DISEÑO DE MOTORES PARA LA PROPULSION AEROESPACIAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISEÑO DE MOTORES PARA LA PROPULSION AEROESPACIAL"

Transcripción

1 DISEÑO DE MOTORES PARA LA PROPULSION AEROESPACIAL Elaboro: Pablo Alejandro Arizpe Responsable: Cuerpo Académico de Ingeniería en Aeronáutica de la Universidad Politécnica Metropolitana de Hidalgo

2 IMPORTANCIA EN LA PROPULSION El término de propulsión de puede definir como la acción de un cuerpo rígido que tiende a desplazarse por el incremento en la cantidad de movimiento que provoca un impulso de la misma magnitud pero en sentido contrario a la fuente que se acelera para provocar dicho cambio y llevar cubrir una necesidad de estabilidad o translación. Las aplicaciones más lejanas en propulsión tienen como un antecedente histórico el empleo de fuentes energéticas inagotables en el transporte, teniendo como principal ejemplo a la navegación a vela, que empleaba la energía eólica de una manera práctica y sencilla para impulsar los navíos. La posterior aparición de los molinos de viento reforzaba este concepto, y con los molinos de agua se asentaban las primeras bases de la Energía hidráulica, sumado además a un rediseño de los edificios para aprovechar de la mayor manera posible la energía solar durante el día. Durante la mayor parte de la historia humana antigua, el sistema de propulsión dependió de los flujos naturales de energía y de la fuerza animal y humana. Fue a partir de la revolución Industrial cuando el sistema energético mundial pasó por una transición significativa; la máquina de vapor alimentada por carbón. A partir de la revolución industrial las energías renovables perdieron importancia paulatinamente debido a la aparición de energías de mayor concentración obtenidas a partir de combustibles fósiles como el carbón, el petróleo y posteriormente la energía nuclear. Aunque en la actualidad se ha hablado mucho de la sustitución del petróleo por energías alternas debido al agotamiento de los recursos fósiles, el aumento de la dependencia con el exterior (se consume más de lo que produce y el consumo no se detiene) y las amenazas que se ciernen sobre el medio ambiente se debe preparar un mejor futuro para el abastecimiento energético reduciendo la dependencia, creada desde la revolución industrial, respecto de los combustibles fósiles. La fuerte oposición social a la energía nuclear debido al accidente de TMI II (Harrisburg, EEUU 1979) y la demanda de reducir las emisiones de CO2, realizada por primera vez en la conferencia de Toronto de 2

3 1988 en base a posibles cambios climáticos mundiales, fueron los principales hechos desencadenantes del cambio. Además de la riqueza en energéticos de origen fósil, México cuenta con un potencial muy importante en cuestión de recursos energéticos renovables, cuyo desarrollo permitirá al país contar con una mayor diversificación de fuentes de energía, ampliar la base industrial en un área que puede tener valor estratégico en el futuro, y atenuar los impactos ambientales ocasionados por la producción, distribución y uso final de las formas de energía convencionales. Se puede clasificar a las diversas formas de propulsión como sigue: 1. Propulsión basada en combustible fósil 2. Propulsión eléctrica 3. Propulsión alterna Dentro de la primera clasificación podemos mencionar a los motores de combustión interna y externa que se clasifican de acuerdo al ciclo termodinámico con el que trabajan para llevar a cabo la generación de energía mecánica o propulsión, en materia aeronáutica para propulsar aeronaves pequeñas se usan motores alternativos basados en el ciclo Otto y para aeronaves de gran velocidad y/o tamaño y peso se usan aeroreactores basados en el ciclo Joule Brayton como son el turborreactor, turboventilador, turbohélice y turbo eje principalmente. La propulsión eléctrica es un medio muy versátil de propulsión ya que se puede considerar como energía limpia, generalmente es alimentada por acumuladores o generadores eléctricos que son movidos por motores de combustión fósil, este tipo de propulsión se pensó antiguamente para propulsión vehículos totalmente sumergidos en un fluido líquido y poco a poco ha tomado importancia en la propulsión aeroespacial cuando se habla de motores iónicos o de plasma. La propulsión alternativa es aquella que no necesita de un motor para llevarse a cabo, como la energía eólica que puede propulsar a un velero, el cambio de área transversal en un conducto puede incrementar la cantidad de movimiento de un fluido circulante al 3

4 reducirse o al aumentar la velocidad, un medio muy común para el bombeo de combustible en un motor cohete es que una especie de bolsa fabricada de un material compuesto flexible aumenta su tamaño y por consecuencia empuja a un fluido que fluye en una tubería presurizada hacia un generador de gas para empezar con el proceso de combustión en estos motores. 4

5 PROPULSION AEROESPACIAL Motores para la propulsión aeroespacial Motores para la propulsión aeronáutica Térmicos Electro térmico Eléctricos Aeroreactores Alternativos Químicos Nucleares Plasma Iones Combustible sólido (MCS) Combustible líquido (MCL) Turbo reactor Turbo ventilador Turbo hélice Turbo eje Otto Tabla 1 Clasificación de motores empelados en la industria aeronáutica y aeroespacial 5

6 La propulsión aeroespacial es muy versátil ya que debe ser capaz de generar empujes muy grandes para el lanzamiento de cohetes portadores y también empujes pequeños para estabilización en órbita de satélites, en la tabla 1 se muestran diferentes tipos de motores para la propulsión aeroespacial. Los motores térmicos empleado en la propulsión aeroespacial son los más comúnmente conocidos dividiéndose en dos grandes grupos, los motores térmicos químicos y en los motores basados en energía nuclear. Dentro de los motores químicos se puede mencionar a los motores que emplean combustible líquido, los cuales mezclan un carburante con un oxidante de forma vaporizada a la cámara de combustión generando propulsión con una gran fuerza de empuje, en la tabla 2 se muestra las mezclas más comunes de estos combustibles, así mismo su temperatura máxima de combustión y la velocidad (Wa) del chorro de los productos de la combustión. Componentes T(K)(combustión) Wa(m/s) F 2 + H O 2 + H O 2 + Keroseno N 2 O 4 + H HNO 3 + Keroseno Tabla 2 Tipos de combustibles para motor cohete de combustible liquido Este motor es muy complejo ya que cuenta con diferentes sistemas que optimizan su funcionamiento como es el caso del sistema de bombeo que dependiendo de su configuración es un sistema esencial para repartir la mezcla de los reactivos de la combustión en cantidades apropiadas (estequiometria) y llevarlos a la cámara de combustión, también se cuenta con el sistema de refrigeración y precalentamiento que ayuda a disminuir la temperatura de la estructura del motor y precalienta el fluido carburante para una buena combustión, el sistema de recolección de agua en caso de usar la mezcla de hidrogeno y oxígeno, esta agua es 100% reutilizable y potable, el sistema de inyección que ayuda a vaporizar en finas gotas al combustible, el sistema de encendido que es muy importante para que se enciendan varias etapas de motores y aumentar la 6

7 confiabilidad del motor, el sistema de escape que es prácticamente el diseño de la toberas y por supuesto se debe mencionar al sistema de dirección del vehículo. Siguiendo con los motores químicos también existe el motor de combustible sólido el cual es muy confiable ya que cuando se enciende ya no se apaga hasta que se consuma por completo dicho combustible. Dependiendo de su estructura y diseño se tienen frentes de combustión como se muestra en la siguiente figura, en donde se visualiza la velocidad de combustión (V COMB ) en relación al tiempo que se consume (t), Fig. 1 Frentes de combustión en un motor químico de combustible solido Otro tipo de motor térmico comúnmente usado es el que se basa a través de la energía nuclear, este tipo de motor si se construye con normas estrictas de seguridad genera un alto rendimiento y es muy seguro pero también costoso ya que emplea uranio 235 ( 92 U 235 ) como componente principal para la energía nuclear e hidrogeno como fluido de trabajo, se utiliza hidrogeno debido a su bajo peso molecular, lo cual otorga altas velocidades a la salida. Está constituido por un sistema de tubos energéticos nucleares, donde se hace la reacción química. Este tipo de motor se emplea en aparatos cósmicos de tamaño mediano como lo son que realizan viajes interplanetarios o estaciones espaciales. 7

8 Como parte de la propulsión aeroespacial con energía alterna se puede mencionar los motores electro-térmicos que se pueden clasificar en dos tipos: Motor de calentador eléctrico o termo catalizador y motor circular o de arco eléctrico. En el primero el flujo másico ingresa al motor y por medio de una resistencia lo calienta para direccionarlo hacia una tobera, este motor es de empuje pequeño, alrededor de 0.1N, y tiene la limitante de la resistencia (la temperatura máxima que se alcanza con la resistencia), también utiliza para la recuperación de energía películas térmicas en el perímetro de dicho motor y alcanza velocidades de flujo de hasta 3500m/s. En el segundo tipo de motor, el cual se muestra en la figura 2, existen dos entradas para flujo másico, la primera es para un plasma frio y el segundo para un plasma caliente. Fig. 2 Motor de arco eléctrico o circular La velocidad de salida es de alrededor 35000m/s y su empuje abarca los rangos desde 10 a hasta 100N y es utilizado para aparatos cósmicos de pequeño tamaño. Por ultimo en la propulsión aeroespacial se emplean de forma común los motores que entran en la clasificación de eléctricos como lo son, los motores de plasma y los motores iónicos, en el motor de plasma también denominado motor magneto dinámico, existen 2 tipos de corrientes, una para el impulso y la otra para movimiento mecánico. Las paredes del motor sirven de ánodo, a las cuales se les induce una corriente eléctrica de tal forma que generan entre ambas una corriente, también utilizan un arco eléctrico que sirven de cátodos, pero no es de doble flujo, La velocidad de salida es alrededor de 100Km/s, la cual es muy alta pero el empuje también depende del flujo másico, el cual es pequeño como todos los motores de su tipo. En el caso del motor iónico que también se 8

9 puede considerar como un motor electroestático, utiliza iones como fluido de trabajo aunque en forma estricta no se le puede llamar fluido aunque su comportamiento sea el mismo. Hay tres tipos de ionización, térmica, nuclear y de radiofrecuencia, se entiende por ionización al proceso de producir iones; los iones se producen a través de un gas de trabajo. Este motor consta de dos partes principales, la fuente de iones y el acelerador, la velocidad teórica de salida puede alcanzar hasta los 150km/s con potencia de 1KW debido a su pequeño flujo másico. Entrando en la propulsión aeronáutica, se debe hablar del término común de propulsión a chorro, los motores más comunes que se emplean en aviación son los aeroreactores los cuales se describen brevemente a continuación y se basan en el ciclo termodinámico Joule-Brayton Fig. 3 Dibujo esquemático de Turboreactor En el esquema anterior se muestra un turborreactor (TurboJet) donde el aire pasa por el difusor disminuyendo la velocidad, después fluye de manera continua hacia la entrada del compresor donde se comprime y es enviado a la cámara de combustión. Los gases productos de la combustión que se originan en la cámara de combustión con elevada presión y temperatura fluyen hacia la sección de la turbina. La función de la turbina es extraer cierta cantidad de energía de presión de los gases que pasan por ella, producto de la combustión. La energía que se extrae se invierte en comunicar un par de giro al compresor (trabajo mecánico), y por ello la turbina y el compresor están unidos mecánicamente mediante uno más ejes. A continuación, se puede incorporar una sección de post-combustión en donde es aprovechado el remanente de oxígeno, que no fue 9

10 utilizado en la cámara de combustión, para realizar una nueva reacción química e incrementar la energía cinética de los gases y la variación en la cantidad de movimiento. La turbina también suministra la potencia necesaria para accionar los distintos sistemas como bombas, generadores, aunque la fracción que absorben estos es muy pequeña en comparación con el compresor, con lo cual se puede mencionar que el trabajo de la turbina es igual al trabajo del compresor. El Turboventilador (TurboFan) es el tipo más común de la turbina de gas usado para la propulsión de aeronaves. Una parte del aire entra en el motor (core o núcleo) y se comprime, pasando a la cámara de combustión. Este funcionamiento es idéntico al del turborreactor. Pero no toda la energía se utiliza para mover al compresor. Parte de la energía que extrae la turbina, se emplea en accionar un ventilador que genera otro flujo paralelo realizando el empuje. El consumo específico de combustible es bajo así como la eficiencia es relativamente alta por lo que esta configuración de motor es excelente para uso civil y militar. Los turboventiladores suelen evaluarse en función de su relación de by-pass que se define como el cociente entre los gastos de corriente (cantidad de volumen de aire por segundo) del by-pass (corriente fría) y del compresor. El Turbohélice (TurboProp) desarrolla más potencia que la necesaria para el accionamiento del compresor, y transmite la potencia sobrante a una hélice. Desde el punto de vista de la transformación de la energía, la diferencia entre un turboreactor y un turbohélice consiste en que en el turboreactor, el empuje lo produce únicamente la variación de la cantidad de movimiento del flujo que atraviesa el motor, mientras que en el turbohélice lo produce principalmente la hélice (uno genera empuje y otro genera tracción). Fue ideado originalmente para ahorrar combustible y mejorar la eficiencia térmica del motor a reacción, especialmente cuando se trabaja a velocidades subsónicas elevadas. Pronto se descubrió que ejercía una influencia considerable en el ruido, problema que se agravó con la entrada en servicio comercial de un gran número de aviones de propulsión a reacción. Se utiliza para aeronaves que no alcanzan grandes techos operativos (altitudes) debido a que la disminución en la densidad del aire provoca un barrido en la hélice perdiendo eficiencia y potencia. 10

11 El turbo eje (TurboShaft) corresponde con la configuración de una turbina de gas de tipo industrial pero aplicada al medio aeronáutico, se emplea mucho en la propulsión de helicópteros debido a su forma compacta. Está formado de tres rotores y estatores, su utilización puede ser por parte de la aviación comercial y de la militar no hay restricción. Por ultimo tal vez el motor más antiguo usado en aviación es el motor alternativo basado en el ciclo termodinámico Otto, Un motor en base al ciclo Otto para aviación trabaja con 4 tiempos, el pistón genera 2 movimientos hacia arriba y 2 hacia abajo y en cada movimiento se genera un tiempo. El motor de 4 tiempos en cada 2 revoluciones del cigüeñal se genera una explosión o trabajo, entre las características técnicas del motor resaltan la relación de compresión, geometría, temperatura máxima, torque, numero de cilindros, potencia y la cilindrada, dichas características nos definen al motor y nos dan una idea de su rendimiento y calidad como maquina térmica generadora de potencia para mover una hélice y generar tracción en la aeronave. Por eso es vital para el ingeniero mecánico y aeronáutico conocer esos parámetros a fondo. Este tipo de motor e emplea para aeronaves de pequeño y mediano tamaño su velocidad está limitada, así mismo su techo operativo. 11

Turbina de Gas. Recopilado por: José Antonio González Moreno Noviembre del 2015 Máquinas Térmicas

Turbina de Gas. Recopilado por: José Antonio González Moreno Noviembre del 2015 Máquinas Térmicas Turbina de Gas Recopilado por: José Antonio González Moreno Noviembre del 2015 Máquinas Térmicas Introducción: Se explicará con detalle qué es una turbina de gas, cuál es su funcionamiento y cuáles son

Más detalles

TURBINAS A GAS MOTORES DE TURBINA PARA AVIACION

TURBINAS A GAS MOTORES DE TURBINA PARA AVIACION TURBINAS A GAS MOTORES DE TURBINA PARA AVIACION Los motores de turbina para aviación son el sistema de propulsión empleado en casi todas las aeronaves comerciales modernas y la mayoría de las aeronaves

Más detalles

Ciclo de Brayton. Integrantes: Gabriela Delgado López Isamar Porras Fernández

Ciclo de Brayton. Integrantes: Gabriela Delgado López Isamar Porras Fernández Ciclo de Brayton Integrantes: Gabriela Delgado López Isamar Porras Fernández Ciclo de Brayton? Es un proceso cíclico asociado generalmente a una turbina a gas. Al igual que otros ciclos de potencia de

Más detalles

Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura

Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura Índice general Índice general Presentación Prólogo Nomenclatura V X XIII XV 1 Introducción 1 1.1. Introducción a la ingeniería aeroespacial............. 1 1.2. Clasificación de las aeronaves...................

Más detalles

Termodinámica de los compresores de gas. Termodinámica Técnica II Emilio Rivera Chávez Septiembre agosto 2009

Termodinámica de los compresores de gas. Termodinámica Técnica II Emilio Rivera Chávez Septiembre agosto 2009 Termodinámica de los compresores de gas Termodinámica Técnica II Emilio Rivera Chávez Septiembre 2007 - agosto 2009 Que es un Compresor de Gas? What is a Gas Compressor? Un compresor de gas es un dispositivo

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 5. MOTORES DE REACCIÓN En los motores de reacción, la energía mecánica producida por el proceso de combustión aparece en forma de energía cinética de una corriente de fluido en lugar de presentarse como

Más detalles

El motor no funciona, sin descarga, algún tipo de humo. Desgaste y estiramiento prematuro de faja del ventilador

El motor no funciona, sin descarga, algún tipo de humo. Desgaste y estiramiento prematuro de faja del ventilador 1.- Qué es una falla en un motor? Una falla es la interrupción del funcionamiento del motor causado por cualquier anomalía que se presente en uno o varios componentes de los diferentes sistemas 2.- Cuáles

Más detalles

2.- Para qué se utilizan los compresores de desplazamiento positivo? Se utiliza cuando se requiere mucho volumen de aire a baja presión.

2.- Para qué se utilizan los compresores de desplazamiento positivo? Se utiliza cuando se requiere mucho volumen de aire a baja presión. 1.- Qué son los compresores? Es una máquina de fluido que está construida para aumentar la presión y desplazar cierto tipo de fluidos llamados compresibles, tales como gases y vapores. 2.- Para qué se

Más detalles

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano Capítulo 4 Ciclos Termodinámicos Objetivo El alumno conocerá los ciclos termodinámicos fundamentales empleados en la transformación de la energía. Contenido Ciclos de generación de potencia mecánica. Ciclos

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

1. Punto de operación. El mapa de operación se presenta en la forma usual, según los 3 parámetros adimensionales. , o, más usualmente, P 2 / P1

1. Punto de operación. El mapa de operación se presenta en la forma usual, según los 3 parámetros adimensionales. , o, más usualmente, P 2 / P1 Unidad 10 Turbina de gas: Arranque; influencia de las condiciones ambientes; propulsión aérea. 1. Punto de operación. El mapa de operación se presenta en la forma usual, según los 3 parámetros adimensionales

Más detalles

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA.

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. 1 MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. Una máquina térmica es un dispositivo que trabaja de forma cíclica o de forma continua para producir trabajo mientras se le da y cede calor,

Más detalles

DESDE EL ESPACIO PODEMOS VER LA LUZ DE LAS CIUDADES

DESDE EL ESPACIO PODEMOS VER LA LUZ DE LAS CIUDADES DESDE EL ESPACIO PODEMOS VER LA LUZ DE LAS CIUDADES DESDE EL ESPACIO PODEMOS VER LA LUZ DE LAS CIUDADES DESDE EL ESPACIO PODEMOS VER LA LUZ DE LAS CIUDADES DESDE EL ESPACIO PODEMOS VER LA LUZ DE LAS CIUDADES

Más detalles

Tema 5: ENERGÍA (Repaso de Contenidos Básicos)

Tema 5: ENERGÍA (Repaso de Contenidos Básicos) Tecnologías 3ºE.S.O. Tema 5: ENERGÍA (Repaso de Contenidos Básicos) 1. Definición de energía. Unidades. ENERGÍA La energía es la capacidad de un cuerpo o sistema para realizar cambios. Unidades Julio (J),

Más detalles

TURBOMÁQUINAS. Mg. Amancio R. Rojas Flores

TURBOMÁQUINAS. Mg. Amancio R. Rojas Flores TURBOMÁQUINAS Mg. Amancio R. Rojas Flores 1.- DEFINICIÓN DE TURBOMÁQUINAS Las turbomáquinas son equipos diseñados para conseguir un intercambio energético entre un fluido (que pasa a su través de forma

Más detalles

Importancia de las Bombas Hidráulicas

Importancia de las Bombas Hidráulicas BOMBAS HIDRÁULICAS Importancia de las Bombas Hidráulicas Para muchas necesidades de la vida diaria tanto en la vida doméstica como en la industria, es preciso impulsar sustancias a través de conductos,

Más detalles

Tema1: Fuentes de energía renovables. Conceptos básicos

Tema1: Fuentes de energía renovables. Conceptos básicos Tema1: Fuentes de energía renovables. Conceptos básicos Asignatura: Sistemas electrónicos para fuentes de energía renovables Grupo de Tecnología Electrónica Departamento de Ingeniería Electrónica Escuela

Más detalles

CATEDRA MAQUINAS TERMICAS

CATEDRA MAQUINAS TERMICAS CATEDRA MAQUINAS TERMICAS TURBINAS A GAS CICLO BRAYTON (SINTESIS) ndez 1 INTRODUCCION Se puede decir que antes del año a o 1940 todas las máquinas m térmicas t de combustión n interna eran del tipo alternativo.

Más detalles

GMTS TEMA 1 LA MÁQUINA TÉRMICA Y EL MOTOR TÉRMICO. Grupo de Motores Térmicos Departamento de Ingeniería Energética Universidad de Sevilla

GMTS TEMA 1 LA MÁQUINA TÉRMICA Y EL MOTOR TÉRMICO. Grupo de Motores Térmicos Departamento de Ingeniería Energética Universidad de Sevilla TEMA 1 LA MÁQUINA TÉRMICA Y EL MOTOR TÉRMICO Grupo de Motores Térmicos Departamento de Ingeniería Energética Universidad de Sevilla Indice. 2.1. Generadoras. 2.2. Motoras. 4. Clasificación de los motores

Más detalles

Cap. 6.- Ciclos de turbinas de gas.

Cap. 6.- Ciclos de turbinas de gas. Cap. 6.- Ciclos de turbinas de gas. Cuestiones de autoevaluación Escuela Politécnica Superior Profesores: Pedro A. Rodríguez Aumente, catedrático de Máquinas y Motores Térmicos Antonio Lecuona Neumann,

Más detalles

CENTRALES ELÉCTRICAS

CENTRALES ELÉCTRICAS CENTRALES ELÉCTRICAS 1.- Qué es la energía? 2.-En qué consiste el efecto invernadero cuáles son sus consecuencias? 3.-En qué consiste la lluvia ácida, cuáles son sus consecuencias? 4.-Haz un esquema del

Más detalles

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor El vapor es el fluido de trabajo más empleado en los ciclos de potencia de vapor gracias a sus numerosas ventajas,

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 1. LA MÁQUINA TÉRMICA MÁQUINA DE FLUIDO: Es el conjunto de elementos mecánicos que permite intercambiar energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza.

Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Una máquina es un conjunto de elementos que interactúan entre sí y que es capaz de realizar un trabajo o aplicar una fuerza. Los elementos que constituyen las máquinas se llaman mecanismos. Las palancas

Más detalles

2. Conteste las siguientes cuestiones: a) Establezca una clasificación de los motores térmicos b) Defina el concepto de par motor

2. Conteste las siguientes cuestiones: a) Establezca una clasificación de los motores térmicos b) Defina el concepto de par motor 1. MÁQUINAS TÉRMICAS 1.1. MOTORES TÉRMICOS 1. Una furgoneta de 3.680 kg de masa acelera de 60 a 110 km/h en 15 s. Si el rendimiento del motor de gasolina es de un 21% y el poder calorífico de la gasolina

Más detalles

BcnRailINNOVA Proyectos estratégicos ferroviarios de I+D+i. Motor jet terrestre de impulso circular. Ingeniero Diego Orellana Hurtado.

BcnRailINNOVA Proyectos estratégicos ferroviarios de I+D+i. Motor jet terrestre de impulso circular. Ingeniero Diego Orellana Hurtado. BcnRailINNOVA Proyectos estratégicos ferroviarios de I+D+i Motor jet terrestre de impulso circular Ingeniero Diego Orellana Hurtado. MOTOR CELESTE S.L. Nº Expediente: PTR-2014-0351 Índice de la presentación.

Más detalles

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP Indice1 Cap.1 Energía INTRODUCCIÓN... 1 La Energía en el Tiempo... 2 1.1 Energía... 5 1.2 Principio de conservación de energía... 5 1.3 Formas de energía... 7 1.4 Transformación de energía... 9 1.5 Unidades

Más detalles

Capítulo I Introducción a Turbomaquinas. FAC. DE ING. MECÁNICA UMSNH Sergio Galván Ph.D.

Capítulo I Introducción a Turbomaquinas. FAC. DE ING. MECÁNICA UMSNH Sergio Galván Ph.D. Capítulo I Introducción a Turbomaquinas FAC. DE ING. MECÁNICA UMSNH Sergio Galván Ph.D. Temario Definición Clasificación General Aplicaciones La palabra turbo maquina es derivada de la palabra latina Turbo,

Más detalles

DEPARTAMENTO DE TECNOLOGIA IES ANTONIO SEQUEROS TEMA 3: MECANISMOS

DEPARTAMENTO DE TECNOLOGIA IES ANTONIO SEQUEROS TEMA 3: MECANISMOS TEMA 3: MECANISMOS 1. Mecanismos a. Movimiento circular en movimiento circular Ruedas de fricción Polea correa Engranajes b. Movimiento circular en movimiento lineal y viceversa Biela manivela Piñón cremallera

Más detalles

Sentido natural de los procesos

Sentido natural de los procesos Sentido natural de los procesos Sentido natural de los procesos H H H H H H H H O O O O H O H O H H H O H O H H H H H H H H H H O O O O H O H O H H O H H H O H dos volumenes de H un volúmen de O dos volumenes

Más detalles

TEMA1: GUIA 1 CICLO RANKINE

TEMA1: GUIA 1 CICLO RANKINE UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO PUNTO FIJO PROGRAMA DE INGENIERÍA INDUSTRIAL CÁTEDRA: CONVERSION DE ENERGIA TEMA: GUIA CICLO RANKINE Ciclo Rankine. Efectos de

Más detalles

TAREAS APUNTES Y ACTIVIDADES CUADERNO (se valorará que este todo completo, organización de los contenidos, limpieza y que los ejercicios estén):

TAREAS APUNTES Y ACTIVIDADES CUADERNO (se valorará que este todo completo, organización de los contenidos, limpieza y que los ejercicios estén): TEMA 7: Y SU TRANSFORMACIÓN TAREAS APUNTES Y ACTIVIDADES CUADERNO (se valorará que este todo completo, organización de los contenidos, limpieza y que los ejercicios estén): Pag. 186: actividad 7. Pag.

Más detalles

CT Prof. Nathaly Moreno Salas Ing. Victor TRejo. 4. Aspectos Generales de las Máquinas. 2

CT Prof. Nathaly Moreno Salas Ing. Victor TRejo. 4. Aspectos Generales de las Máquinas. 2 TURBOMÁQUINAS TÉRMICAS CT-3412 Prof. Nathaly Moreno Salas Ing. Victor TRejo 4. Aspectos Generales de las Máquinas. 2 Turbinas a gas Turbina a gas Pratt and Whitney Ft78 derivada de la turbina de avión

Más detalles

Física Térmica - Práctico 5

Física Térmica - Práctico 5 - Práctico 5 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica

Más detalles

TURBOMÁQUINAS TÉRMICAS

TURBOMÁQUINAS TÉRMICAS TURBOMÁQUINAS TÉRMICAS CT-3412 Prof. Nathaly Moreno Salas Ing. Victor Trejo 4. Aspectos Generales de las Máquinas 1 Contenido (1/3) Turbinas a vapor Definición Ámbito de aplicación Desarrollo técnico de

Más detalles

Centrales eléctricas. mome electricidad juan plaza l 1

Centrales eléctricas. mome electricidad juan plaza l 1 Centrales eléctricas mome electricidad juan plaza l 1 CENTRAL ELÉCTRICA Una central termoeléctrica o central térmica es una instalación empleada para la generación de energía eléctrica a partir de la energía

Más detalles

Sistemas de Propulsión

Sistemas de Propulsión Sistemas de Propulsión Tema 7: Descripción General de los Motores Cohete Francisco Gavilán Jiménez Escuela Superior de Ingenieros Universidad de Sevilla Curso 2007-2008 Introducción Los motores cohete

Más detalles

MOTOR 200 julios. TEMA 5. ENERGÍAS 1º ESO. Colegio San Agustín Valladolid ENERGÍA. CONVENCIONALES o NO RENOVABLES RENDIMIENTO ENERGÉTICO

MOTOR 200 julios. TEMA 5. ENERGÍAS 1º ESO. Colegio San Agustín Valladolid ENERGÍA. CONVENCIONALES o NO RENOVABLES RENDIMIENTO ENERGÉTICO TEMA 5. S 1º ESO. Colegio San Agustín Valladolid La energía es la capacidad de los cuerpos para producir un trabajo. Los conceptos de trabajo y energía se miden en la misma unidad, el julio. Por ejemplo,

Más detalles

Modelo de secadero solar.

Modelo de secadero solar. 18 III. Modelo de secadero solar. III.1 Introducción El secado es una operación básica que consiste en reducir la humedad de un producto cualquiera, de forma que el producto final presente unas características

Más detalles

Producción de energía eléctrica

Producción de energía eléctrica PRODUCCIÓN, TRANSPORTE Y ALMACENAMIENTO DE ENERGÍA ELÉCTRICA La energía eléctrica ES La más demandada del mundo industrializado. DEPENDEMOS DE ELLA PARA El transporte, las comunicaciones, la alimentación,

Más detalles

INGENIERÍA ENERGÉTICA. Tema 5. Motores y Turbinas para el Transporte

INGENIERÍA ENERGÉTICA. Tema 5. Motores y Turbinas para el Transporte INGENIERÍA ENERGÉTICA BLOQUE I. COMBUSTIBLES CONVENCIONALES Tema 5. Motores y Turbinas para el Transporte 1. Introducción 2. Motores de combustión interna alternativos 3. Turbinas de gas Grado en Ingeniería

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

Motores térmicos o maquinas de calor

Motores térmicos o maquinas de calor Cómo funciona una maquina térmica? Motores térmicos o maquinas de calor conversión energía mecánica a eléctrica En nuestra sociedad tecnológica la energía muscular para desarrollar un trabajo mecánico

Más detalles

INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS. Prof. Jesús De Andrade Prof. Miguel Asuaje

INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS. Prof. Jesús De Andrade Prof. Miguel Asuaje INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS Prof. Jesús De Andrade Prof. Miguel Asuaje Enero 2010 Contenido PARTE I Introducción Definiciones Generales Clasificación de las Turbomáquinas Bombas Centrífugas

Más detalles

Maquinas de fluidos compresibles Sistema de alimentación del motor de combustión interna reciprocante

Maquinas de fluidos compresibles Sistema de alimentación del motor de combustión interna reciprocante Ingeniería Mecánica Maquinas de fluidos compresibles Sistema de alimentación del motor de combustión interna reciprocante Equipo 1 Tipos de circuitos y componentes A). Circuito de alta presión: encargado

Más detalles

TEMA 5.-POTENCIA-RENDIMIENTOS-BALANCE TERMICO. + W roz. = W e. W i = *D2 4. = Z * V * pmi. = Z * V * pmi * n 60 * 1 2 = * C * pmi * n 60 * 1 2

TEMA 5.-POTENCIA-RENDIMIENTOS-BALANCE TERMICO. + W roz. = W e. W i = *D2 4. = Z * V * pmi. = Z * V * pmi * n 60 * 1 2 = * C * pmi * n 60 * 1 2 TEMA 5.-POTENCIA-RENDIMIENTOS-BALANCE TERMICO.-Introducción. La potencia desarrollada en el interior del cilindro(potencia indicada) no se transmite integramente al eje motor de salida(potencia efectiva),

Más detalles

PROPULSIÓN DE AERONAVES

PROPULSIÓN DE AERONAVES PROPULSIÓN DE AERONAVES Profesores Juan Manuel Tizón Pulido (ATA) jm.tizon@upm.es José Javier Álvarez García (NSA) josejavier.alvarez@upm.es Departamento de Motopropulsión y Termofluidodinámica Lección

Más detalles

Ingeniería de Sistemas Espaciales

Ingeniería de Sistemas Espaciales Ingeniería de Sistemas Espaciales Aplicado a una misión CanSat Vehículos Lanzadores Introducción Dispositivos de lanzamiento La física de un cohete Leyes de Newton Qué velocidad se requiere para alcanzar

Más detalles

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA TECNOLOGÍA INDUSTRIAL ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA 4. TRANSFORMACIONES ENERGÉTICAS 5. FUENTES DE ENERGÍA 6. IMPORTANCIA DE LA ENERGÍA

Más detalles

ASIGNATURA GENERACIÓN DE POTENCIA

ASIGNATURA GENERACIÓN DE POTENCIA REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL ASIGNATURA GENERACIÓN DE POTENCIA Ing. Danmelys Perozo E-mail: danmelys@gmail.com Blogs: http://danmelysperozo.wordpress.com/

Más detalles

Introducción. Análisis Causa Efecto ISHIKAWA 5. Análisis De Modo Y Efecto De Fallas 8. Mantenimiento De Turbinas A Gas 9

Introducción. Análisis Causa Efecto ISHIKAWA 5. Análisis De Modo Y Efecto De Fallas 8. Mantenimiento De Turbinas A Gas 9 Universidad Nororiental Privada Gran Mariscal de Ayacucho Facultad de Ingeniería Escuela de Ingeniería en Mantenimiento mención Industrial Barcelona Edo. Anzoátegui Mantenimiento III Turbinas a Gas Prof.

Más detalles

Introducción a la Ing. Aeroespacial

Introducción a la Ing. Aeroespacial Introducción a la Ing. Aeroespacial Tema 11 Propulsión Espacial Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros

Más detalles

Sistema de admisión de aire y escape

Sistema de admisión de aire y escape Pantalla anterior Producto: BACKHOE LOADER Modelo: 416E BACKHOE LOADER LMS Configuración: 416E Backhoe Loader Single Tilt LMS00001-UP (MACHINE) POWERED BY C4.4 Engine Bienvenido: r080ca12 Operación de

Más detalles

1. MÁQUINAS HIDRÁULICAS

1. MÁQUINAS HIDRÁULICAS . MÁQUINAS HIDRÁULICAS. MÁQUINAS HIDRÁULICAS.. DEFINICIÓN DE MÁQUINA Una máquina es un transformador de energía. La máquina absorbe energía de una clase y restituye energía de otra clase o de la misma

Más detalles

ENERGIA Y SUS TRANSFORMACIONES

ENERGIA Y SUS TRANSFORMACIONES ENERGIA Y SUS TRANSFORMACIONES La energía se puede entender como la posibilidad que tiene un cuerpo de producir algún cambio, acción o efecto en sí mismo o sobre otro cuerpo. Tales cambios pueden ser movimiento,

Más detalles

Tema 1- El hombre la energía y su historia.

Tema 1- El hombre la energía y su historia. Tema 1- El hombre la energía y su historia. -OBJETO -Analizar las relación de la energía, sus tipos,con la historia del hombre. 1 qué es la Energía? Capacidad de Producir Trabajo o Calor. E=W+Q Trabajo

Más detalles

ENERGIA UNDIMOTRIZ. Las investigaciones han ido muy lentas debido a la alta financiación que se necesita para llevarse a cabo.

ENERGIA UNDIMOTRIZ. Las investigaciones han ido muy lentas debido a la alta financiación que se necesita para llevarse a cabo. Energía undimotriz En la Tierra hay una gran longitud de costa, en el caso de España tenemos aproximadamente 7.880 kilómetros, y constantemente cerca de sus orillas se está produciendo la liberación de

Más detalles

MATERIA: MECÁNICA TLA

MATERIA: MECÁNICA TLA MATERIA: MECÁNICA TLA 1. EN LOS INDICADORES DE MOTOR DE UN TURBOFAN SE UTILIZA EL SIGUIENTE CONCEPTO: a. ITT b. EGT c. TORQUE d. NP 2. QUÉ SE ENTIENDE POR: CABINA PRESURIZADA? a. LA PARTE DE UN AVIÓN,

Más detalles

Equipos y maquinaria para transporte de fluido compresible

Equipos y maquinaria para transporte de fluido compresible Equipos y maquinaria para transporte de fluido compresible. INTRODUCCIÓN Los costes de conducciones y equipo necesarios para el flujo de fluidos constituyen un gasto considerable en una instalación, que

Más detalles

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos El primer principio de la termodinámica en sistemas abiertos Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Aplicación del primer principio a sistemas abiertos Conservación de la masa

Más detalles

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo 60 5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo Brayton para el cual se hicieron algunas simplificaciones que se especifican

Más detalles

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.

Más detalles

TEORIA SOBRE LA ENEGIA EOLICA. Camila Corredor Natalia Abadía Marcela Bernal

TEORIA SOBRE LA ENEGIA EOLICA. Camila Corredor Natalia Abadía Marcela Bernal TEORIA SOBRE LA ENEGIA EOLICA Camila Corredor Natalia Abadía Marcela Bernal Definición Se conoce como energía eólica al aprovechamiento por el hombre de la energía del viento. Antiguamente se utilizó para

Más detalles

TEORÍA DE TURBINAS TURBINAS DE ACCIÓN

TEORÍA DE TURBINAS TURBINAS DE ACCIÓN FUERZA AÉREA ARGENTINA INSTITUTO UNIVERSITARIO AERONÁUTICO FACULTAD DE INGENIERÍA PROGRAMA DE ASIGNATURA CARRERA/AS: INGENIERÍA AERONÁUTICA AÑO ACADÉMICO: 2011 ASIGNATURA: MOTORES II COD: 403003 DPTO:

Más detalles

CT Prof. Nathaly Moreno Salas Ing. Victor Trejo. 4. Aspectos Generales de las Máquinas 3

CT Prof. Nathaly Moreno Salas Ing. Victor Trejo. 4. Aspectos Generales de las Máquinas 3 TURBOMÁQUINAS TÉRMICAS CT-3412 Prof. Nathaly Moreno Salas Ing. Victor Trejo 4. Aspectos Generales de las Máquinas 3 Turbocompresores Turbocompresor axial industrial Turbocompresores: Definición Es una

Más detalles

ENERGÍA Año de Publicación: 2003

ENERGÍA Año de Publicación: 2003 ENERGÍA Año de Publicación: 2003 Título original de la obra: Conceptos sobre Energía Copyright (C) 2003 Secretaría de Energía República Argentina Secretaría de Energía - República Argentina Página 1 ENERGÍA

Más detalles

FACULTAD DE INGENIERÍA MECANICA CLASE FUENTES ALTERNAS DE ENERGÍA ENERGÍA EÓLICA. Dr. Erasmo Cadenas Calderón. Mayo del 2013

FACULTAD DE INGENIERÍA MECANICA CLASE FUENTES ALTERNAS DE ENERGÍA ENERGÍA EÓLICA. Dr. Erasmo Cadenas Calderón. Mayo del 2013 FACULTAD DE INGENIERÍA MECANICA CLASE FUENTES ALTERNAS DE ENERGÍA ENERGÍA EÓLICA Dr. Erasmo Cadenas Calderón Mayo del 2013 Objetivos: 1. Introducir a los participantes en el tema de la Energía Eólica 2.

Más detalles

Prefacio Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades capítulo 2. Procesos en fluídos comprensibles

Prefacio Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades capítulo 2. Procesos en fluídos comprensibles ÍNDICE Prefacio... 19 Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades... 27 Objetivos fundamentales del capítulo... 27 1.1. Introducción... 27 1.2. Concepto de máquina

Más detalles

1 Introducción y planteamiento del Proyecto

1 Introducción y planteamiento del Proyecto 1 Introducción y planteamiento del Proyecto 1.1 Introducción a las turbinas de gas de flujo axial Las turbinas de gas modernas no son más que un avance de lo que fue el primer modelo de reactor desarrollado

Más detalles

ENERGIAS DE LIBRE DISPOSICION

ENERGIAS DE LIBRE DISPOSICION Térmica -Energía Solar La energía solar térmica aprovecha directamente la energía emitida por el sol. Su calor es recogido en colectores líquidos o de gas que son expuestos a la radiación solar absorbiendo

Más detalles

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA RELACIÓN DE COMPRESIÓN PARÁMETROS CARACTERÍSTICOS...01...02 RELACIÓN DE COMPRESIÓN...05 RELACIÓN CARRERA / DIÁMETRO...06 MOTORES CUADRADOS...06 MOTORES SUPERCUADRADOS O DE CARRERA CORTA...07 VENTAJAS DE

Más detalles

Universidad Central Del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Escuela de Ingeniería Electromecánica

Universidad Central Del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Escuela de Ingeniería Electromecánica Universidad Central Del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Escuela de Ingeniería Electromecánica Programa de la asignatura: IEM-930 MAQUINAS HIDRAULICAS Y COMPRESORES

Más detalles

MAQUINAS HIDRAULICAS JHORMAN ARVEY NARVAEZ NARVAEZ YAMID ARMANDO PANTOJA PANTOJA. Profesor: Jorge Antonio Negret

MAQUINAS HIDRAULICAS JHORMAN ARVEY NARVAEZ NARVAEZ YAMID ARMANDO PANTOJA PANTOJA. Profesor: Jorge Antonio Negret MAQUINAS HIDRAULICAS JHORMAN ARVEY NARVAEZ NARVAEZ YAMID ARMANDO PANTOJA PANTOJA Profesor: Jorge Antonio Negret TRABAJO DE ENSAYO SOBRE MAQUINAS HIDRAULICAS CORPORACION UNIVERSITARIA AUTONOMA DE NARIÑO

Más detalles

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON)

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON) UNIVERSIDAD NACIONAL EXPERIMENTAL ``FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA PROGRAMA DE INGENIERÍA INDUSTRIAL, MECÁNICA LABORATORIO DE TERMODINÁMICA APLICADA. LABORATORIO DE CONVERSIÓN DE ENERGÍA PRÁCTICA

Más detalles

2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y compara la trayectoria real con la isentrópica

2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y compara la trayectoria real con la isentrópica CUESTIONARIO UNIDAD 5 1.- Qué es la eficiencia? Es la relación entre la energía útil y la energía invertida 2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y

Más detalles

En esta transparencia se muestra el módulo colector de escape de un motor EA288. El módulo incorpora el colector de escape y el turbocompresor.

En esta transparencia se muestra el módulo colector de escape de un motor EA288. El módulo incorpora el colector de escape y el turbocompresor. 1 2 Con un turbocompresor se pretende conseguir pares intensos y con ellos unas potencias superiores del motor. Esto se logra comprimiendo el aire aspirado. Con la mayor densidad puede ingresar una mayor

Más detalles

UNIDAD 7: ENERGÍA 1. Energía tipos y propiedades. 2. Fuentes de energía. 3. La energía y su transformación. La energía. Renovables No renovables

UNIDAD 7: ENERGÍA 1. Energía tipos y propiedades. 2. Fuentes de energía. 3. La energía y su transformación. La energía. Renovables No renovables UNIDAD 7: ENERGÍA 1. Energía tipos y propiedades. 2. Fuentes de energía. Renovables No renovables 3. La energía y su transformación. La energía Se transforma Se transfiere Se degrada Se conserva La energía

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

PRÁCTICA Nº 4 ESTUDIO ENERGÉTICO EN UNA INSTALACIÓN DE REFRIGERACIÓN POR EYECCIÓN DE VAPOR

PRÁCTICA Nº 4 ESTUDIO ENERGÉTICO EN UNA INSTALACIÓN DE REFRIGERACIÓN POR EYECCIÓN DE VAPOR PRÁCTICA Nº 4 ESTUDIO ENERGÉTICO EN UNA INSTALACIÓN DE REFRIGERACIÓN POR EYECCIÓN DE VAPOR 1.-INTRODUCCIÓN El ciclo de eyección de vapor se puede diferenciar en tres partes: termo compresión, ciclo de

Más detalles

CALOR Y TRABAJO: MÁQUINAS TÉRMICAS

CALOR Y TRABAJO: MÁQUINAS TÉRMICAS CALOR Y TRABAJO: MÁQUINAS TÉRMICAS I.-ENERGÍA MECÁNICA (TRABAJO) Y ENERGÍA CALORÍFICA (CALOR) TRANSFORMACIONES DE LA ENERGÍA MECÁNICA (TRABAJO) EN ENERGÍA CALORÍFICA. TRANSFOMRACIÓNES DE LA ENERGÍA CALORÍFICA

Más detalles

El hidrógeno y la energía limpia

El hidrógeno y la energía limpia www.juventudrebelde.cu El hidrógeno y la energía limpia Cómo obtener energía sin dañar el medio ambiente? Una de las propuestas es usar como combustible el elemento más abundante en el universo Conexión

Más detalles

FUNDAMENTOS DE MOTORES. Capítulo 1: Conceptos Básicos Recopilado por M. en C. José Antonio González M.

FUNDAMENTOS DE MOTORES. Capítulo 1: Conceptos Básicos Recopilado por M. en C. José Antonio González M. FUNDAMENTOS DE MOTORES Capítulo 1: Conceptos Básicos Recopilado por M. en C. José Antonio González M. Introducción: En esta presentación se estudiarán los conceptos básicos de la combustión de combustibles,

Más detalles

Lección 1: La energía.

Lección 1: La energía. Lección 1: La energía. Este primer Lección estableceremos los conceptos fundamentales de qué es la energía, como se utiliza y los conceptos asociados a ella. Pero no se preocupe, no vamos a utilizar demasiadas

Más detalles

Universidad Nacional del Comahue Facultad de Ciencias del Ambiente y de la Salud

Universidad Nacional del Comahue Facultad de Ciencias del Ambiente y de la Salud Universidad Nacional del Comahue Facultad de Ciencias del Ambiente y de la Salud CARRERA: LICENCIATURA EN SEGURIDAD E HIGIENE NOMBRE DE LA ASIGNATURA: SERVICIOS INDUSTRIALES Ciclo: 2017 1.- DATOS DE LA

Más detalles

La energía en España. La producción de energía eléctrica. Prof. Alfredo García. IES Dionisio Aguado, Fuenlabrada, Madrid

La energía en España. La producción de energía eléctrica. Prof. Alfredo García. IES Dionisio Aguado, Fuenlabrada, Madrid La energía en España La producción de energía eléctrica Prof. Alfredo García. IES Dionisio Aguado, Fuenlabrada, Madrid I.- LA ENERGÍA Y LA ACTIVIDAD HUMANA. II.- LAS FUENTES DE ENERGÍA HOY EN DÍA EN ESPAÑA.

Más detalles

DEPARTAMENTO DE TECNOLOGÍA

DEPARTAMENTO DE TECNOLOGÍA DEPARTAMENTO DE TECNOLOGÍA 3º ESO Tema 6 ENERGÍAS IES ANTONIO SEQUEROS ALMORADÍ Tema 6 ENERGÍAS 1 ENERGÍA ELÉCTRICA: GENERACIÓN TRANSPORTE Y DISTRIBUCIÓN Los recursos energéticos o fuentes de energía se

Más detalles

Tipos de energías renovables: ventajas e inconvenientes.

Tipos de energías renovables: ventajas e inconvenientes. Definición. n. -Energías renovables: Se denomina energía a renovable a la energía a que se obtiene de fuentes naturales virtualmente inagotables, unas por la inmensa cantidad de energía a que contienen,

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles

MINISTERIO DE ENERGÍA Y MINAS República de Guatemala

MINISTERIO DE ENERGÍA Y MINAS República de Guatemala MINISTERIO DE ENERGÍA Y MINAS Parque de Generación Eólica San Antonio El Sitio, Villa Canales, Guatemala LAS ENERGÍAS RENOVABLES EN LA GENERACIÓN ELÉCTRICA EN GUATEMALA Guatemala, agosto de 2016 www.mem.gob.gt

Más detalles

TEMA 2. Prestaciones y análisis de la misión

TEMA 2. Prestaciones y análisis de la misión EMA Prestaciones y análisis de la misión G. Paniagua, P. Piqueras Departamento de Máquinas y Motores érmicos UNIVERSIDAD POLIÉCNICA DE VALENCIA 1 Índice Análisis del ciclo termodinámico Generación de empuje

Más detalles

UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas

UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas 1. Turbina radial 1.1 General La turbina radial es físicamente muy similar al compresor centrífugo. La Figura 5.1 muestra

Más detalles

Programa Regular. Asignatura: Máquinas Térmicas. Carrera: Ingeniería Electromecánica. Ciclo Lectivo: Docente/s: Omar Mosquera

Programa Regular. Asignatura: Máquinas Térmicas. Carrera: Ingeniería Electromecánica. Ciclo Lectivo: Docente/s: Omar Mosquera Programa Regular Asignatura: Máquinas Térmicas Carrera: Ingeniería Electromecánica Ciclo Lectivo: 2016 Docente/s: Omar Mosquera Carga horaria semanal: 6 hs Modalidad de la asignatura: teórico-práctica

Más detalles

Sistemas de refrigeración: compresión y absorción

Sistemas de refrigeración: compresión y absorción Sistemas de refrigeración: compresión y absorción La refrigeración es el proceso de producir frío, en realidad extraer calor. Para producir frío lo que se hace es transportar calor de un lugar a otro.

Más detalles

Grupo Modelo S.A.B de C.V. Experiencias Recientes en el Sector Empresarial Biomasa. Mayo 25, 2011

Grupo Modelo S.A.B de C.V. Experiencias Recientes en el Sector Empresarial Biomasa. Mayo 25, 2011 Grupo Modelo S.A.B de C.V. Experiencias Recientes en el Sector Empresarial Biomasa 2 Mayo 25, 2011 Contenido I. Gestión Energética: Eficiencia Energética. Energía Renovable. Biomasa. II. Gases de efecto

Más detalles

MOVIMIENTO DE FLUIDOS INCOMPRESIBLES L/O/G/O

MOVIMIENTO DE FLUIDOS INCOMPRESIBLES L/O/G/O MOVIMIENTO DE FLUIDOS INCOMPRESIBLES L/O/G/O CONTENIDOS 1. DEFINICIÓN Y CLASIFICACIÓN DE LAS BOMBAS 2. CARACTERÍSTICAS GENERALES DE LAS BOMBAS 3. CAPACIDAD DE LAS BOMBAS 4. BOMBAS CENTRÍFUGAS 5. CURVAS

Más detalles

MEDIOS DE CONTROL DE EMISIÓN DE CONTAMINANTES

MEDIOS DE CONTROL DE EMISIÓN DE CONTAMINANTES CAPÍTULO 11 MEDIOS DE CONTROL DE EMISIÓN DE CONTAMINANTES Fuente: National Geographic - Noviembre 2000 INTRODUCCIÓN Por lo general los contaminantes del aire aún en su fuente de emisión, por ejemplo en

Más detalles

MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación

MAQUINAS HIDRAULICAS Y TERMICAS Motores de Combustión Interna Alternativos Introducción. Elementos Constructivos. Clasificación INTRODUCCIÓN A LOS MOTORES DE COMBUSTIÓN INTERNA ALTERNATIVOS INTRODUCCIÓN A LOS MOTORES TÉRMICOS MOTOR DE COMBUSTIÓN INTERNA ALTERNATIVO CARACTERÍSTICAS PRINCIPALES ELEMENTOS CONSTRUCTIVOS DE LOS M.C.I.A.

Más detalles

1.- El combustible se enciende en un motor Diesel, por medio de:

1.- El combustible se enciende en un motor Diesel, por medio de: 1.- MOTOR DIESEL 1.- El combustible se enciende en un motor Diesel, por medio de: a.- Alta temperatura del aire dentro del cilindro. b.- Alta presión del combustible dentro del cilindro. c.- Chispa mecánica

Más detalles