Laboratorio #4 Ley de Ohm
|
|
|
- Arturo Toledo Vera
- hace 7 años
- Vistas:
Transcripción
1 Laboratorio #4 Ley de Ohm Objetivo: Estudiar la relación entre la diferencia de potencial V y la intensidad de corriente I en una resistencia eléctrica R conectada en un circuito de corriente continua. Marco Teórico En este experimento queremos estudiar de manera experimental qué ocurre en un conductor con la corriente que circula por él al aplicarle un cierto voltaje. El fenómeno conocido como Ley de Ohm es concepto fundamental en el estudio de la electricidad, y relaciona el voltaje V aplicado a un conductor (en Volts), con la corriente I (en Amperes), esto es: V = R I (1) Siendo R la resistencia del conductor (en Ohms o Ω). I B S Figura 1: Circuito eléctrico con resistencia R, fuente de voltaje B y llave S. La relación R = V/I es una definición general de la resistencia de un conductor, aunque esta obedezca o no a la conocida ley de Ohm. La expresión V = RI no es un enunciado de esta ley; Usted debe tener presente que un conductor sigue la Ley de Ohm sólo si el gráfico V vs I es lineal, es decir, si R es independiente de V y de I. Existen conductores que no satisfacen esta relación lineal, debido a cambios en la resistencia por efectos principalmente relacionados con la temperatura del conductor debido al paso de la corriente a través de él. Es muy común que un novato en términos eléctricos espere que todos los elementos que conducen corriente eléctrica cumplan con la Ley de Ohm, sin embargo ello no es cierto en general. Ud. tendrá como misión comparar el comportamiento de una resistencia, de aquellas que se utilizan en electrónica, y de una ampolleta común. Ambas conducen corriente eléctrica, pero lo hacen del mismo modo? 1
2 Prelaboratorio 1.- Examine una ampolleta de las usadas en las casas. Qué características vienen especificadas en ella? Anote valores típicos para diferentes tipos de ampolletas. 2.- Averigue de qué parámetros depende la resistencia de un conductor. 3.- Busque ejemplos de elementos no-ohmicos y cómo es la curva de Voltaje vs Corriente asociada. 4.- Averigue como varía la resistencia de un conductor metálico con la temperatura. En particular, averigue datos para el Tungsteno (símbolo químico W, también llamado Wolframio), material con el cual generalmente está hecho el filamento de una ampolleta. 5.- Las resistencias que se usan en circuitos electrónicos comunes usan muchas veces un código de color. Imagine que le entregan una resistencia y no dispone de un multi-tester para obtener su valor, sin embargo se observa que tiene pintadas rayas con los siguientes colores: café, negro, rojo y dorado. Que representan los diferentes colores y cuál es el valor de la resistencia? Equipamiento - Circuito RLC, Pasco CI Multi-tester - Amplificador de potencia, Pasco CI Computador con interfaz Pasco Science Workshop - Ampolleta - Cables conectores Montaje Experimental 1.- Conecte el amplificador de potencia a uno de los canales análogos de la interfaz Pasco Science Workshop como se muestra en la Figura 1. Procure encender la interfaz antes de encender el computador (no encienda aún el amplificador de potencia). Multi-tester Amplificador de potencia, Pasco CI-6502 Circuito RLC, Pasco CI
3 Figura 1: Montaje Experimental El experimento consiste en dos partes: Parte 1: Voltaje y Corriente a través de una resistencia de 10Ω Parte 2: Voltaje y Corriente a través de una ampolleta de 7.5V Parte 1: Resistencia Procedimiento Parte Mida la resistencia con un multi-tester (pida asistencia a su profesor). Este valor será su valor de referencia. 2.- Conecte la resistencia a los bornes de salida del amplificador de potencia.luego conecte el conector análogo del amplificador a uno de los canales análogos de la interfaz. Seleccione del menú de sensores Amplificador de Potencia (power amplifier) en el canal que realizó la conexión. Aparecerá la ventana de generador de señales (signal generator). Coloque los siguientes parámetros: 3 V 0.1 Hz Figura 2: Ventana del Generador de Señales (Signal Generator) Señal de salida: AC waveform, onda triangular Amplitud: 3 Volt Frecuencia: 0.1 Hz 3.- Seleccione el botón AUTO de modo que comenzará a producir o parará la señal cuando se inicie o finalice la toma de datos. 4.- Abra el modo osciloscopio (Scope) y seleccione el Voltaje de Salida (Output Voltaje) y la Corriente del Canal análogo conectado En el icono del eje vertical seleccione Voltaje de Salida (voltaje), y seleccione 1V/div En el segundo icono del eje vertical (corriente), y seleccione 1 V/div. 3
4 En el icono del eje horizontal seleccione la velocidad de barrido 500 ms/div. 5.- Presione START para iniciar el proceso de recolección de datos, y STOP para terminar. 6.- Transfiera los datos de corriente y voltaje para que queden registrado Abra un gráfico voltaje vs corriente para observar el comportamiento de la resistencia mientras cambia el voltaje (y por ende la corriente). NOTA :Para transferir presione el icono representado por la imagen 7.- Encienda el amplificador de potencia y presione START para iniciar el proceso de recolección de datos y STOP para terminar. Resultados Parte 1 Complete la siguiente tabla de datos, viendo la corriente asociada a cada valor de voltaje en intervalos de 0.5 Volt desde -3.0 Volt hasta 3.0 Volt: Análisis Parte 1 Tabla 1: Resistencia Voltaje [ ] Corriente [ ] (...) (...) 1.- Realice en papel milimetrado un gráfico de voltaje vs corriente con los valores de la Tabla Calcule la mejor recta de los puntos de su gráfico y obtenga la ecuación de la recta. 3- Haga una comparación entre la ecuación de la recta y la ley de Ohm Qué representa físicamente la pendiente de su recta? 4.-Haga una comparación porcentual entre el valor de la resistencia obtenida con el multitester y el valor obtenido experimentalmente. Diría Ud. que la resistencia se comporta como un dispositivo Ohmico? Parte 2: Ampolleta Procedimiento Parte 2 4
5 1.- Reemplace la conexión a la resistencia por una conexión a una ampolleta de 7.5Volt en su mismo circuito Pasco RLC. 2.- Repita el mismo procedimiento de la Parte 1, para obtener datos de voltaje vs corriente. Observe cuidadosamente en qué partes del gráfico V vs I la ampolleta se enciende y se apaga (debido al voltaje variable aplicado). Resultados Parte 2 Complete la siguiente tabla de datos, viendo la corriente asociada a cada valor de voltaje en intervalos de 0.5 Volt desde -3.0 Volt hasta 3.0 Volt: Análisis Parte 2 Tabla 2: Ampolleta Voltaje [ ] Corriente [ ] (...) (...) 1.- Realice en papel milimetrado un gráfico de voltaje vs corriente con los valores de la Tabla 2. Marque en su gráfico en que parte la ampolleta está en proceso de encendido y en qué parte comienza a apagarse. 2.- Tomando pendientes adecuadas en su gráfico, obtenga una estimación de la resistencia de la ampolleta cuando está fría y cuando está caliente. 3.- Tras este análisis Diría Ud. que la ampolleta se comporta como un dispositivo Ohmico? 5
La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo.
FIS-1525 Ley de Ohm Objetivo Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que circula. Probar el cumplimiento de la ley de Ohm para dos
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito
Laboratorio de Física con Ordenador Workbook Experiencia P48: Ley de Ohm C Experiencia P48: Ley de Ohm Sensor de voltaje
Experiencia P48: Ley de Ohm Sensor de voltaje Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Electricidad P48 Ohm s Law.DS (Ver Apéndice) (Ver Apéndice) Equipo necesario Cant. Equipo necesario
CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA
CIRCUITOS RC Y RL OBJETIVO Estudiar empíricamente la existencia de constantes de tiempo características tanto para el circuito RC y el RL, asociadas a capacidades e inductancias en circuitos eléctricos
Experiencia P51: Circuito RL Sensor de Voltaje, salida de potencia
Sensor de Voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuitos P51 LR Circuit.DS ( vea al final experiencia) ( vea al final experiencia) Equipo necesario Cant.
Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos.
Circuitos RC y LR Objetivo Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Equipamiento Computador PC con interfaz
Ondas Estacionarias en una Cuerda
Ondas Estacionarias en una Cuerda Objetivo Observar las ondas estacionarias en una cuerda tensa y mediante el análisis y medición de algunos parámetros importantes, involucrados en este fenómeno. Materiales
PRÁCTICA NÚMERO 10 LEY DE OHM
PRÁCTICA NÚMERO 10 LEY DE OHM I. Objetivos. Investigar si los siguientes elementos eléctricos son óhmicos: a) Una resistencia comercial. b) Un diodo rectificador. II. Material. 1. Dos multímetros. 2. Dos
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica
PRACTICA Nº 7 CARACTERISTICAS DEL BJT, AMPLIFICADOR EMISOR COMUN
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 7 CARACTERISTICAS DEL BJT, AMPLIFICADOR EMISOR COMUN OBJETIVO * Familiarizar al estudiante con el
PRÁCTICA NÚMERO 5 LEY DE OHM
PRÁCTICA NÚMERO 5 LEY DE OHM I. Objetivos. 1. Investigar si los siguientes elementos eléctricos son óhmicos o no: - Una resistencia comercial. - Un diodo rectificador. II. Material. 1. Dos multímetros.
RESISTENCIA Y LEY DE OHM
RESISTENCIA Y LEY DE OHM Objetivos: - Aprender a utilizar el código de colores de la E.I.A. (Electronics Industries Association ) - Aprender a armar algunos circuitos simples en el tablero de pruebas (Protoboard).
Figura Amplificador inversor
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS CIRCUITOS BÁSICOS DEL AMPLIFICADOR OPERACIONAL
EL OSCILOSCOPIO. 2.- Describa el principio básico de operación del tubo de rayos catódicos del osciloscopio.
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Usar adecuadamente el osciloscopio analógico para
Experiencia P57: Amplificador seguidor de emisor Sensor de voltaje
Sensor de voltaje Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores P57 Common Emitter.DS (Vea al final de la (Vea al final de la experiencia) experiencia) Equipo necesario Cant.
PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL OBJETIVOS * Realizar montajes de circuitos
Consulte y explique los conceptos de energía potencial gravitacional; energía potencial eléctrica, y explicar su analogía.
:: OBJETIVOS [2.1] Comprobar experimentalmente la ley de Ohm. Analizar las diferencias existentes entre elementos lineales (óhmicos) y no lineales (no óhmicos). Aplicar técnicas de análisis gráfico y ajuste
Experiencia P53: Diodos- Propiedades- LED Sensor de voltaje, salida de potencia
Experiencia P53: Diodos- Propiedades- LED Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores P53 LED.DS (Vea al final de la (Vea al final
Práctica 4 Detector de ventana
Práctica 4 Detector de ventana Objetivo de la práctica Analizar el comportamiento de un detector de ventana Al terminar esta práctica, el discente será capaz de: Comprender el funcionamiento de un circuito
PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS OBJETIVO Familiarizar al estudiante con los conceptos fundamentales
SIMULACIÓN CON PROTEUS
UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO 2: PROTEUS 1. OBJETIVOS SIMULACIÓN CON PROTEUS Introducir al estudiante en
PRACTICA 02 LEY DE OHM
PRACTICA 02 LEY DE OHM OBJETIVOS 1. Comprobar la Ley de Ohm en un Reóstato, en DC. 2. Estudiar el comportamiento de una lámpara incandescente. 3. Realizar mediciones empleando métodos técnicos e industriales.
PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y.
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA OBJETIVO Familiarizar al estudiante
Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS
Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento
PRÁCTICA NÚMERO 6 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA
PRÁCTICA NÚMERO 6 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA I. Objetivos. 1. Estudiar la asoaciación de resisitencias en serie y en paralelo. 2. Estudiar la potencia que consumen dos elementos colocados
La Ley de Ohm. Pre-Laboratorio
La Ley de Ohm Pre-Laboratorio Nombre Sección Conteste las siguientes preguntas y entregue este pre-laboratorio a su instructor antes de comenzar la experiencia de laboratorio. 1. El sensor V-I integra
Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos
Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos Grado en Ingeniería Informática: Ingeniería del Software 2010/2011 Objetivos Repasar los conceptos de circuitos eléctricos
Experiencia P49: Transformador Sensor de voltaje, salida de potencia
Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Electricidad P49 Transformer.DS ( vea al final experiencia) ( vea al final experiencia) Equipo necesario
Resistencia de filamento 0,5 Ω Balanza Digital Calorímetro de Aluminio Conectores 120 ml de agua Revestimiento de lana para aislación
FIS-153 Electricidad y Magnetismo Efecto Joule Objetivo Estudiar la transferencia de energía entre una resistencia eléctrica energizada y el medio ambiente que está sumergida (agua), obteniendo, a partir
Analizar las características de un circuito en serie y paralelo. Hacer una buena conexión y el uso correcto del vatímetro.
CIRCUITO SERIE - PARALELO Y MEDIDA DE LA POTENCIA OBJETIVOS: Analizar las características de un circuito en serie y paralelo. Hacer una buena conexión y el uso correcto del vatímetro. FUNDAMENTO TEORICO:
INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales descritas en los instrumentos de medición para AC.
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 7 INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Objetivos Interpretar las
PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida?
REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOGÍA DE LA VICTORIA LA VICTORIA ESTADO ARAGUA DEPARTAMENTO DE ELECTRICIDAD LABORATORIO
PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.
PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias
PRÁCTICA NÚMERO 13 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA
PRÁCTICA NÚMERO 13 ASOCIACIÓN DE RESISTENCIAS Y POTENCIA ELÉCTRICA I. Objetivos. 1. Estudiar la asociación de resistencias en serie y en paralelo. 2. Estudiar la potencia que consumen dos elementos colocados
Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION
Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar
MANEJO DEL MULTIMETRO
MANEJO DEL MULTIMETRO Multímetro: Se denomina multímetro o téster a un instrumento capaz de medir diversas magnitudes eléctricas con distintos alcances. Estas magnitudes son tensión, corriente y resistencia.
LABORATORIO DE FÍSICA 1. PRÁCTICA 6: Guía de circuitos de corriente continua y RC PRÁCTICA 6 1ER CUATRIMESTRE 2014 OBJETIVO GENERAL
PRÁCTICA 6: Guía de circuitos de corriente continua y RC OBJETIVO GENERAL Estudiar la relación entre la diferencia de potencial y la corriente que circula en una resistencia eléctrica. Analizar el comportamiento
:: OBJETIVOS [6.1] :: PREINFORME [6.2]
:: OBJETIVOS [6.1] Estudiar la influencia que ejerce la resistencia interna de una pila sobre la diferencia de potencial existente entre sus bornes y medir dicha resistencia interna. :: PREINFORME [6.2]
Medida de la característica estática de un diodo
Práctica 4 Medida de la característica estática de un diodo Índice General 4.1. Objetivos................................ 39 4.2. Introducción teórica.......................... 40 4.3. Medida de la Característica
CORRIENTE Y RESISTENCIA ELÉCTRICA
Laboratorio de Física General (Electricidad y Magnetismo) CORRIENTE Y RESISTENCIA ELÉCTRICA Fecha: 02/10/2013 1. Objetivo de la práctica Estudio de la variación de la resistencia eléctrica con la tensión
Experiencia P55: El transistor NPN como un interruptor digital Sensor de voltaje, salida de potencia
Experiencia P55: El transistor NPN como un interruptor digital Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores P55 Digital Switch.DS (Vea
Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia
Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores
RESISTENCIA EN FUNCIÓN DE LA TENSIÓN
Laboratorio de Física General Primer Curso (Electromagnetismo RESISTENCIA EN FUNCIÓN DE LA TENSIÓN Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la variación de la resistencia eléctrica con la
Experiencia P40: Movimiento armónico forzado. Masa en un muelle Sensor de fuerza, Sensor de movimiento, Amplificador potencia
Experiencia P40: Movimiento armónico forzado. Masa en un muelle Sensor de fuerza, Sensor de movimiento, Amplificador potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento P40
Experiencia P30: Inducción electromagnética Sensor de Voltaje
Sensor de Voltaje Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Electromagnetismo P30 Induction.DS P41 Induction - Magnet P41_INDU.SWS Equipo necesario Cant. Equipo necesario Cant. Sensor
PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM.
PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y las leyes de la asociación de resistencias
Parte A: Circuito RC
Circuitos RC, RL Y RLC Parte A: Circuito RC EQUIPAMIENTO - Osciloscopio Digital Tektronic - Circuito RLC, PASCO CI-6512 - Fuente de Poder 30V,5 A - Conectores banana - 2 cables BNC - 1 resistencia de 10
Experiencia P09: Empujar y Tirar de un carrito Sensor de fuerza, Sensor de movimiento
Experiencia P09: Empujar y Tirar de un carrito Sensor de fuerza, Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Leyes de Newton P09 Push Pull.ds P12 Push-Pull a Cart P12_PUSH.SWS
Experiencia P52: Circuito RLC Sensor de voltaje
Sensor de voltaje Tema DataStudio ScienceWorkshop (Mac) Circuitos CA P52 LRC Circuit.DS (vea al final de la experiencia) ScienceWorkshop (Win) (vea al final de la experiencia) Equipo necesario Cant. Del
Práctica No 0: Parte C El Osciloscopio y el Generador de Señales
Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Bioinstrumentación I Revisada por: Prof. Rafael Volcanes, Prof. Lisbeth Román.
PRACTICA Nº 4 EL OSCILOSCOPIO
PRACTICA Nº 4 EL OSCILOSCOPIO Objetivos Comprender el principio de funcionamiento del osciloscopio analógico y estar en capacidad de identificar los diferentes bloques de controles en los instrumentos
Experiencia P33: Intensidad de la Luz frente a distancia Sensor de Luz, Sensor de Movimiento rotatorio
Experiencia P33: Intensidad de la Luz frente a distancia Sensor de Luz, Sensor de Movimiento rotatorio Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Inverse Square Law? P33 Light vs Position.DS
1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme
1 PRÁCTICA DE LABORATORIO: MOVIMIENTO DE ELCTRONES EN UN CAMPO ELÉCTRICO UNIFORME 1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1.2. OBJETIVOS ESPECÍFICOS -
Experiencia P41: Ondas en un hilo Amplificador de potencia
Amplificador de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Ondas P41 Waves.DS P31 Waves on a String P31_WAVE.SWS Equipo necesario Cant Equipo necesario Cant Amplificador de potencia
LEY DE RADIACIÓN DE STEFAN-BOLTZMANN OBJETIVO Comprobación de la ley de radiación de Stefan-Boltzmann. MATERIAL Termómetro, 2 polímetros, amperímetro, termopila, bombilla con filamento de tungsteno, generador
Tema: Parámetros del Cableado Coaxial
Tema: Parámetros del Cableado Coaxial Contenidos Impedancia característica. Velocidad de propagación. Onda reflejada. Línea de transmisión terminada con cargas. Objetivos Específicos Fundamentos de Cableado
3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular.
Objetivos: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER Al terminar la práctica el alumno estará capacitado para: 1. El manejo de los controles del osciloscopio (encendido, ajuste de intensidad, barrido vertical,
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II
INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio
Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón
Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, [email protected] Mariana Ceraolo
Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C.
Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C. Experiencia N 6 1.- OBJETIVOS 1. Mostrar la potencia eléctrica como función del voltaje y de la corriente, calculando y midiendo la potencia
MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 8 MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL Familiarizarse
La ley de desplazamiento de Wien (Premio Nobel 1911):
Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya
EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO DIGITAL
EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 3 EL OSCILOSCOPIO DIGITAL DIAGRAMA DE BLOQUES DE UN OSCILOSCOPIO ANALÓGICO PRESENTACIÓN DE LAS FIGURAS EN LA PANTALLA DE UN OSCILOSCOPIO ANALÓGICO
PRÁCTICA 3 DE FÍSICA GENERAL II
PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2016-17 Departamento de Física Aplicada e ngeniería de Materiales GRADO EN NGENERÍA DE ORGANZACÓN Coordinador: Rafael Muñoz Bueno [email protected] Práctica 3 Corriente
MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS EC1113 PRACTICA Nº 1 MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Comprender el principio de funcionamiento del osciloscopio
Caracterización De Los Elementos De Un Circuito *
UNIVERSIDAD NACIONAL DE COLOMBIA Departamento de Física Fundamentos de Electricidad y Magnetismo Guía de laboratorio N o 04 Objetivos Caracterización De Los Elementos De Un Circuito * 1. Conocer y aprender
Laboratorio de Física con Ordenador Experiencia P14: Movimiento armónico simple C PARTE I: CONFIGURACIÓN DEL ORDENADOR FUERZA
Experiencia P14: Movimiento armónico simple Sensor de fuerza, Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento armónico P14 SHM.DS P19 SHM Mass on a Spring P19_MASS.SWS
Tema: Sistemas de lazo abierto y lazo cerrado
1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Se hará en dos sesiones Tema: Sistemas
Movimiento rectilíneo uniformemente acelerado
Movimiento rectilíneo uniormemente acelerado Objetivo General El alumno estudiará el movimiento rectilíneo uniormemente acelerado Objetivos particulares 1. Determinar experimentalmente la relación entre
DIODOS Y TRANSISTORES.
INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 1.0.0. DIODOS Y TRANSISTORES. Caracterización de el diodo. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del 2015 Practica:
CIRCUITOS RECTIFICADORES
Electrónica I. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES Objetivos generales
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,
Tema: Tiristores. Objetivos. Recomendaciones. Introducción. Radiología. GUÍA 01 Pág. 1
Tema: Tiristores Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Objetivos SCR Determinar las características de un Tiristor Conectar el SCR para que conduzca en
Objetivo En este ejercicio se utilizan diversos IV de NI Elvis para medir las características de filtros pasa bajas, pasa altas y pasa banda.
4 FILTROS CON AMPLIFICAR OPERACIONAL El uso del amplificador operacional con algunos resistores y capacitores se obtiene una amplia variedad de circuitos interesantes, como filtros activos, integradores
Aplicaciones de la ley de Faraday
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Aplicaciones de la ley de Faraday Elaborado por: Jorge A. Pérez y Miguel A. Serrano Introducción Los transformadores de
PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS I EC1181 PRACTICA Nº 7 AMPLIFICADORES CON TRANSISTORES BIPOLARES OBJETIVO Familiarizar al estudiante con el diseño y
DIODOS Y TRANSISTORES.
INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 3.0.0. DIODOS Y TRANSISTORES. Amplificadores con transistor BJT. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del 2015
Experiencia P54: Diodos- Rectificador & Fuente de alimentación Sensor de voltaje, salida de potencia
Experiencia P54: Diodos- Rectificador & Fuente de alimentación Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores P54 Rectifier.DS (Vea el
Experiencia P37: Tiempo de Vuelo frente a Velocidad Inicial Célula Fotoeléctrica
Célula Fotoeléctrica Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento de un P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS proyectil Equipo necesario Cant. Equipo necesario
CORRIENTE CONTINUA II : CURVA CARACTERÍSTICA DE UNA LÁMPARA
eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA
Guía Práctica Experiencia Introductoria Rectificador de Onda Completa
Universidad de Chile Escuela de Verano 2009 Curso de Energía Renovable Guía Práctica Experiencia Introductoria Rectificador de Onda Completa Escrito por: Lorenzo Reyes Introducción En este documento se
y v y Trayectoria de un proyectil
EXPERIMENTO 1- Lanzamiento Horizontal I OBJETIVO: Comprobar que el lanzamiento de proyectiles es la superposición de dos movimientos: un movimiento a velocidad constante en la dirección horizontal y un
LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN
LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN Objetivos. Estudiar y familiarizarse con el tablero de conexiones (Protoboard ) y la circuitería experimental. Aprender a construir circuitos
CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO
eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA
Experiencia P59: Campo magnético de unas bobinas de Helmholtz Sensor de campo magnético, sensor de rotación, salida de potencia
Sensor de campo magnético, sensor de rotación, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Magnetismo P59 Helmholtz Coils.DS (Vea al final de la (Vea al final de la experiencia)
17. CURVA CARACTERÍSTICA DE UNA LÁMPARA
17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar
CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS
CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS COMBINACIONALES INTEGRADOS CIRCUITOS INTEGRADOS SECUENCIALES: FLIP-FLOPS, REGISTROS Y CONTADORES CONSEJOS PARA LA ELABORACIÓN DE DIAGRAMAS LÓGICOS DE CIRCUITOS
Experiencia P31: Campo Magnético de un Imán Permanente Sensor de Campo Magnético
Sensor de Campo Magnético Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Magnetismo P31 Permanent Magnet.DS P51 Permanent Magnet P51_PERM.SWS Equipo necesario Cant. Equipo necesario Cant.
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR SOURCE COMUN Objetivo:
Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales)
SIMULADOR PROTEUS MÓDULO VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) En éste modo se encuentran las siguientes opciones 1. VOLTÍMETROS Y AMPERÍMETROS (AC Y DC) Instrumentos que operan en tiempo
PRÁCTICA NÚMERO 12 TRANSMISIÓN DE POTENCIA
PRÁCTICA NÚMERO 12 TRANSMISIÓN DE POTENCIA I. Objetivos. 1. Investigar la relación de la corriente de entrada y la de salida con el número de vueltas del primario y secundario de un trasformador. 2. Calcular
Formato para prácticas de laboratorio
CARRERA Ingeniero en Computación PRÁCTICA No. 2 PLAN DE ESTUDIO LABORATORIO DE NOMBRE DE LA PRÁCTICA 1 INTRODUCCIÓN CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA 1995-2 1617 Mediciones Eléctricas y Electrónicas
Experiencia P19: Teorema del Trabajo y la Energía Sensor de fuerza, puerta fotoeléctrica / polea
Experiencia P19: Teorema del Trabajo y la Energía Sensor de fuerza, puerta fotoeléctrica / polea Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energía P19 Work Energy.DS P Work-Energy Theorem
Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna
Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna Objetivos: 1. Comprobar experimentalmente la validez de los cálculos teóricos, por medio del análisis de un circuito RL en serie y de
17. CURVA CARACTERÍSTICA DE UNA LÁMPARA
17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar
