TEMA 9: ALEACIONES. DIAGRAMAS DE EQUILIBRIO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 9: ALEACIONES. DIAGRAMAS DE EQUILIBRIO"

Transcripción

1 TEMA 9: ALEACIONES. DIAGRAMAS DE EQUILIBRIO 1.- Aleaciones Características Los metales puros tienen poca aplicación en la industria. La mayoría de ellos se combinan con otros metales o no metales para mejorar sus propiedades (mayor dureza, resistencia mecánica, resistencia a la corrosión, etc.) Se denomina aleación metálica a la mezcla de dos o más elementos químicos, uno de los cuales tiene carácter metálico, que en estado sólido tiene propiedades metálicas. Los elementos de una aleación deben ser totalmente miscibles en estado líquido, de forma que al solidificarse resulte un producto homogéneo. Cuando se mezclan metales que cristalizan en la misma red tridimensional, se denomina disolvente al que interviene en mayor proporción y soluto al que lo hace en proporción menos. Cuando se mezclan metales que cristalizan en distinta red, se llama disolvente al metal cuya estructura cristalina es la misma que la de la aleación, aunque intervenga en menor proporción. Estructura: soluciones sólidas Las aleaciones metálicas son soluciones sólidas entre 2 ó más elementos. Dependiendo de la disposición de los átomos del disolvente y del soluto, nos podemos encontrar con dos tipos de soluciones: Solución solida de sustitución: son aquellas aleaciones en las que los átomos del elemento disuelto (soluto) sustituyen y ocupan los nudos de los átomos del elemento disolvente en su red cristalina, sin modificarla, siendo ambos casi del mismo tamaño Para que dos átomos A y B sean totalmente solubles en estado sólido, se deben cumplir varias condiciones: - Ambos metales han de cristalizar en el mismo sistema. - Ambos metales deben tener la misma valencia. - Ambos metales han de poseer una electronegatividad semejante - Los diámetros atómicos no deben diferir en más de un 15%. Ejemplo: cobre con níquel (Cu-Ni); oro con plata (Au-Ag) La mayor parte de los metales forman únicamente soluciones sólidas de solubilidad parcial. Solución sólida de inserción son aquellas aleaciones en las que los átomos del elemento soluto se sitúan en los intersticios, entre los átomos del elemento disolvente, siendo el tamaño de los átomos del elemento disuelto mucho menores. El elemento que suele actuar de soluto es un no metal de pequeño tamaño (C, N, O ó H). Los metales que actúan de disolvente suelen ser metales de transición (Fe, Cr, Mn, Co, Ni, ) Las aleaciones hierro-carbono (acero) se presentan siempre como soluciones sólidas intersticiales, (Ferrita que es hierro α con carbono intersticial y la Austerita, que es hierro γ con carbono intersticial). El radio atómico del hierro es de 0,129 nm y el del carbono es de 0,075 nm. 1

2 2.- Solidificación de las aleaciones La solidificación de materiales y aleaciones metálicas es un proceso industrial que parte del estado líquido y enfría el material en forma de lingote o en un molde con la forma definitiva. Las propiedades del material formado dependen en gran medida de la manera en que se lleva a cabo esta solidificación. El proceso de solidificación de un metal o de una aleación metálica puede representarse mediante la curva de enfriamiento, en función de la temperatura y el tiempo. Curva de enfriamiento de un metal y de una aleación Temperatura METAL PURO Líquido Temperatura ALEACIÓN Líquido Temperatura ALEACIÓN EUTÉCTICA Líquido T solidificación 1 2 T inicio solidificación T fin solidificación 1 Intervalo solidificación T 2 solidificación 1 2 Sólido Sólido Sólido tiempo tiempo tiempo 1 = Inicio del proceso de solidificación 2 = Fin del proceso de solidificación Los metales puros tienen una sóla temperatura de solidificación, mientras que las aleaciones tienen un intervalo de solidificación (excepto la aleación eutéctica, que es la aleación de menor punto de fusión y que veremos más adelante) Diagrama de equilibrio en aleaciones Se llaman diagramas de equilibrio o diagrama de fases. Representan la relación entre la estructura, la composición, el número de fases y las transformaciones desde el estado líquido al estado sólido. Fase: es cada una de las partes o masa homogénea de que se compone un sistema y se diferencia físicamente del resto (ej: fase sólida, líquida y gaseosa). Dentro de un sólido pueden existir varias fases Componente: son cada una de las sustancias o elementos químicos que forman un material. (ej: el Fe (hierro) y el Fe3C (cementita)son constituyentes del acero) Los diagramas de equilibrio nos permiten saber qué fases se encuentran presentes para cada composición de una aleación y a qué temperatura. También permiten saber las temperaturas de inicio y fin del proceso de solidificación; las temperaturas en que se produce un cambio de fases y la solubilidad que tienen los componentes en estado sólido y líquido. En todos los diagramas vamos a analizar tres datos: Numero de fases Composición de cada fase (mediante la regla de la horizontal), Cantidad o proporción de cada fase (mediante la regla de la palanca o de los segmentos inversos), Representación de diagramas de equilibrio de una aleación A-B: Para dibujar un diagrama hay que seguir los siguientes pasos: - Se parte de las curvas de enfriamiento de los metales puros A y B, de las curvas de enfriamiento de alecciones con diferentes composiciones de A y B. Y se obtienen las temperaturas de inicio y fin del proceso de solidificación. - Con los datos anteriores se dibuja la gráfica temperatura-concentración. Para ello se unen todos los puntos de inicio del proceso de solidificación, obteniendo una línea por encima de 2

3 la cual todo es líquido (línea de liquido). Y se unen todos los puntos del fin del proceso de solidificación, obteniendo una línea por debajo de la cual todo es sólido (línea de solido). La zona comprendida entre ambas líneas está formada por dos fases, una fase en estado líquido y otra en estado sólido. Las gráficas que se obtienen pueden ser de tres tipos dependiendo del tipo de solubilidad que presentan los elementos A y B 1600 liquido 1500 Diagrama de equilibrio en aleaciones totalmente solubles estado sólido L + SAB SÓLIDO SAB solido liquido 1500 Diagrama de equilibrio en aleaciones insolubles en estado sólido 1300 L + SA L + SB solido 1100 eutéctica Sólido(A+B) A B liquido 1600 Diagrama de equilibrio en aleaciones parcialmente solubles en estado sólido L + α L + β α β eutéctica Solido (α+β) solido DIAGRAMA DE EQUILIBRIO EN ALEACIONES TOTALMENTE SOLUBLES EN ESTADO LÍQUIDO Y ESTADO SÓLIDO Se toman los metales puros A y B y diferentes aleaciones A-B, se funden y se dejan enfriar lentamente. Se dibujan sus gráficas de enfriamiento y se toman sus puntos de inicio y fin del proceso de solidificación para dibujar el diagrama de equilibrio (gráfica Temperaturaconcentración) T1 = temperatura de inicio de solidificación (comienza la formación de cristales) T2 = temperatura de fin de solidificación (formación del último cristal 3

4 =T %A siguientes puntos: Ejemplo: 75% A y 25% B: - En el punto a Numero de fases = 1 (liquido) Composición de cada fase: Líquido =75% A - 25 Cantidad o proporción de cada fase: Wlíquido = 100 % - En el punto b Numero de fases = 2 (líquido y sólido S) En estas aleaciones existe una solubilidad total en estado sólido, por lo que los átomos se mezclan en el interior del grano cristalino, es decir, dentro de los granos hay metal A y B. Todos los granos son similares. El diagrama se divide en tres zonas: En la zona L hay una sola fase, líquida y homogénea. En la zona L+S hay dos fases, una de líquido AB y otra de cristales de aleación sólida S (AB mezclados). En la zona S hay una fase sólida formada por la mezcla AB. Vamos a analizar el diagrama fijándonos en los Composición de cada fase: se aplica la regla 0 10 de la horizontal para hallar la composición química del sólido y del líquido (se traza una línea horizontal que pase por el punto b y corte a las líneas de fase; el punto de corte con la línea de líquido nos da la composición de la fase líquida y el punto de corte con la línea de sólido nos da la composición de la fase sólida) Líquido L= 75% B y 25% A Sólido S = 10% B y 90% A Cantidad o proporción de cada fase: se aplica la regla de la palanca o de los segmentos inversos para hallar la cantidad en tanto por ciento de la fase sólida y de la fase líquida (se traza una línea horizontal que pase por el punto b y corte a las líneas de fase; esa línea s-l es el denominador y en el numerador se coloca el segmento inverso desde nuestro punto b a la línea de fase) - En el punto c 25 75%A L + s T 2 T 2 SÓLIDO s liquidus 50 50%A Wlíquido = b s l s 100 (%) = = 23% Wsólido = l b 100 (%) = = 77% l s Numero de fases = 1 (sólido S) Composición de cada fase: Solido =75% A - 25 Cantidad o proporción de cada fase: Wsólido = 100 % T %A 100 0%A solidus =T s a b c L + S SÓLIDO S l 4

5 DIAGRAMA DE EQUILIBRIO EN ALEACIONES TOTALMENTE SOLUBLES EN ESTADO LÍQUIDO E INSOLUBLES EN ESTADO SÓLIDO Se toman los metales puros A y B y diferentes aleaciones A-B, se funden y se dejan enfriar lentamente. Se dibujan sus curvas de enfriamiento y se toman sus puntos de inicio y fin del proceso de solidificación para dibujar el diagrama de equilibrio (gráfica Temperaturaconcentración) T1 = temperatura de inicio de solidificación (comienza la formación de cristales) T2 = temperatura de fin de solidificación (formación del último cristal Observamos que todas las aleaciones A-B acaban de solidificar a la misma temperatura. Los metales puros A y B y la aleación eutéctica tienen una sola temperatura de solidificación. El resto de aleaciones tiene un intervalo de solidificación =T 2 L + A T 2 T 2 SÓLIDO A+B T hipoeutéctica eutéctica liquidus L + B hipereutéctica Se representa el diagrama de fases El diagrama se divide en cuatro zonas. En la zona L hay una sola fase, líquida y homogénea. En la zona L+A hay dos fases, una de líquido A-B y otra de cristales de solido A. En la zona L+B hay dos fases, una de líquido A-B y otra de cristales de solido B. En la zona sólida hay un sólido formado por dos fases A y B, que no se mezclan. En estas aleaciones existe una insolubilidad entre sus elementos en estado sólido, lo que hace que, al formarse los granos cristalinos, los metales no se mezclan dentro del grano por lo que cada grano es de un metal puro; Es decir, tenemos granos formados por el metal A y granos del metal B (dos fases) mezclados al azar. A la aleación de punto de fusión más bajo se le llama aleación eutéctica. A las aleaciones a la izquierda de la aleación eutéctica se las llama aleaciones hipoeutécticas. A las aleaciones a la derecha de la aleación eutéctica se las llama aleaciones hipereutécticas. Reacción eutéctica: transformación de un líquido a cierta temperatura en dos fases sólidas. Es la aleación de menor temperatura de fusión Vamos a analizar el diagrama fijándonos en las siguientes zonas: 100 =T 2 solidus En las aleaciones hipoeutécticas, por debajo de la línea de líquido comienza la solidificación y los cristales que solidifican en la zona L+A son de sólido puro A, mientras que el líquido AB que queda se va progresivamente empobreciendo en A. Al llegar a la temperatura T2 desaparece todo el líquido y el sólido que se forma en ese instante contiene cristales de A puro y B puro que no se mezclan dentro del grano (sólido con dos constituyentes A+B). Este sólido tiene la misma cantidad o concentración de A y B que la aleación eutéctica. A temperaturas menores toda la aleación está en estado sólido, pero podemos considerar que tenemos un sólido con dos fases: una fase de sólido A que se formó en la zona L+A (A proeutéctico, se formó antes de la temperatura eutéctica), y una fase compuesta de sólido A+B (composición eutéctica). Es la zona Ap+(A+B)eu En la aleación eutéctica sólo hay un punto de solidificación y toda la aleación pasa de estado líquido a sólido a la temperatura T2. Se forman dos fases A y B, que no se mezclan. 5

6 En las aleaciones hipereutécticas, comienza la solidificación a la temperatura T1, los cristales que solidifican en la zona L+B son de sólido puro B, mientras que el líquido que queda se va empobreciendo en B. Al llegar a la temperatura T2 desaparece todo el líquido y la aleación sólida formada en ese instante contiene cristales de A puro y B puro que no se mezclan (sólido con dos fases A+B de composición eutéctica) A temperaturas menores toda la aleación está en estado sólido, pero podemos considerar que tenemos un sólido con dos fases: una fase de sólido B que se formó en la zona L+B (B proeutéctico, se formó antes de la temperatura eutéctica), y una fase compuesta de sólido A+B (composición eutéctica). Es la zona Bp+(A+B)eu Para calcular la composición de cada una de las fases se emplea la regla de la horizontal. Y para calcular la cantidad de cada fase se emplea la regla de la palanca a liquidus Ap = A proeutéctico Bp = B proeutéctico (A+B)eu = aleación eutéctica 1300 b L + Ap L + Bp c Ap+(A+B)eu A+B eutéctica Bp+(A+B)eu solidus hipoeutéctica hipereutéctica Ejemplo: 80% A y 20% B: - En el punto a Numero de fases = 1 (liquido AB) Composición de cada fase: Líquido =80% A - 20 Cantidad o proporción de cada fase: Wlíquido = 100 % - En el punto b Numero de fases = 2 (liquido AB y sólido A) Composición de cada fase: se aplica la regla de la horizontal Líquido = 40% B y 60% A Sólido A = 0% B y 100% A 6

7 Cantidad o proporción de cada fase: se aplica la regla de la palanca o de los segmentos inversos - En el punto c Wlíquido = b s l s 100 (%) = = 50% 40 0 Wsólido = l b 100 (%) = = 50% l s 40 0 Numero de fases = 2 (solido A y sólido A+B) Composición de cada fase: Sólido A =100% A - 0 Sólido A+B =80% A - 20 (eutéctica) Cantidad o proporción de cada fase: Primero se calculan las cantidades totales de A y B WA = 80% y WB = 20% Para conocer las cantidades de cada fase A y fase A+B, se compara la fase A+B con la composición del punto eutéctico. WAeutectico = 40% WBeutectico = 60% Comparamos los cristales de B que son todos eutécticos, mediante regla de tres: Aeutéctico Beutéctico Eutéctico Punto c x 20 Resolviendo: x = 13,3%, de modo que el A primario o proeutéctico será 80-13,3 = 66,7. Y la cantidad de cada fase es: WA proeutéctico = 66,7% y W(A+B) eutéctico = 13, = 33,3% DIAGRAMA DE EQUILIBRIO EN ALEACIONES TOTALMENTE SOLUBLES EN ESTADO LÍQUIDO Y PARCIALMENTE SOLUBLES EN ESTADO SÓLIDO La mayor parte de los metales de uso industrial presentan alguna solubilidad entre sí al alearse. Por ejemplo: en la aleación Cu-Zn, el cobre no es capaz de solubilizar más de un 30% de Zn Se representa el diagrama de fases En estos sistemas los metales son solubles, pero en pequeña cantidad (parcialmente solubles, Al solidificar aparecen soluciones sólidas α y β α = solución sólida de B disuelto en A (mucha cantidad de A y poca de B) β = solución sólida de A disuelto en B (mucha cantidad de B y poca de A) A α 0 L + α SÓLIDO α+β hipoeutéctica α+β eutéctica L + β B β hipereutéctica 100 liquidus solidus eutéctica 7

8 A la temperatura eutéctica las fases sólidas que se forman son soluciones α y β. Se observa en el diagrama que ocurren transformaciones en estado sólido. El diagrama se divide en seis zonas: - En la zona L hay una sola fase, líquida AB y homogénea. - En la zona L+α hay dos fases, una de líquido AB y otra de cristales de aleación sólida α (sólido α con solubilidad parcial) - En la zona L+β también hay dos fases, una de líquido AB y otra de cristales de aleación sólida β (sólido β con solubilidad parcial) - En la zona α, hay una fase sólida formada por cristales de aleación sólida α. - En la zona β, hay una fase sólida formada por cristales de aleación sólida β. - En la zona α+β hay un sólida formado por dos fases α y β, que son soluciones sólidas con solubilidad parcial. En las aleaciones hipoeutécticas, comienza la solidificación a la temperatura T1, los cristales que solidifican en la zona L+α son de sólido α, mientras que el líquido que queda se va empobreciendo en A. Al llegar a la temperatura T2 desaparece todo el líquido y la aleación formada contiene cristales de α (proeutécticos), más una estructura compuesta de α+β (composición eutéctica). Es la zona α+(α+β). En aleaciones hipoeutécticass con pequeñas cantidades de B, todo el sólido está en forma de α y este sólido no sufre transformaciones, todo es solución sólida α A α L + αp a b c αp+(α+β)eu α+β eutéctica L + βp βp+(α+β)eu B β En la aleación eutéctica sólo hay un punto de solidificación y toda la aleación pasa de estado líquido a sólido α+β a la temperatura T2. hipoeutéctica hipereutéctica Ejemplo: En las aleaciones hipereutécticas, comienza la solidificación a la temperatura T1, los cristales que solidifican en la zona L+β son de sólido β, mientras que el líquido que queda se va empobreciendo en B. Al llegar a la temperatura T2 desaparece todo el líquido y la aleación formada contiene cristales de β (proeutécticos), más una estructura compuesta de α+β (composición eutéctica). Es la zona β+(α+β) En aleaciones hipereutécticas,con pequeñas cantidades de A, todo el sólido está en forma de β y este sólido no sufre transformaciones, todo es solución sólida β Para calcular la composición de cada una de las fases se emplea la regla de la horizontal. Y para calcular la cantidad de cada fase se emplea la regla de la palanca. 60% A y 40% B: - En el punto a Numero de fases = 1 (liquido AB) Composición de cada fase: Líquido =60% A

9 Cantidad o proporción de cada fase: Wlíquido = 100 % - En el punto b Numero de fases = 2 (liquido y sólido α) Composición de cada fase: se aplica la regla de la horizontal Líquido = 50% B y 50% A Sólido α = 3% B y 97% A Cantidad o proporción de cada fase: se aplica la regla de la palanca o de los segmentos inversos - En el punto c Wlíquido = b s l s 100 (%) = = 78,7% 50 3 Wsólido = l b 100 (%) = = 21,3% l s 50 3 Numero de fases = 2 (solido α y sólido α+β) Composición de cada fase: se aplica la regla de la horizontal Sólido α = 5% B y 95% A Sólido β = 92% B y 8% A Cantidad o proporción de cada fase: se aplica la regla de la palanca o de los segmentos inversos Primero se calculan las cantidades totales de α y β Wα = = 59,8% 92 5 Wβ = = 40,2% 92 5 Para conocer las cantidades de cada fase α y fase α+β, se compara la fase α+β con la composición del punto eutéctico. Wαeutectico = = 36,1% 90 7 Wβeutectico= = 63,9% 90 7 Comparamos los cristales de β que son todos eutécticos, mediante regla de tres: αeutéctico βeutéctico Eutéctico 36,1 63,9 Punto c x 40,2 Resolviendo: x = 22,7%, de modo que el α primario será 59,8-22,7 = 37,1%. Y la cantidad de cada fase es: Wα proeutéctico = 37,1% y W(α+β) eutéctico = 22,7 + 40,2= 62,9 % 9

10 ALEACIONES Fe-C. PROPIEDADES Y CLASIFICACIÓN 1.- Estados alotrópicos del Hierro (Fe) Según las condiciones de temperatura, el hierro puede presentar diferentes estados, con mayor o menor capacidad para disolver el carbono. Hierro α: cristaliza hasta una temperatura de 768 ºC en la red CCB. No disuelve prácticamente al carbono. Es magnético. Hierro β: cristaliza entre 768 ºC- 910 ºC en la red CCB. No es magnético. Tiene mayor volumen (mayor distancia entre átomos). Hierro γ: cristaliza entre 910 ºC- ºC en la red CCF. Disuelve más carbono (hasta un 2, 11 %). Es no magnético Hierro δ: cristaliza entre ºC ºC en la red CCB. Es magnético. Muy parecido al hierro α. Poca aplicación 2.- Formas de encontrar el carbono en las aleaciones férreas Disuelto o combinado: Formando soluciones sólidas de inserción con el hierro α (ferrita = Fe α - C). La ferrita disuelve muy poca cantidad de carbono. La estructura cristalina será CCB Formando soluciones sólidas de inserción con el hierro γ (austenita = Fe γ - C). La estructura cristalina será CCF En forma de carburo de hierro (Fe3C = cementita). La cementita tiene un 6,67% en peso de carbono (la mayor proporción de carbono que puede solubilizarse con el hierro), y es un compuesto de inserción. La estructura cristalina que se forma es del tipo ortorrómbica con 12 átomos de hierro y 4 átomos de carbono por celda. Libre: formando nódulos o láminas de grafito, cuando el porcentaje de carbono es superior al 6,67%. El grafito es una de las formas alotrópicas en las que se puede presentar el carbono (como el diamante y el grafeno). Los átomos se colocan en capas superpuestas formando hexágonos regulares. Es de color negro con brillo metálico, se exfolia con facilidad, es conductor y muy blando. 3.- Diagrama Fe-C Los aceros son aleaciones Fe-C, donde el carbono está en proporciones del 0,03 2,11 %. Son forjables. Las fundiciones son aleaciones Fe-C, donde el carbono está en proporciones del 2,11 6,67%. Son no forjables. El 6,67% C es la máxima proporción de carbono que se puede disolver. Al compuesto con este porcentaje 6,67% C, se le llama cementita. (Fe3C) 10

11 Constituyentes de las aleaciones Fe-C Ferrita (α): prácticamente Fe α, tiene muy poca solubilidad ya que apenas disuelve carbono (máxima solubilidad es 0,02 % C). Cristaliza en la red CCB. Es el más blando y dúctil constituyente de los aceros. Es magnético. Se emplea en la fabricación de imanes permanentes, en núcleos de inductancias y transformadores.. C Bobinado de ferrita para uso como transformador de corriente eléctrica Cementita: Fe 3 C, tiene un 6;67% de carbono. La estructura cristalina es muy compleja, es del tipo ortorrómbica con 12 átomos de hierro y 4 átomos de carbono por celda. Es el más duro y frágil constituyente de los aceros. Tiene muy poca resiliencia y no es posible utilizarla para operaciones de laminado o forja Es magnético hasta los 210ºC. La cementita se llama primaria cuando se forma desde la fase líquida y secundaria si procede de austenita durante el enfriamiento lento. Y terciaria si se desprende de la ferrita al enfriarse por debajo de 910 ºC. Perlita: α + Fe3C, es la mezcla eutectoide de ferrita y cementita (86,5% de ferrita y 13,5% de cementita). Tiene propiedades intermedias. A 723ºC la solución sólida austenita origina en el enfriamiento dos nuevas fases sólidas (a esto se le llama reacción eutectoide) Austenita γ Ferrita α + cementita Fe3C 86,5% 13,5% perlita Austenita (γ): solución sólida de inserción de carbono en Fe γ, con un máximo porcentaje de carbono de 2,11%. Cristaliza en la red CCF Se forma con temperaturas superiores a 723ºC. Es blando, ductil, resistente, tenaz, no magnético y muy denso. La austenita no es estable a temperatura ambiente. Es blanda y dúctil y, en general, la mayoría de las operaciones de forja y laminado de aceros se efectúa a aproximadamente los 1100 ºC, cuando la fase austenítica es estable. C Ledeburita: γ + Fe3C, es la mezcla eutectica de austenita y cementita (52% de austenita y 48% de cementita). Se da con un porcentaje de carbono del 4,3 %. Es un constituyente de las fundiciones. A 1130 ºC la aleación líquida, solidifica formando un sólido con dos fases (reacción eutéctica) Líquido Austenita γ + cementita Fe3C 48 % 52% ledeburita Es estable hasta los 723ºC, descomponiéndose a partir de esta temperatura en ferrita y cementita Martensita: Se obtiene por enfriamiento rápido de la austenita. A velocidades de enfriamiento bajas o moderadas, los átomos de C pueden difundirse hacia afuera de la estructura austenítica. 11

12 b c TECNOLOGÍA INDUSTRIAL I1. Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz De este modo, los átomos de Fe se mueven ligeramente y se da una transformación de Fe γ en Fe α. Es una solución sólida sobresaturada de carbono en Fe α. Es el constituyente principal de los aceros templados. Tras la cementita, es el constituyente más duro de los aceros. La martensita se presenta en forma de agujas y cristaliza en la red tetragonal a Diagrama Fe-C Los cambios de estado del hierro y el acero se verifican cuando los cambios de temperatura son lentos, según se representa en el diagrama hierro-carbono. (ºC) α γ+α γ α + Fe3C Perlita L+ γ liquidus L γ + Fe 3 C γ + Fe3C Ledeburita L+ Fe3C L = líquido γ = austenita Fe3C = cementita solidus 300 α + Fe 3 C Hipoeutectoides 0,89 2,1 4,3 6, Hipereutectoides Hipoeutéctico Hipereutéctico % C Aceros Fundiciones - En la zona L hay una sola fase, líquida y homogénea. - En la zona L+γ hay dos fases, una de líquido y otra sólida austenita. - En la zona γ, hay una fase sólida formada por austenita. - En la zona α, hay una fase sólida formada por ferrita. - En la zona L+Fe3C hay dos fases, una de líquido y otra de sólido cementita. - En la zona γ+ Fe3C hay un sólido formado por dos fases austenita y cementita. - En la zona α+ Fe3C hay un sólido formado por dos fases ferrita y cementita. Dependiendo de la zona la austenita y la cementita pueden ser primarias (proeutécticas) o secundarias (eutécticas) 12

13 - En los aceros hipoeutéctoides (<0,89%C) existen varias zonas según vamos bajando la temperatura Fase líquida 2 fases: Líquido y sólido austenita Fase sólida austenita 2 Fases sólidas donde el hierro γ se transforma progresivamente en hierro α A 723ºC toda la austenita se transforma en perlita y cementita 2 Fases sólidas de ferrita primaria y perlita - En los aceros eutéctoides (0,89%C) existen varias zonas según vamos bajando la temperatura Fase líquida 2 fases: Líquido y sólido austenita Fase sólida austenita A 723ºC toda la austenita se transforma en perlita - En los aceros hipereutéctoides (0,89% - 2,11%C) existen varias zonas según vamos bajando la temperatura Fase líquida 2 fases: Líquido y sólido austenita Fase sólida austenita 2 Fases sólidas austenita y cementita A 723ºC toda la austenita se transforma en perlita 2 Fases sólidas de perlita y cementita - En las fundiciones hipoeutécticas (2,11% - 4,3%C) existen varias zonas según vamos bajando la temperatura Fase líquida 2 fases: Líquido y sólido austenita 2 Fases sólidas austenita primaria y ledeburita A 723ºC toda la austenita se transforma en perlita 2 Fases sólidas de perlita y cementita - En las fundiciones eutécticas (4,3%C) existen varias zonas según vamos bajando la temperatura Fase líquida A 1130ºC se produce la transformación de la fase líquida en ledeburita. A 723ºC toda la austenita eutéctica se transforma en perlita - En las fundiciones hipereutécticas (>4,3%C) existen varias zonas según vamos bajando la temperatura Fase líquida 2 fases: Líquido y sólido cementita 2 Fases sólidas ledeburita y cementita primaria A 723ºC toda la austenita eutéctica se transforma en perlita 2 Fases sólidas de perlita y cementita Para calcular la composición de cada una de las fases se emplea la regla de la horizontal. Y para calcular la cantidad de cada fase se emplea la regla de la palanca. 4.- Propiedades de los aceros Al disminuir el %C: dúctiles, maleables, tenaces, soldables Al aumentar el %C: resistentes, duros, frágiles. Son oxidables y corroibles. Densidad = 7,6 7,8 g/cm3 5.- Clasificación de los aceros En función del porcentaje de C: Aceros hipoeutectoides: del 0,03 0,89 %.C Aceros eutectoides: 0,89 %.C 13

14 Aceros hipereutectoides: del 0,89 2,1 %.C En función de su composición: Aceros al C: aleación de Fe C y bajo porcentaje de otros elementos (según las normas). Aceros aleados: aleación de Fe C e impurezas. Además, llevan de forma voluntaria otros elementos que modifican sus propiedades. Aceros inoxidables: Cr, Ni. Acero galvanizado: Zn Aceros de corte (muy duros): Wf Aceros de alta dureza: Mo, Cr, Co Aceros resistentes a la fatiga: Vanadio 6.- Propiedades de las fundiciones Son aleaciones férricas con un porcentaje de C mayor del 2,11%. No son forjables. Funden a temperatura inferior a los aceros por lo que se moldean con facilidad. No son dúctiles, no maleables, sueldan con dificultad. Menor densidad = 7,2 7,68 g/cm3 Tienen tendencia a la formación de grafito (carbono libre formando láminas o nódulos). 7.- Clasificación de las fundiciones En función del porcentaje de C: Fundiciones hipoeutéctica: del 2,11 4,3 %.C Fundiciones oeutécticas : 4,3 %.C Fundiciones hipereutéctica del 4,3 6,67 %.C 14

TEMA 3: DIAGRAMAS DE EQUILIBRIO

TEMA 3: DIAGRAMAS DE EQUILIBRIO TEMA 3: DIAGRAMAS DE EQUILIBRIO 1.- Aleaciones Características Los metales puros tienen poca aplicación en la industria. La mayoría de ellos se combinan con otros metales o no metales para mejorar sus

Más detalles

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN 1.- Estados alotrópicos del Hierro (Fe) Según las condiciones de temperatura, el hierro puede presentar diferentes estados, con mayor o menor capacidad

Más detalles

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN 1.- Estados alotrópicos del Hierro (Fe) Según las condiciones de, el hierro puede presentar diferentes estados, con mayor o menor capacidad para disolver

Más detalles

DIAGRAMAS DE EQUILIBRIO SOLIDIFICACIÓN_FASES_REGLA DE LA PALANCA Y DE LOS SEGMENTOS INVERSOS

DIAGRAMAS DE EQUILIBRIO SOLIDIFICACIÓN_FASES_REGLA DE LA PALANCA Y DE LOS SEGMENTOS INVERSOS DIAGRAMAS DE EQUILIBRIO SOLIDIFICACIÓN_FASES_REGLA DE LA PALANCA Y DE LOS SEGMENTOS INVERSOS SOLIDIFICACIÓN_metales_aleaciones Proceso de enfriamiento desde la fase líquida hasta la fase sólida. Existe

Más detalles

TEMA 3: DIAGRAMAS DE EQUILIBRIO 3.5. DIAGRAMAS DE EQUILIBRIO DE FASES

TEMA 3: DIAGRAMAS DE EQUILIBRIO 3.5. DIAGRAMAS DE EQUILIBRIO DE FASES TEMA 3: DIAGRAMAS DE EQUILIRIO 3.5. DIAGRAMAS DE EQUILIRIO DE FASES Entre los distintos tipos de aleaciones metálicas consideraremos sólo tres tipos: 3.5.1.Aleaciones con solubilidad total en estado sólido

Más detalles

TEMA IV.- ALEACIONES DE HIERRO Y CARBONO

TEMA IV.- ALEACIONES DE HIERRO Y CARBONO TEMA IV.- ALEACIONES DE HIERRO Y CARBONO El hierro puro apenas tiene aplicaciones industriales, pero formando aleaciones con el carbono (además de otros elementos), es el metal más utilizado en la industria

Más detalles

EJERCICIOS TEMA 3: DIAGRAMAS DE EQUILIBRIO

EJERCICIOS TEMA 3: DIAGRAMAS DE EQUILIBRIO EJERCICIOS TEMA 3: DIAGRAMAS DE EQUILIBRIO Ejercicio 1 A partir del siguiente diagrama de equilibrio de fases de la aleación de cobre y níquel: a) Indica qué tipo de solubilidad tiene. b) Indica la temperatura

Más detalles

Regla de la palanca. Tratamiento de los metales INACAP. Ciencia De Los Materiales INACAP Copiapó

Regla de la palanca. Tratamiento de los metales INACAP. Ciencia De Los Materiales INACAP Copiapó Regla de la palanca Tratamiento de los metales INACAP Introducción La regla de la palanca es el método empleado para conocer el porcentaje en peso de las fases "sólida y líquida" también "solida y solida",

Más detalles

MATERIALES METALICOS 2do Ingeniería Mecánica. Diagramas de Equilibrio de Fases

MATERIALES METALICOS 2do Ingeniería Mecánica. Diagramas de Equilibrio de Fases MATERIALES METALICOS 2do Ingeniería Mecánica Diagramas de Equilibrio de Fases Ing. Víctor Gómez Universidad Tecnológica Nacional Facultad Regional Tucumán Aleaciones Ø Aleación: Sustancia que tiene propiedades

Más detalles

Departamento de Tecnologías 1 IES Valle del Sol. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013

Departamento de Tecnologías 1 IES Valle del Sol. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013 1 IES Valle del Sol No hay ejercicios de este tema No hay ejercicios de este tema. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013 1. Dos metales A y B solidifican a 1000 ºC y 500 ºC respectivamente

Más detalles

Diagramas de Equilibrio de las Fases

Diagramas de Equilibrio de las Fases Diagramas de fases Aleación es una mezcla metales o no metales. de un metal con otros Componentes son los elementos químicos que forman la aleación Una aleación binaria está formada por dos componentes

Más detalles

TEMA 3. DIAGRAMAS DE FASES BINARIOS

TEMA 3. DIAGRAMAS DE FASES BINARIOS TEMA 3. DIAGRAMAS DE FASES BINARIOS 3.1. INTRODUCCIÓN 3.2. SOLUCIONES SÓLIDAS 3.3. SOLUBILIDAD TOTAL 3.4. REACCIONES INVARIANTES 3.5. EJEMPLOS Tema 3. Diagramas de fases binarios 1 3.1. INTRODUCCIÓN MICROESTRUCTURA

Más detalles

Tema 2. ALEACIONES. DIAGRAMAS DE EQUILIBRIO

Tema 2. ALEACIONES. DIAGRAMAS DE EQUILIBRIO 1. DISOLUCIONES SÓLIDAS. ALEACIONES...2 A. Constitución de las aleaciones...2 B. Disolvente y soluto...2 C. Tipos de disoluciones sólidas. Deformaciones en la red cristalina...2 2. CRISTALIZACIÓN DE LSO

Más detalles

TEMA 2: DIAGRAMAS DE FASES

TEMA 2: DIAGRAMAS DE FASES TEMA 2: DIAGRAMAS DE FASES 1.- LAS ALEACIONES 2.- FUSIÓN Y SOLIDIFICACIÓN 3.- DIAGRAMAS DE EQUILIBRIO O DE FASES 4.- TIPOS DE DIAGRAMAS 5.- REPASO - 1 - 1.- ALEACIONES Una aleación es una sustancia compuesta

Más detalles

8. Aleaciones ferrosas

8. Aleaciones ferrosas 8. Aleaciones ferrosas Alotropía del hierro El Hierro es un metal que puede presentarse en diversas variedades de estructuras cristalinas. (Alotropía) Fase aleación Temperatura C Sistema cristalino Hierro

Más detalles

5b. DIAGRAMA HIERRO-CARBONO

5b. DIAGRAMA HIERRO-CARBONO 5b. DIAGRAMA HIERRO-CARBONO MATERIALES 13/14 ÍNDICE ACERO DIAGRAMA Fe-C FASES EN EL DIAGRAMA PROPIEDADES MECANICAS DE LAS FASES 2 1. ACERO Constituyentes de las aleaciones Fe-C (fases) Ferrita : Solución

Más detalles

MATERIA: TECNOLOGÍA INDUSTRIAL II SOLUBILIDAD TOTAL EN ESTADO SÓLIDO Y EN ESTADO LÍQUIDO

MATERIA: TECNOLOGÍA INDUSTRIAL II SOLUBILIDAD TOTAL EN ESTADO SÓLIDO Y EN ESTADO LÍQUIDO IES PABLO RUIZ PICASSO- DEPARTAMENTO DE TECNOLOGÍA RELACIÓN DE ACTIVIDADES MATERIA: TECNOLOGÍA INDUSTRIAL II SOLUBILIDAD SOLUBILIDAD TOTAL EN ESTADO SÓLIDO Y EN ESTADO LÍQUIDO 1.- A partir del diagrama

Más detalles

TEMA 8: Materiales metálicos. Tratamientos superficiales. Oxidación y corrosión.

TEMA 8: Materiales metálicos. Tratamientos superficiales. Oxidación y corrosión. TEMA 8: Materiales metálicos. Tratamientos superficiales. Oxidación y corrosión. 1. Introducción Los metales puros tienen poca aplicación en la industria. La mayoría de ellos se combinan con otros metales

Más detalles

Hoja de problemas Tema 7

Hoja de problemas Tema 7 Hoja 7 FUNDAMENTOS DE CIENCIA DE MATERIALES 1 Hoja de problemas Tema 7 1. Sea el diagrama de fases esquemático de la figura para el sistema A-B. (a) Indique la posición de las líneas de liquidus, solidus

Más detalles

PROBLEMAS TEMA 2 TECNOLOGÍA INDUSTRIAL II

PROBLEMAS TEMA 2 TECNOLOGÍA INDUSTRIAL II 1. Dibujar un diagrama de equilibrio entre dos componentes cualesquiera A y B, solubles completamente en estado sólido que solidifican en su estado puro a 1000 y 1300 ºC, respectivamente. Situar en la

Más detalles

CIDEAD. 2º BACHILLERATO.TECNOLOGÍA INDUSTRIAL II. Tema 5.- Los tratamientos térmicos de los aceros.

CIDEAD. 2º BACHILLERATO.TECNOLOGÍA INDUSTRIAL II. Tema 5.- Los tratamientos térmicos de los aceros. Desarrollo del tema: 1. Estados alotrópicos del hierro. 2. Aleaciones hierro carbono. Su composición 3. Constitución de las aleaciones hierro carbono. 4. Estructura de las aleaciones Fe C 5. Diagrama de

Más detalles

TRANSFORMACIONES EN ESTADO SOLIDO

TRANSFORMACIONES EN ESTADO SOLIDO TRANSFORMACIONES EN ESTADO SOLIDO Después de solidificada una aleación puede sufrir transformaciones posteriores. Se presenta en metales que tienen al menos un componente que sufre transformaciones alotrópicas

Más detalles

El punto "a" del diagrama de fases representa una aleación Cu-70% en peso de Ni a 1500 C.

El punto a del diagrama de fases representa una aleación Cu-70% en peso de Ni a 1500 C. DIAGRAMAS DE FASES 1.- Considerar una aleación del 70% en peso de Ni y 30% en peso de Cu. a) Realizar un análisis de fases a 1.500 C y a 1350 C, suponiendo condiciones de equilibrio. En el análisis de

Más detalles

Importancia del hierro en la metalurgia

Importancia del hierro en la metalurgia DIAGRAMA Fe - C Importancia del hierro en la metalurgia Afinidad química Capacidad de solubilidad de otros elementos Propiedad alotrópica en estado sólido Capacidad para variar sustancialmente la estructura

Más detalles

Aleaciones Metálicas

Aleaciones Metálicas 7. Aleaciones Metálicas Soluciones sólidas Fases Diagramas de Fases en Equilibrio Propiedades Físicas Aleaciones Metálicas En general los metales no se usan en estado puro sino que se hacen aleaciones

Más detalles

5. DIAGRAMAS DE FASES

5. DIAGRAMAS DE FASES 5. DIAGRAMAS DE FASES MATERIALES 13/14 ÍNDICE 1. Conceptos generales 2. Sistemas termodinámicos 3. Diagramas de fase de sustancias puras 4. Sistemas binarios 2 1. Conceptos generales Definición: Sistema:

Más detalles

METALES ALEACIONES METÁLICAS

METALES ALEACIONES METÁLICAS METALES Se llama metales a los elementos químicos caracterizados por ser buenos conductores del calor y la electricidad. Poseen alta densidad y son sólidos en temperaturas normales (excepto el mercurio);

Más detalles

GUÍA DE DISCUSIÓN DE CONCEPTOS Y PROBLEMAS. " DIAGRAMA Fe - Fe 3 C "

GUÍA DE DISCUSIÓN DE CONCEPTOS Y PROBLEMAS.  DIAGRAMA Fe - Fe 3 C UNIVERSIDAD DON BOSCO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA Asignatura: CIENCIA DE LOS MATERIALES CUESTIONARIO GUÍA DE DISCUSIÓN DE CONCEPTOS Y PROBLEMAS " DIAGRAMA Fe - Fe 3 C " 1.- Describir

Más detalles

5.- Describir la solubilidad del Carbono en el Hierro en función de la temperatura y de sus distintos estados alotrópicos.

5.- Describir la solubilidad del Carbono en el Hierro en función de la temperatura y de sus distintos estados alotrópicos. DIAGRAMA HIERRO-CARBONO: 1.- Haciendo uso del diagrama Fe-C, verificar el enfriamiento lento ( en condiciones próximas al equilibrio) de las siguientes aleaciones: a) Acero de 0.17% de C b) Acero de 0.30%

Más detalles

DIAGRAMA HIERRO- CARBONO

DIAGRAMA HIERRO- CARBONO PARTAMENTO DIAGRAMA HIERRO - CARBONO En el diagrama hierro-carbono entregado se ha representado en el eje de las abscisas las proporciones de carbono y también las de carburo de hierro CFe 3 (cementita).

Más detalles

Los constituyentes metálicos que se pueden presentar en los aceros al carbono son:

Los constituyentes metálicos que se pueden presentar en los aceros al carbono son: DE LOS ACEROS Los constituyentes metálicos que se pueden presentar en los aceros al carbono son: Ferrita Cementita Perlita Sorbita Troostita Martensita Bainita Austenita El análisis de las microestructuras

Más detalles

CAPÍTULO 6: ALEACIONES HIERRO - CARBONO (Diagrama Hierro - Carbono)

CAPÍTULO 6: ALEACIONES HIERRO - CARBONO (Diagrama Hierro - Carbono) CAPÍTULO 6: ALEACIONES HIERRO - CARBONO (Diagrama Hierro - Carbono) 6.1. INTRODUCCIÓN Todas las posibles aleaciones Hierro - Carbono y sus formas con la temperatura están representadas en lo que se llama

Más detalles

PROBLEMAS TEMA 2. FASES y TRANSFORMACIONES DE FASE. DIAGRAMAS DE EQUILIBRIO

PROBLEMAS TEMA 2. FASES y TRANSFORMACIONES DE FASE. DIAGRAMAS DE EQUILIBRIO PROBLEMAS TEMA 2. FASES y TRANSFORMACIONES DE FASE. DIAGRAMAS DE EQUILIBRIO 1. Se adjunta el peso atómico y el radio atómico de tres hipotéticos metales. Determinar para cada una de ellas si su estructura

Más detalles

PREGUNTAS PRUEBAS PAU MATERIALES

PREGUNTAS PRUEBAS PAU MATERIALES PREGUNTAS PRUEBAS PAU MATERIALES JUNIO 2010 FE Opción A Defina brevemente las siguientes propiedades que presentan los compuestos metálicos: a) Elasticidad (0,5 puntos) b) Tenacidad (0,5 puntos) c) Maleabilidad

Más detalles

Problemas de diagramas de equilibrio

Problemas de diagramas de equilibrio PROBEMA 1 os puntos de fusión del bismuto y antimonio son 271 ºC y 62,2 ºC respectivamente. Una aleación con un 5% de SB comienza a solidificar a 52 ºC formándose cristales con un contenido en Sb de un

Más detalles

TRATAMIENTOS TÉRMICOS

TRATAMIENTOS TÉRMICOS TRATAMIENTOS TÉRMICOS TRATAMIENTOS TÉRMICOS Tienen por objeto el obtener una determinada estructura interna cuyas propiedades permitan alcanzar alguno de los siguientes objetivos: Lograr una estructura

Más detalles

DIAGRAMA HIERRO-CARBONO

DIAGRAMA HIERRO-CARBONO DIAGRAMA HIERRO-CARBONO 1. Con el diagrama hierro-carbono simplificado de la figura, determina: a) Temperatura de solidificación del hierro puro b) Temperatura de solidificación de la ledeburita (el eutéctico)

Más detalles

3.- Con el diagrama de equilibrio Cu-Ni, haga el análisis de fases para una aleación del 50% de Cu a: 1400ºC, 1300ºC, 1200ºC 1100ºC.

3.- Con el diagrama de equilibrio Cu-Ni, haga el análisis de fases para una aleación del 50% de Cu a: 1400ºC, 1300ºC, 1200ºC 1100ºC. 1.- Con el diagrama de equilibrio Cu-Ni que se adjunta, describir el enfriamiento lento de una aleación del 3% de Ni y determinar su composición a 12ºC. 2.- Una aleación compuesta de 2 Kg de Cu y 2 Kg

Más detalles

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA INGENIERÍA EN MTTO MECÁNICO SOLIDIFICACIÓN. Elaborado por: Ing. Roger Chirinos.

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA INGENIERÍA EN MTTO MECÁNICO SOLIDIFICACIÓN. Elaborado por: Ing. Roger Chirinos. UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA INGENIERÍA EN MTTO MECÁNICO SOLIDIFICACIÓN Elaborado por: Ing. Roger Chirinos. MSc Cabimas, Noviembre de 2013 SOLIDIFICACIÓN Fundamentos básicos

Más detalles

Ejercicio 2. Au-Ag ; Al-Cu ; Al-Au ; U-W y Mo-Ta. Au Ag Al Cu U W Mo Ta Radio Atómico

Ejercicio 2. Au-Ag ; Al-Cu ; Al-Au ; U-W y Mo-Ta. Au Ag Al Cu U W Mo Ta Radio Atómico Ejercicio 1 Ejercicio 2 En base a las Reglas de Hume-Rothery, cuál de los siguientes sistemas a priori podrían presentar solubilidad sólida ilimitada? Usa los datos de la Tabla 1. Au-Ag ; Al-Cu ; Al-Au

Más detalles

CONSTRUCCIÓN DEL DIAGRAMA Fe- C. FASES DEL FE PURO

CONSTRUCCIÓN DEL DIAGRAMA Fe- C. FASES DEL FE PURO CONSTRUCCIÓN DEL DIAGRAMA Fe- C. FASES DEL FE PURO T Fe Líquido. Amorfo A 1536 C es la T de fusión del Fe. A 1536 C se forma Fe delta-fe - sólido si estoy disminuyendo T. Presenta estructura BCC Fe delta

Más detalles

Tema 3: Diagramas de fases. Problemas resueltos

Tema 3: Diagramas de fases. Problemas resueltos Tema 3: Diagramas de fases Problemas resueltos Problema 1. Dos metales y tienen puntos de fusión a 1400 y 1300 respectivamente. El metal presenta dos cambios alotrópicos a los 900,, y a los 700,, de forma

Más detalles

1. Diseño de tratamientos térmicos para los materiales 2. Algunas propiedades de los materiales dependen estrechamente de la

1. Diseño de tratamientos térmicos para los materiales 2. Algunas propiedades de los materiales dependen estrechamente de la Por qué estudiar diagramas de fase? 1. Diseño de tratamientos térmicos para los materiales 2. Algunas propiedades de los materiales dependen estrechamente de la microestructura y de su historial térmico.

Más detalles

¾ modelos que muestran las fases que deben existir en condiciones de equilibrio termodinámico. &RQFHSWRVIXQGDPHQWDOHV

¾ modelos que muestran las fases que deben existir en condiciones de equilibrio termodinámico. &RQFHSWRVIXQGDPHQWDOHV ',$*5$0$6'()$6(6 ¾ modelos que muestran las fases que deben existir en condiciones de equilibrio termodinámico. &RQFHSWRVIXQGDPHQWDOHV (VWDGRVGHODPDWHULD sólido líquido gas. 6LVWHPD GH DOHDFLyQ Combinación

Más detalles

b) Aplicar la regla de las fases a cada una de las regiones, líneas y puntos significativos y determina el número de grados de libertad existentes.

b) Aplicar la regla de las fases a cada una de las regiones, líneas y puntos significativos y determina el número de grados de libertad existentes. 1.- El platino y el oro son totalmente solubles en estado sólido y en estado líquido. El punto de fusión del platino son 1774 C y el del oro 1063 C. Una aleación formada por un 40% de oro comienza a solidificar

Más detalles

los Aceros El porqué? Tratamientos térmicos Microestructura) Propiedades d Mecánicas FCEIA-UNR C Materiales FCEIA-UNR C-3.20.

los Aceros El porqué? Tratamientos térmicos Microestructura) Propiedades d Mecánicas FCEIA-UNR C Materiales FCEIA-UNR C-3.20. 11. Tratamientos t Térmicos de los Aceros El porqué? Tratamientos térmicos (Temperatura y tiempo) Microestructura) Propiedades d Mecánicas 1 El factor TIEMPO La mayoría de las transformaciones en estado

Más detalles

Departamento de Ingeniería Metalúrgica Universidad de Santiago de Chile

Departamento de Ingeniería Metalúrgica Universidad de Santiago de Chile CAPÍTULO 20: DIAGRAMAS DE EQUILIBRIO 20.1. TÉRMINOS Y DEFINICIONES Fase: Una fase se define como un cuerpo de materia microscópicamente homogénea. Tiene la misma estructura en cualquier punto y está separada

Más detalles

Soluciones sólidas y equilibrio de fases

Soluciones sólidas y equilibrio de fases Soluciones sólidas y equilibrio de fases Fases y diagrama de fases Los elementos metálicos puros tienen aplicaciones técnicas; Ej.; Cu o Al de pureza ultra alta se usan para fabricar circuitos microelectrónicos.

Más detalles

TEMAS Noviembre Belén Molina Sánchez UNIVERSIDAD ANTONIO DE NEBRIJA ASIGNATURA: MATERIALES I

TEMAS Noviembre Belén Molina Sánchez UNIVERSIDAD ANTONIO DE NEBRIJA ASIGNATURA: MATERIALES I TEMAS 16-21 Noviembre 2005 Belén Molina Sánchez 1 Sistema: porción del universo que ha sido aislada de tal modo que sus propiedades pueden ser estudiadas. Microconstituyente: aquello que es observable

Más detalles

FUNDICIONES. Aproximadamente 3% de Si. Para controlar la formación de carburos, ya que este favorece la formación de grafito.

FUNDICIONES. Aproximadamente 3% de Si. Para controlar la formación de carburos, ya que este favorece la formación de grafito. Aleaciones base hierro. FUNDICIONES Porcentaje de carbono > 2,06 % Aproximadamente 3% de Si. Para controlar la formación de carburos, ya que este favorece la formación de grafito. Cantidades adicionales

Más detalles

Tema 5. Aleaciones metálicas. El sistema Fe-C.

Tema 5. Aleaciones metálicas. El sistema Fe-C. Tema 5. Aleaciones metálicas. El sistema Fe-C. Problemas sobre aleaciones Fe-C, y cinética de las transformaciones (W.D. Callister Ed. Reverté - Cap 9 y 10). 9.47. Cuál es el porcentaje de carbono de un

Más detalles

TEMA VIII Materiales Metálicos

TEMA VIII Materiales Metálicos TEMA VIII Materiales Metálicos LECCIÓN 11 Aleaciones Férreas 1 11.1 INTRODUCCIÓN Las aleaciones férreas son las de mayor empleo en ingeniería: - En la corteza terrestre abundan los compuestos de hierro

Más detalles

TEMA 9. TRANSFORMACIONES DE FASE Y TRATAMIENTOS TÉRMICOS EN ALEACIONES Fe-C

TEMA 9. TRANSFORMACIONES DE FASE Y TRATAMIENTOS TÉRMICOS EN ALEACIONES Fe-C TEMA 9. TRANSFORMACIONES DE FASE Y TRATAMIENTOS TÉRMICOS EN ALEACIONES Fe-C Los Diagramas de Fase representan estados y transformaciones en condiciones de equilibrio, pero no aportan información sobre

Más detalles

Aleaciones Hierro-carbono

Aleaciones Hierro-carbono TEMA 8 : ALEACIONES DE BASE HIERRO Introducción. Aleaciones de base hierro y sus tratamientos. Diagrama hierro carbono. Fundiciones. Tratamientos térmicos: recocido, temple, normalizado. Aleaciones Hierro-carbono

Más detalles

INGENIERÍA Y CIENCIA DE MATERIALES METÁLICOS 443 ÍNDICE

INGENIERÍA Y CIENCIA DE MATERIALES METÁLICOS 443 ÍNDICE INGENIERÍA Y CIENCIA DE MATERIALES METÁLICOS 443 ÍNDICE CAPÍTULO 1. CRISTALOGRAFÍA 1 2. SÓLIDOS CRISTALINOS 3. SISTEMAS CRISTALINOS MÁS FRECUENTES EN LOS METALES 4. NOTACIONES CRISTALOGRÁFICAS CAPÍTULO

Más detalles

TEMA VIII Materiales Metálicos

TEMA VIII Materiales Metálicos TEMA VIII Materiales Metálicos LECCIÓN 10 Diagramas de Fase 1 10.1 INTRODUCCIÓN En un material, en términos de microestructura, una Fase es una región macroscópicamente homogénea que difiere en estructura

Más detalles

8.2 Curvas T-T-T INDICE. Materiales I 13/14

8.2 Curvas T-T-T INDICE. Materiales I 13/14 8.2 Curvas T-T-T Materiales I 13/14 INDICE Diagramas TTT. Transformación isoterma Diagramas TTT acero concentración eutectoide Diagramas TTT. Fases presentes fuera del equilibrio Martensita Bainita Diagramas

Más detalles

TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES

TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES PERIODO Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES El átomo: Toda la materia está compuesta por átomos y éstos por partículas

Más detalles

Solidificación Diagramas de equilibrio

Solidificación Diagramas de equilibrio Solidificación Diagramas de equilibrio 1) Diagrama de solubilidad total: no % Sól = 100 40% mo La regla de la palanca se puede utilizar sólo en la zona bifásica. Se puede determinar el % de cada fase y

Más detalles

1. La solidificación. Su proceso y velocidad.

1. La solidificación. Su proceso y velocidad. 1. La solidificación. Su proceso y velocidad. La solidificación es un proceso mediante el cual un material metálico, en estado líquido, pasa al estado sólido mediante enfriamiento en un molde, que una

Más detalles

BLOQUE IV.- Materiales metálicos

BLOQUE IV.- Materiales metálicos BLOQUE IV.- Materiales metálicos. Aceros * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción a la Ciencia de

Más detalles

TRATAMIENTOS TÉRMICOS DE LOS ACEROS CONTENIDOS

TRATAMIENTOS TÉRMICOS DE LOS ACEROS CONTENIDOS TRATAMIENTOS TÉRMICOS DE LOS ACEROS CONTENIDOS Diagrama Fe-C Tratamiento de los metales para mejorar sus propiedades Tratamientos térmicos Tratamientos termoquímicos Tratamientos mecánicos Tratamientos

Más detalles

ALEACIONES 1. INTRODUCCION 2. CLASIFICACION 3. SOLUCIONES SÓLIDAS 4. FASES INTERMEDIAS 5. SOLUCIONES SÓLIDAS ORDENADAS M.V.M.G ALEACIONES 1

ALEACIONES 1. INTRODUCCION 2. CLASIFICACION 3. SOLUCIONES SÓLIDAS 4. FASES INTERMEDIAS 5. SOLUCIONES SÓLIDAS ORDENADAS M.V.M.G ALEACIONES 1 ALEACIONES 1. INTRODUCCION 2. CLASIFICACION 3. SOLUCIONES SÓLIDAS 4. FASES INTERMEDIAS 5. SOLUCIONES SÓLIDAS ORDENADAS 2007-08 ALEACIONES 1 INTRODUCCIÓN Una aleación es la combinación de dos o más metales,

Más detalles

Guía de problemas Equilibrio sólido líquido

Guía de problemas Equilibrio sólido líquido Departamento de Ingeniería Química FISICOQUIMICA Guía de problemas Equilibrio sólido líquido Ing. Frutos, Analía Verónica Dra. Ciappini, María Cristina 2017 1- A partir del diagrama Cu-Ni adjunto, que

Más detalles

Capítulo 6. Aleaciones Aleaciones Ferrosas y No Ferrosas Reglas de Hume-Rotery Diagramas de fases

Capítulo 6. Aleaciones Aleaciones Ferrosas y No Ferrosas Reglas de Hume-Rotery Diagramas de fases Capítulo 6 Aleaciones 1.6. Aleaciones Ferrosas y No Ferrosas 1.6.1. Reglas de Hume-Rotery Figura 71 El MgO y el NiO poseen estructuras cristalinas, radios iónicos y valencias similares; de ahí que los

Más detalles

BLOQUE IV.- Materiales metálicos. Tema 10.- Fundiciones

BLOQUE IV.- Materiales metálicos. Tema 10.- Fundiciones BLOQUE IV.- Materiales metálicos * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción a la Ciencia de Materiales

Más detalles

Materiales-G704/G742. Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García. Lección 10.

Materiales-G704/G742. Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García. Lección 10. -G704/G742 Lección 10. Diagramas de fase Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García Departamento de Ciencia e Ingeniería del Terreno y de los Este tema

Más detalles

FUNDICIONES. Las fundiciones son aleaciones de hierro, también manganeso, fosforo y azufre. Las

FUNDICIONES. Las fundiciones son aleaciones de hierro, también manganeso, fosforo y azufre. Las FUNDICIONES Las fundiciones son aleaciones de hierro, carbono y silicio que generalmente contienen también manganeso, fosforo y azufre. Las fundiciones, que son las más utilizadas en la práctica, aparecen

Más detalles

1. Defina los conceptos de electronegatividad y de energía de ionización 2. La sustancias sólidas pueden encontrarse en estado cristalino o en estado

1. Defina los conceptos de electronegatividad y de energía de ionización 2. La sustancias sólidas pueden encontrarse en estado cristalino o en estado 1. Defina los conceptos de electronegatividad y de energía de ionización 2. La sustancias sólidas pueden encontrarse en estado cristalino o en estado amorfo. Conteste: a. Qué diferencia principal existe

Más detalles

METALES Y ALEACIONES. 1. Calcula la concentración de carbono en un acero que tiene 1200 Kg de hierro puro y 8,5 Kg de carbono. Solución: 0,70% de C

METALES Y ALEACIONES. 1. Calcula la concentración de carbono en un acero que tiene 1200 Kg de hierro puro y 8,5 Kg de carbono. Solución: 0,70% de C METALES Y ALEACIONES 1. Calcula la concentración de carbono en un acero que tiene 1200 Kg de hierro puro y 8,5 Kg de carbono. Solución: 0,70% de C 2. Tenemos 2000 kg de acero, con una concentración del

Más detalles

Diagramas de fases: Se define como un tipo de esquema de información que representa datos numéricos tabulados.

Diagramas de fases: Se define como un tipo de esquema de información que representa datos numéricos tabulados. Introducción: Diagramas de fases: El uso y entendimiento de los diagramas de fases es de vital importancia en la ciencia de los materiales debido a que hay una significativa relación entre la microestructura

Más detalles

Solidificación e Imperfecciones. en Sólidos

Solidificación e Imperfecciones. en Sólidos Preguntas definitivas Capítulo 2 Solidificación e Imperfecciones en Sólidos Ciencia de Materiales 28 PREGUNTA 2.1 Cuándo suele presentar interés el uso de un metal en estado puro?. Justifícalo. Pon un

Más detalles

Materiales-G704/G742. Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García. Lección 11. Aleaciones férreas

Materiales-G704/G742. Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García. Lección 11. Aleaciones férreas -G704/G742 Lección 11. Aleaciones férreas Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García Departamento de Ciencia e Ingeniería del Terreno y de los Este tema

Más detalles

Una aleación es una mezcla homo génea, de propiedades metálicas, que está compuesta de dos o más elementos, de los cuales, al menos uno es un metal.

Una aleación es una mezcla homo génea, de propiedades metálicas, que está compuesta de dos o más elementos, de los cuales, al menos uno es un metal. Una aleación es una mezcla homo génea, de propiedades metálicas, que está compuesta de dos o más elementos, de los cuales, al menos uno es un metal. Las aleaciones están constituidas por elementos metálicos:

Más detalles

M A T E R I A L E S SOLUCIONES

M A T E R I A L E S SOLUCIONES M A T E R I A L E S SOLUCIONES I Componentes Mayor proporción solvente Menor proporción soluto Concentración: indica la cantidad de soluto presente en una dada cantidad de solvente o una dada cantidad

Más detalles

UNIDAD V DIAGRAMAS DE FASE

UNIDAD V DIAGRAMAS DE FASE SEPTIEMBRE, 2015 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL BOLIVARIANA CÁTEDRA: ELEMENTOS

Más detalles

FUNDICIONES. 2 a 4,5 % C 0,5 a 3,5 % Si 0,4 a 2 % Mn 0,01 a 0,2 % S 0,04 a 0,8 % P

FUNDICIONES. 2 a 4,5 % C 0,5 a 3,5 % Si 0,4 a 2 % Mn 0,01 a 0,2 % S 0,04 a 0,8 % P FUNDICIONES FUNDICIONES Las fundiciones de hierro son aleaciones de hierro carbono del 2 al 5%, cantidades de silicio del 0.5 al 4%, del manganeso hasta 2%, bajo azufre y bajo fósforo. Se caracterizan

Más detalles

Cuestiones (valen 1,8 puntos)

Cuestiones (valen 1,8 puntos) Cuestiones (valen 1,8 puntos) 1 -Los procesos de deformación plástica varían las características resistentes en el sentido de: a) Disminuir la carga de rotura. b) Aumentar el alargamiento. c) Aumentar

Más detalles

ALEACIONES BINARIAS. Julio Alberto Aguilar Schafer

ALEACIONES BINARIAS. Julio Alberto Aguilar Schafer ALEACIONES BINARIAS Julio Alberto Aguilar Schafer ALEACIONES BINARIAS Homogeneas: Solución sólida (SS): ej. Latones α Compuesto químico definido (CQD): ej. Cementita (Fe3C) Heterogeneas: SS + SS: el. Latones

Más detalles

Tema 2. Diagramas de Equilibrio y TTT

Tema 2. Diagramas de Equilibrio y TTT Tema 2. Diagramas de Equilibrio y TTT 2.1. Regla de las fases. 2.2. Diagramas en sistemas binarios. Eutéctico y peritéctico. 2.3. Curvas temperatura-tiempo-transformación. 2.4. Ciencia de Materiales en

Más detalles

c. Su factor de empaquetamiento atómico 15. El Fe a temperatura ambiente tiene estructura Cúbica Centrada en el Cuerpo: a. Cuántos átomos rodean a

c. Su factor de empaquetamiento atómico 15. El Fe a temperatura ambiente tiene estructura Cúbica Centrada en el Cuerpo: a. Cuántos átomos rodean a 1. Qué energía debe desprender un átomo para dar lugar a un fotón de longitud de onda 630 nm? h=6,624x10-34 J s c=3x10 8 m/s 2. Indique cuales son los n os cuánticos y qué representan. Enuncie el principio

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria U.N.E. Rafael María Baralt Ciudad Ojeda- edo.

República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria U.N.E. Rafael María Baralt Ciudad Ojeda- edo. República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria U.N.E. Rafael María Baralt Ciudad Ojeda- edo. Zulia DIAGRAMAS DE FASES Realizado por: RINCON, Bianca C.I

Más detalles

TEMA 8 SISTEMA PERIÓDICO Y ENLACES

TEMA 8 SISTEMA PERIÓDICO Y ENLACES TEMA 8 SISTEMA PERIÓDICO Y ENLACES 1. LA TABLA PERIÓDICA Elementos químicos son el conjunto de átomos que tienen en común su número atómico, Z. Hoy conocemos 111 elementos diferentes. Los elementos que

Más detalles

DIAGRAMAS DE FASE. Diagramas de Equilibrio

DIAGRAMAS DE FASE. Diagramas de Equilibrio DIAGRAMAS DE FASE Diagramas de Equilibrio Definiciones básicas Qué es una fase? Una fase es una parte homogénea de un sistema, que aunque está en contacto con otras partes del sistema, está separado por

Más detalles

Materiales de Construcción

Materiales de Construcción Juan Antonio Polanco Madrazo Soraya Diego Cavia Carlos Thomas García DPTO. DE CIENCIA E INGENIERÍA DEL TERRENO Y DE LOS MATERIALES Este tema se publica bajo Licencia: CreaCve Commons BY- NC- ND 4.0 En

Más detalles

6. SOLIDIFICACIÓN EN SÓLIDOS

6. SOLIDIFICACIÓN EN SÓLIDOS 6. SOLIDIFICACIÓN EN SÓLIDOS Materiales 13/14 1 ÍNDICE 1. Solidificación en metales 2. Formación de núcleos estables 1. Nucleación homogénea 2. Nucleación heterogénea 3. Crecimiento 1. Estructura de grano

Más detalles

T9 LOS METALES FERROSOS

T9 LOS METALES FERROSOS T9 LOS METALES FERROSOS Índice 1. Generalidades acerca de los metales 1.1 Estructuras cristalinas 1.2 Aleaciones. Soluciones sólidas. 2. Los metales ferrosos 2.1 Productos férreos industriales 3. El proceso

Más detalles

Tema 5.- Diagramas de Equilibrio de Fases

Tema 5.- Diagramas de Equilibrio de Fases BLOQUE II.- ESTRUCTURA Tema 5.- Diagramas de Equilibrio de Fases * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción

Más detalles

TEMA 7: ESTRUCTURA INTERNA DE LOS MATERIALES

TEMA 7: ESTRUCTURA INTERNA DE LOS MATERIALES PERIODO TECNOLOGÍA INDUSTRIAL I1. Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 7: ESTRUCTURA INTERNA DE LOS MATERIALES El átomo: Toda la materia está compuesta por átomos

Más detalles

TEMA 2. FASES Y TRANSFORMACIONES DE FASES. DIAGRAMAS DE EQUILIBRIO.

TEMA 2. FASES Y TRANSFORMACIONES DE FASES. DIAGRAMAS DE EQUILIBRIO. TEMA 2. FASES Y TRANSFORMACIONES DE FASES. DIAGRAMAS DE EQUILIBRIO. Objetivos Este tema tiene por objeto conocer el interés e importancia de las aleaciones y las posibilidades de transformaciones y cambios

Más detalles

Equilibrio sólido- líquido en sistemas de dos componentes

Equilibrio sólido- líquido en sistemas de dos componentes Equilibrio sólido- líquido en sistemas de dos componentes Miscibilidad en fase líquida e inmiscibilidad en fase sólida: sean C y B dos sustancias miscibles en todas las proporciones en la fase líquida

Más detalles

24/02/2012 Ealboró Eefrén Giraldo 1

24/02/2012 Ealboró Eefrén Giraldo 1 24/02/2012 Ealboró Eefrén Giraldo 1 OBJETIVO Estudiar la relación intima entre la estructura y propiedades de los materiales. 24/02/2012 Ealboró Eefrén Giraldo 2 24/02/2012 Ealboró Eefrén Giraldo 3 ESTRUCTURA.

Más detalles

DIAGRAMAS DE EQUILIBRIO SISTEMAS BINARIOS ANALISIS TERMICOS CURVAS DE ENFRIAMIENTOS

DIAGRAMAS DE EQUILIBRIO SISTEMAS BINARIOS ANALISIS TERMICOS CURVAS DE ENFRIAMIENTOS Se denomina análisis térmico al estudio de la variación de la temperatura de un metal o aleación durante su calentamiento o enfriamiento Calentamiento Curva de calentamiento Enfriamiento Curva de enfriamiento

Más detalles

1.7.2. Diagrama de fases hierro - carbono

1.7.2. Diagrama de fases hierro - carbono Capítulo 7 Aleaciones Ferrosas 1.7. Acero al carbono y fundiciones 1.7.1. Clasificación de las aleaciones ferrosas El AISI (American Iron and Steel Institute) y el SAE (Society of Automotive Engineers)

Más detalles

UNIDAD 3: EL ENLACE QUÍMICO

UNIDAD 3: EL ENLACE QUÍMICO UNIDAD 3: EL ENLACE QUÍMICO 1.- REGLA DEL OCTETO Casi todas las sustancias que encontramos en la naturaleza están formadas por átomos unidos. Las fuerzas que mantienen unidos los átomos en las distintas

Más detalles

Aleaciones Hierro-Carbono. Aceros y Fundiciones.

Aleaciones Hierro-Carbono. Aceros y Fundiciones. Aleaciones Hierro-Carbono. Aceros y Fundiciones. El sistema de aleaciones binario más importante es el hierro-carbono. Los aceros y fundiciones son aleaciones hierro-carbono. La clasificación de las aleaciones

Más detalles

Solución test (0,25 puntos por pregunta)

Solución test (0,25 puntos por pregunta) Solución test (0,25 puntos por pregunta) 1. El incremento de la templabilidad puede lograrse mediante: a) A través de un medio de temple con un enfriamiento más lento. Falso, con ello se disminuye la templabilidad

Más detalles

CIDEAD. 2º Bachillerato. Tecnología Industrial II. Tema 13.- El diagrama de equilibrio Líquido-Sólido en los materiales metálicos y aleaciones.

CIDEAD. 2º Bachillerato. Tecnología Industrial II. Tema 13.- El diagrama de equilibrio Líquido-Sólido en los materiales metálicos y aleaciones. Desarrollo del tema. 1. La solidificación. Su proceso y velocidad. 2. Los diagramas de equilibrio Líquido- Sólido. Regla de las fases. 3. Diagrama de equilibrio en aleaciones. 4. Diagrama de equilibrio

Más detalles

b. Calcule el volumen de dicha celda unitaria. c. Calcule la densidad del aluminio (Nº Avogadro: 6, ). 15. El Mo posee una estructura BCC y

b. Calcule el volumen de dicha celda unitaria. c. Calcule la densidad del aluminio (Nº Avogadro: 6, ). 15. El Mo posee una estructura BCC y 1. Qué energía debe desprender un átomo para dar lugar a un fotón de longitud de onda 630 nm? h=6,624x10-34 J s c=3x10 8 m/s 2. Indique cuales son los n os cuánticos y qué representan. Enuncie el principio

Más detalles