: $65.000.- Certifica OTEC: CreoCapacita

Más detalles

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

ÍNDICE. M.I. Pedro Martínez Leyva

ÍNDICE. M.I. Pedro Martínez Leyva ÍNDICE PRÁCTICA 1 Métodos magnético y gravimétrico... 1 PRÁCTICA 2 Método de resistividad. Sondeo eléctrico vertical... 2 PRÁCTICA 3 Métodos de polarización espontánea, polarización inducida y resistividad

Más detalles

LAR400 Puesta a tierra

LAR400 Puesta a tierra LAR400 Puesta a tierra NORMA TÉCNICA Elaborado por: DPTO NORMAS Revisado por: Dpto. Normas Revisión #: Entrada en vigencia: LAR 400 16/11/2016 -Esta información ha sido extractada de la plataforma Likinormas

Más detalles

COMISIÓN NACIONAL GOBIERNO DE DE RIEGO

COMISIÓN NACIONAL GOBIERNO DE DE RIEGO COMISIÓN NACIONAL GOBIERNO DE DE RIEGO Qué es la infiltración del agua en el suelo? Es el proceso a través del cual el riego o agua de lluvia, ingresa al suelo a través de la superficie, hacia sus capas

Más detalles

A. ANTECEDENTES TEÓRICOS.

A. ANTECEDENTES TEÓRICOS. A. ANTECEDENTES TEÓRICOS. A.1 Variables Físicas del Problema. Las variables físicas que se utilizan para comprender las propiedades eléctricas del medio y la metodología de medición de éstas son básicamente:

Más detalles

Semiconductores. La característica común a todos ellos es que son tetravalentes

Semiconductores. La característica común a todos ellos es que son tetravalentes Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd

Más detalles

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental

Más detalles

PUESTA A TIERRA EN INSTALACIONES DE ALTA TENSIÓN. Parte 2 Introducción FERNANDO BERRUTTI AÑO 2015

PUESTA A TIERRA EN INSTALACIONES DE ALTA TENSIÓN. Parte 2 Introducción FERNANDO BERRUTTI AÑO 2015 1 PUESTA A TIERRA EN INSTALACIONES DE ALTA TENSIÓN Parte 2 Introducción FERNANDO BERRUTTI AÑO 2015 Objetivos de sistemas PAT 2 Tierra de protección: Asegurar que una persona que transite en las instalaciones

Más detalles

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS CONCEPTOS BASICOS El aparato de medida más utilizado en electricidad y electrónica es el denominado POLÍMETRO, también denominado a veces multímetro o texter. El

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO

Más detalles

Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CIRCUITO ELÉCTRICO

Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CIRCUITO ELÉCTRICO CRCUTO ELÉCTRCO Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CRCUTO ABERTO CRCUTO CERRADO No existe continuidad entre dos conductores consecutivos.

Más detalles

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen.

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen. Constitución de la materia. Supongamos que cualquier sustancia de la naturaleza la dividimos en partes cada vez más pequeñas, conservando cada una de ellas las propiedades de la sustancia inicial. Si seguimos

Más detalles

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría Experimento 1. Líneas de fuerza y líneas equipotenciales Objetivos 1. Describir el concepto de campo, 2. Describir el concepto de líneas de fuerza, 3. Describir el concepto de líneas equipotenciales, 4.

Más detalles

Electricidad y Medidas Eléctricas I 2009

Electricidad y Medidas Eléctricas I 2009 Electricidad y Medidas Eléctricas 2009 Carreras: Técnico Universitario en Microprocesadores Profesorado en Tecnología a Electrónica. Bolilla 3 Cargas en movimiento. Corriente eléctrica. Definición. n.

Más detalles

CAPITULO 2: DISEÑO DE UNA PUESTA A TIERRA

CAPITULO 2: DISEÑO DE UNA PUESTA A TIERRA CAPITULO 2: DISEÑO DE UNA PUESTA A TIERRA 2.1 Resistividad y resistencia del suelo Los parámetros de resistividad y resistencia, tienen significados diferentes. La resistividad eléctrica ñ del suelo describe

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro Práctica No 12 Determinación experimental de la Presión de vapor de un líquido puro 1. Objetivo general: Evaluar la entalpía de vaporización mediante el modelo de Clausius y Clapeyron. 2. Marco teórico:

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE SISTEMAS ELÉCTRICOS

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE SISTEMAS ELÉCTRICOS TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE SISTEMAS ELÉCTRICOS 1. Competencias Gestionar las actividades de mantenimiento mediante la integración

Más detalles

Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica

Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica Nombre y apellidos: Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica En determinados materiales, como los metales y las sustancias iónicas fundidas o disueltas

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas. EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de

Más detalles

Aceites minerales aislantes para transformadores de potencia

Aceites minerales aislantes para transformadores de potencia Aceites minerales aislantes para transformadores de potencia Antecedentes Los aceites aislantes son materiales en estado líquido provenientes de una fracción de la destilación del petróleo. Por el origen

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Reacciones redox espontáneas

Reacciones redox espontáneas Celda galvánica o voltaica o electroquímica Pila galvánica o voltaica o electroquímica Cuba galvánica o voltaica o electroquímica Cada una de las partes se denomina: semicelda o semipila o electrodo Pila

Más detalles

Dependencia con la Temperatura Buenos Conductores Aisladores y Semi Conductores E emplo: E emplo: E e j r e cicio 1(Activ cicio 1(Activ dad 4): dad

Dependencia con la Temperatura Buenos Conductores Aisladores y Semi Conductores E emplo: E emplo: E e j r e cicio 1(Activ cicio 1(Activ dad 4): dad Electricidad y Medidas Eléctricas 2013 Carreras: Técnico Universitario en: Electrónica, Telecomunicaciones, Sonorización. Profesorado en Tecnología Electrónica. http://www.unsl.edu.ar/~eyme1/ Dpto. de

Más detalles

Sistema de puesta a tierra en sistemas de baja tensión de c.a.

Sistema de puesta a tierra en sistemas de baja tensión de c.a. Sistema de puesta a tierra en sistemas de baja tensión de c.a. Propósito del sistema de puesta a tierra El sistema de puesta a tierra para sistemas de distribución y circuitos de c.a. en baja tensión tiene

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por

Más detalles

Anteriores. EL alumno comprende y aplica las leyes y principios fundamentales de la electricidad y el magnetismo y la termodinámica.

Anteriores. EL alumno comprende y aplica las leyes y principios fundamentales de la electricidad y el magnetismo y la termodinámica. INSTITUTO TECNOLÓGICO DE SALTILLO 1.- Nombre de la asignatura: Física II Carrera: Ingeniería Industrial Clave de la asignatura: INC - 0402 Horas teoría-horas práctica-créditos 4-2-10 2.- HISTORIA DEL PROGRAMA

Más detalles

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio:

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio: GUIA DE FÍSICA LEY DE OHM Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor Corriente eléctrica Una corriente eléctrica es un movimiento ordenado de cargas eléctricas (electrones libres) en un conductor.

Más detalles

MEDICIONES DE RESISTENCIA DE TOMA A TIERRA Y RESISTIVIDAD DE LOS SUELOS. Autor: Ing. Mercedes Rosado.

MEDICIONES DE RESISTENCIA DE TOMA A TIERRA Y RESISTIVIDAD DE LOS SUELOS. Autor: Ing. Mercedes Rosado. MEDICIONES DE RESISTENCIA DE TOMA A TIERRA Y RESISTIVIDAD DE LOS SUELOS Autor: Ing. Mercedes Rosado. INTRODUCCIÓN Dada la importancia que para el diseño y la explotación exitosa de una malla electrotécnica

Más detalles

Descarga Glow. Introducción. Características de la descarga glow

Descarga Glow. Introducción. Características de la descarga glow Descarga Glow Introducción La descarga glow es una descarga eléctrica autosostenida que se produce en un medio gaseoso. Consideremos un dispositivo como el que se esquematiza en la Figura 1. Una fuente

Más detalles

TRAZADO DE LÍNEAS EQUIPOTENCIALES

TRAZADO DE LÍNEAS EQUIPOTENCIALES TRAZADO DE LÍNEAS EQUIPOTENCIALES Nota: Traer, por comisión, dos hojas de papel carbónico de x 30 cm c/u, una hoja A3 o similar de 5 x 30 cm un pendrive o cualquier otro tipo de dispositivo estándar de

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM UNIDAD 1: LEY DE OHM - TEORÍA En esta unidad usted aprenderá a aplicar la Ley de Ohm, a conocer las unidades eléctricas en la medición de las resistencias,

Más detalles

Circuitos Eléctricos Fundamentos

Circuitos Eléctricos Fundamentos Electricidad 1 Circuitos Eléctricos Fundamentos http://www.areatecnologia.com/ electricidad/circuitoselectricos.html QUÉ ES UN CIRCUITO ELÉCTRICO? Un Circuito Eléctrico es un conjunto de elementos conectados

Más detalles

El objeto de este documento unitario es la justificación analítica de los elementos utilizados en la instalación eléctrica objeto de este proyecto.

El objeto de este documento unitario es la justificación analítica de los elementos utilizados en la instalación eléctrica objeto de este proyecto. 1.- Objeto El objeto de este documento unitario es la justificación analítica de los elementos utilizados en la instalación eléctrica objeto de este proyecto. 2.- Fórmulas y criterios de cálculo utilizados

Más detalles

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA Qué es un semiconductor? Es un material con una resistividad menor que un aislante y mayor que un conductor.

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CIRCUITOS ELÉCTRICOS 1. LA CORRIENTE ELÉCTRICA. 1.1. Estructura del átomo. Todos los materiales están formados por átomos. En el centro del átomo (el núcleo) hay dos tipos de partículas: los protones (partículas

Más detalles

Resistencia de aislamiento (R iso ) de instalaciones fotovoltaicas sin separación galvánica

Resistencia de aislamiento (R iso ) de instalaciones fotovoltaicas sin separación galvánica Resistencia de aislamiento (R iso ) de instalaciones fotovoltaicas sin separación galvánica con SUNNY MINI CENTRAL 9000TL/10000TL/11000TL Contenido Las instalaciones fotovoltaicas con inversores sin transformador

Más detalles

1 - Turbulencia insuficiente, que las partículas de combustible tienen a bajas temperaturas

1 - Turbulencia insuficiente, que las partículas de combustible tienen a bajas temperaturas Estos sensores pueden ser de Coeficiente de Temperatura Negativo (NTC) la resistencia eléctrica y el voltaje disminuyen al aumentar la temperatura o de Coeficiente de Temperatura Positivo (PTC) la resistencia

Más detalles

CONDUCTIVIDAD DE LAS DISOLUCIONES ELECTROLITICAS

CONDUCTIVIDAD DE LAS DISOLUCIONES ELECTROLITICAS CONDUCTIVIDAD DE LAS DISOLUCIONES ELECTROLITICAS INTRODUCCION En los conductores metálicos, el transporte de la corriente eléctrica tiene lugar debido al movimiento de los electrones del metal bajo la

Más detalles

UNIDAD 8.ELECTRICIDAD

UNIDAD 8.ELECTRICIDAD UNIDAD 8.ELECTRICIDAD CORRIENTE ELÉCTRICA CIRCUITOS ELÉCTRICOS MAGNITUDES ELÉCTRICAS FUNDAMENTALES LEY DE OHM DEPARTAMENTO TECNOLOGÍA IES AVENIDA DE LOS TOREROS UD. 8: ELECTRICIDAD - 1 ELECTRICIDAD Por

Más detalles

III Calculo de puestas a tierra. Consideraciones

III Calculo de puestas a tierra. Consideraciones Distriuz III Calculo de puestas a tierra 1. 2. 3. 4. 5. Puesta a tierra puntuales Puesta a tierra en líneas de transmisión. Puesta a tierra en Estaciones transformadoras. Aplicaciones. Diseño de malla

Más detalles

PUESTA A TIERRA DE SISTEMAS ELECTRICOS

PUESTA A TIERRA DE SISTEMAS ELECTRICOS PESTA A TERRA DE SSTEMAS ELECTRCOS Diferencia entre : neutro: Retorno de la línea de alimentación tierra: Conexión que se usa para derivar corrientes no deseadas PESTA A TERRA Ligazón o enlace metálico

Más detalles

ÍNDICE. 1. INTRODUCCION

ÍNDICE. 1. INTRODUCCION ÍNDICE. 1. INTRODUCCION--------------------------------------------------------------------------------------- 1 2. REVISIÓN BIBLIOGRAFICA 2.1 Riego por aspersión-----------------------------------------------------------------------------

Más detalles

INTERCAMBIADORES TIERRA-AIRE EN LA CLIMATIZACIÓN DE CONSTRUCCIONES. POZOS PROVENZALES Y TÉCNICAS EMPARENTADAS

INTERCAMBIADORES TIERRA-AIRE EN LA CLIMATIZACIÓN DE CONSTRUCCIONES. POZOS PROVENZALES Y TÉCNICAS EMPARENTADAS CEDEX-JORNADA SOBRE APROVECHAMIENTO GEOTÉRMICO Joan Escuer GEÓLOGO CONSULTOR INTERCAMBIADORES TIERRA-AIRE EN LA CLIMATIZACIÓN DE CONSTRUCCIONES. POZOS PROVENZALES Y TÉCNICAS EMPARENTADAS CONTENIDO INTRODUCCIÓN

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

ALUMNO-A: CURSO: 2º ESO

ALUMNO-A: CURSO: 2º ESO UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,

Más detalles

Aplicar la ley de ohm, en el desarrollo de ejercicios..

Aplicar la ley de ohm, en el desarrollo de ejercicios.. Corriente eléctrica Aplicar la ley de ohm, en el desarrollo de ejercicios.. En términos simples, la electricidad corresponde al movimiento de cargas eléctricas. Las cargas que pueden moverse son los electrones

Más detalles

Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm

Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm Ejercicio resuelto nº 1 Una estufa está aplicada a una diferencia de potencial de 250 V. Por ella circula una intensidad de corriente de 5 A. Determinar

Más detalles

LEY DE OHM Y PUENTE DE WHEATSTONE

LEY DE OHM Y PUENTE DE WHEATSTONE uned de Consorci Centre Associat la UNED de Terrassa Laboratori d Electricitat i Magnetisme (UPC) LEY DE OHM Y PUENTE DE WHEATSTONE Objetivo Comprobar experimentalmente la ley de Ohm. Determinar el valor

Más detalles

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Sistemas Polifásicos y Medición de Potencia Contenidos ❿ Voltaje RMS. ❿ Voltaje máximo. ❿ Desfase de

Más detalles

CAPÍTULO 6. Arreglo de celdas solares y carga de las baterías para obtener la fuente de alimentación de VCD del convertidor.

CAPÍTULO 6. Arreglo de celdas solares y carga de las baterías para obtener la fuente de alimentación de VCD del convertidor. CAPÍTULO 6 Arreglo de celdas solares y carga de las baterías para obtener la fuente de alimentación de VCD del convertidor. 6.1 Introducción. En este capítulo se define la corriente de corto circuito Icc,

Más detalles

Corriente continua : Condensadores y circuitos RC

Corriente continua : Condensadores y circuitos RC Corriente continua : Condensadores y circuitos RC Marcos Flores Carrasco Departamento de Física mflorescarra@ing.uchile.cl Tópicos introducción Condensadores Energia electroestática Capacidad Asociación

Más detalles

SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS

SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS Cuando se presenta una falla en un sistema eléctrico de potencia se presenta una condición transitoria que se amortigua rápidamente, quedando

Más detalles

TRANSFORMADORES MONOFASICOS

TRANSFORMADORES MONOFASICOS TRANSFORMADORES MONOFASICOS TRANSFORMADORES MONOFASICOS TRANSFORMADORES de alta fiabilidad, tanto por los materiales empleados en su fabricación, como por la depurada técnica utilizada en su ejecución,

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

ANEXO 11 RESUMEN ESTUDIO HIDROGEOLÓGICO

ANEXO 11 RESUMEN ESTUDIO HIDROGEOLÓGICO ANEXO 11 RESUMEN ESTUDIO HIDROGEOLÓGICO EVALUACION HIDROGEOLOGICA PARA LA UBICACION DE UN POZO PARA ABASTECER DE AGUA POTABLE AL HOTEL RESORT SAN AGUSTIN DE PARACAS - PISCO (Distrito: Paracas Provincia:

Más detalles

Práctica 6. Propiedades físicas y enlace químico

Práctica 6. Propiedades físicas y enlace químico Práctica 6. Propiedades físicas y enlace químico Revisaron: M. en C. Martha Magdalena Flores Leonar Dr. Víctor Manuel Ugalde Saldívar PREGUNTA A RESPONDER AL FINAL DE LA PRÁCTICA Qué tipo de enlace predomina

Más detalles

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR. eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

PROPIEDADES ÍNDICES DE LOS SUELOS

PROPIEDADES ÍNDICES DE LOS SUELOS PROPIEDADES ÍNDICES DE LOS SUELOS Ing. Carlos García Romero Qué son? Para qué sirven? Cuando, estando en Zacatenco, nos preguntan la ubicación de algún sitio, por ejemplo hacia dónde queda La Villa?, por

Más detalles

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES Pág. 1 B1.1 RESISTENCIA El valor de la resistencia por unidad de longitud, en corriente continua y a la temperatura, vendrá dada por la siguiente expresión: Siendo:

Más detalles

E.E.T. Nº9. Físico-Química de 2do año. Guía Nº3. Profesor: Alumno: Curso:

E.E.T. Nº9. Físico-Química de 2do año. Guía Nº3. Profesor: Alumno: Curso: E.E.T. Nº9 Físico-Química de 2do año Guía Nº3 Profesor: Alumno: Curso: Soluciones Una solución es un sistema homogéneo formado por dos o más componentes. En una solución formada por dos componentes se

Más detalles

PLANIFICACIÓN Y MANEJO DEL AGUA EN LA AGRICULTURA IRRIGADA. Roberto P. Marano

PLANIFICACIÓN Y MANEJO DEL AGUA EN LA AGRICULTURA IRRIGADA. Roberto P. Marano PLANIFICACIÓN Y MANEJO DEL AGUA EN LA AGRICULTURA IRRIGADA Relación suelo-agua Roberto P. Marano Retención de agua La matriz del suelo retiene agua por dos mecanismos: * el agua puede ser adsorbida a las

Más detalles

Nombre de la asignatura: Electricidad y Magnetismo. Créditos: Aportación al perfil

Nombre de la asignatura: Electricidad y Magnetismo. Créditos: Aportación al perfil Nombre de la asignatura: Electricidad y Magnetismo Créditos: 3-2-5 Aportación al perfil Analizar y resolver problemas en donde intervengan fenómenos electromagnéticos. Aplicar las leyes del electromagnetismo

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

Física III. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de. Academia de Ingeniería Mecánica.

Física III. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de. Academia de Ingeniería Mecánica. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física III Ingeniería Mecánica MCT - 0514 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Análisis del Riesgo por Arco Eléctrico (Arc Flash Hazard) Juan Meza Hernández

Análisis del Riesgo por Arco Eléctrico (Arc Flash Hazard) Juan Meza Hernández Análisis del Riesgo por Arco Eléctrico (Arc Flash Hazard) Juan Meza Hernández Recientemente con el incremento de los daños, las perdidas humanas y económicas que son causadas por el Arc Flash, se ha puesto

Más detalles

Departamento de Física José Würschmidt Año Sistema de Enseñanza Aprendizaje por Proyectos Experimentales Simples y por Simulación en Computadora

Departamento de Física José Würschmidt Año Sistema de Enseñanza Aprendizaje por Proyectos Experimentales Simples y por Simulación en Computadora Sistema de Enseñanza Aprendizaje por Proyectos Experimentales Simples y por Simulación en Computadora Proyecto Física III Motor Magneto hidrodinámico: Comprobación practica de la ley de Lorentz Autor:

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

Mediciones Confiables con Termómetros de Resistencia i de Platino. Edgar Méndez Lango

Mediciones Confiables con Termómetros de Resistencia i de Platino. Edgar Méndez Lango Mediciones Confiables con Termómetros de Resistencia i de Platino Edgar Méndez Lango Termometría, Metrología Eléctrica, CENAM Noviembre 2009 Contenido 2 1. Concepto de temperatura 2. La Escala Internacional

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles